在线监测与故障诊断

合集下载

电力设备的在线监测与故障诊断

电力设备的在线监测与故障诊断
加拿大BravTech 铂睿克
超声一体化气室+膜渗透平衡脱气
气敏传感器
H2,CO,CH4,C2H6,C2H4,C2H2 单一色谱柱,单一传感器
空气做载气(部分型号)
TRANSFIX
英国Kelman 凯尔曼
动态顶空平衡
光声光谱技术(PAS)
H2,CO,CH4,C2H6,C2H4,C2H2,CO2,O2,八种气体加水分
机械振动监测
高压导体、触头温度监测
①母线电流 ②磁场 ③组件。a 温度传感器, b 感应线圈,c 电子线路 ④红外发光二极管 ⑤红外光接收器 ⑥温度信息接收器
主要问题:绝缘、供电 方法:无线(射频、红外)、光纤
高压开关柜局部放电的监测
暂态地电压(Transient Earth Voltages,TEV) 声发射(AE)
绕组变形
变压器的在线监测
在电场的作用下,绝缘系统中只有部分区域发生放电,而没有贯穿施加电压的导体之间,即尚未击穿。
在绝缘结构中局部场强集中的部位,出现局部缺陷时,将导致局部放电。
变压器局部放电监测
局部放电监测的意义
刷形树枝 丛林状树枝
局部放电是造成高压电气设备最终发生绝缘击穿的主要原因。这是一个“日积月累”的过程,可谓“冰冻三尺非一日之寒”。
宽带脉冲电流法局部放电监测
宽带脉冲电流法局部放电监测
常规局放测量的相位谱图不能分离噪声与信号,不能分离不同种类的信号,从而不能准确识别放电类型。
宽带脉冲电流法局部放电监测
b
1
)
b
2
)
d
1
)
d
2
)
局放A
基于脉冲信号分离分类技术的局放检测则可根据信号特征将每一类局放的相位谱图分离出来

电力变压器在线监测及故障诊断分析系统——说明报告(关於软件的使用)

电力变压器在线监测及故障诊断分析系统——说明报告(关於软件的使用)

电力变压器在线监测及故障诊断分析系统说明报告华中科技大学目录1. 概述 (3)1.1. 用途 (3)1.2. 使用环境 (3)1.3. 技术特点 (3)2. 主要技术参数 (4)2.1. 额定数据 (4)2.2. 通信方式 (4)2.3. 诊断方式 (4)2.4. 设定参数 (4)3. 诊断工作原理 (5)4. 通信软件使用说明 (7)4.1. 连接MIS系统 (7)4.2. 连接铁芯接地电流装置 (7)5. 客户端软件使用说明 (9)5.1. 主界面 (9)5.2. 用户管理 (10)5.3. 数据获取 (11)5.4. 系统查询 (13)5.5. 诊断分析 (14)5.6. 系统设置 (15)6. 运行与维护 (17)6.1. 一般检查 (17)6.2. 投运前装置的设置与检查. (17)6.3. 运行时检查 (17)6.4. 使用注意事项 (17)6.5. 常见故障处理指南 (17)1.概述1.1. 用途对主变压器进行在线监测,获取反映变压器绝缘状况的关键参数,包括铁芯接地电流、油中气体组分两部分在线获取数据,以及预防性试验、油化学试验、缺陷等历史数据,从多个角度实时全面反映运行变压器的绝缘状态,并对其绝缘状况做出分析、诊断。

系统实现自动运行及数据上网功能,对监测结果建立状态监测数据库,并进行数据管理、分析、统计、整合,为电力变压器状态检修提供辅助分析和决策依据。

1.2. 使用环境本系统服务器安装于变电站内。

为便于与“变压器铁心接地电流报警系统”进行RS485通信,需安装在该系统工控机附近;同时,系统需连接供电局局域网,以实现数据获取和上网功能。

1.3. 技术特点1)软件平台采用Visual C++6.0编写,使用操作系统为WindowsXP系统,数据库采用SQLServer2000 SP4。

2)实现与“变压器铁心接地电流报警系统”、“MIS生产管理数据整合与集中应用业务平台”、“在线油气色谱分析系统”通信,获取与变压器相关数据,并整合录入数据库。

电力设备的在线监测与故障诊断

电力设备的在线监测与故障诊断

在线监测与故障诊断技术的发展趋势和未来发 展方向
智能化:利用人工智能和大数据技术提高监测和诊断的准确性和效率。
实时性:提高监测的实时性,以便及时发现和解决故障,减少设备 停机时间。
远程化:通过远程监测和诊断技术,减少现场维护成本和时间。
集成化:将多个监测系统集成在一起,实现统一管理和数据共享。
提高在线监测与故障诊断技术的有效途径和方 法
添加标题
添加标题
添加标题
数据处理模块:对采集的数据进 行预处理、分析和特征提取,为 后续的故障诊断提供依据。
预警与控制模块:根据故障诊断 结果,及时发出预警信号,并采 取相应的控制措施,保障电力设 备的安全稳定运行。
监测技术应用场景
变压器在线监测
高压断路器在线监测
输电线路在线监测
配电设备在线监测
监测技术发展趋势
提高运行效率:通过对电力设备的在线监测和故障诊断,优化设备运行状 态,提高运行效率。
在线监测与故障诊断技术在电力设备故障预警 和预防中的作用
预测设备寿命,制定维修计 划,避免突然停机
提高设备运行可靠性,减少 非计划停机时间
实时监测设备运行状态,及 时发现潜在故障
为故障诊断提供数据支持, 辅助技术人员快速定位故障
电力设备在线监测与故障诊断的应 用
在线监测与故障诊断在电力系统中的重要性
提高电力设备运行可靠性:通过实时监测和故障诊断,及时发现并解 决潜在问题,降低设备故障率,提高运行稳定性。
延长设备使用寿命:及早发现设备异常,采取相应措施,可有效延 长设备使用寿命,降低更换成本。
提高电力系统的安全性能:在线监测与故障诊断能够及时发现并预警 潜在的安全隐患,保障电力系统的安全稳定运行。

(完整word版)电气设备在线监测与故障诊断

(完整word版)电气设备在线监测与故障诊断

(完整word版)电气设备在线监测与故障诊断网络教育学院本科生毕业论文(设计)题目:电气设备在线监测与故障诊断学习中心:层次:专科起点本科专业:年级: 年春/秋季学号:学生:指导教师:完成日期:年月日内容摘要文中分析了电气设备的在线监测和故障诊断,论述了高压断路器、变压器、金属氧化物避雷器、电容型设备在线监测技术,探讨了电气设备在线监测的意义与维修意义,在线监测技术是在被测设备处于运行的条件下,对电气设备的状况进行连续或定时的监测,电气设备的故障诊断的方法,探讨了电气设备的状态监测和故障诊断技术的发展概况和电气设备的在线监测的发出趋势和存在的不足。

关键词:电气设备;在线监测;故障诊断;发展趋势;技术不足目录内容摘要 (I)1 绪论 (1)1。

1 课题的背景及意义 (1)1.2 国内外研究和发展动态 (1)1。

2。

1 在线监测与故障诊断技术发展概况 (1)1.2.2 在线监测与故障诊断技术发展方向 (1)1。

3 本文的主要内容 (2)2 电气设备的在线监测 (4)2.1 概述 (4)2。

2 高压断路器的在线监测 (4)2.3 变压器的在线监测 (4)2.4 金属氧化物避雷器的在线监测 (4)2。

5 电容型设备的在线监测 (5)3 电气设备的故障诊断 (6)3。

1 系统的基本框架 (6)3.2 故障诊断方法 (6)3.3 远程故障诊断系统 (7)4 在线监测和故障诊断技术存在的问题 (8)4.1 在线监测装置的稳定性 (8)4。

2 在线监测与诊断系统的标准化 (8)4.3 电气设备剩余寿命预测技术 (9)5 结论 (10)参考文献 (11)附录 (12)1 绪论1。

1 课题的背景及意义近年来,国内外电网大面积停电事故时有发生,原因大多与电网设备存在问题和电网运行问题有关。

为防止电气设备自身故障导致电网事故采用在线监测与故障诊断技术来对电气设备运行状态进行监测和诊断,已成为发展方向,并引起各方面的重视。

GIS和高压断路器在线监测与故障诊断

GIS和高压断路器在线监测与故障诊断
GIS和高压断路器的在线监测 与故障诊断
1.GIS概述 2.高压断路器故障的监测 3.高压断路器检测和诊断技术 4.GIS绝缘故障的监测与诊断 5.SF6气体泄漏的监测
1.GIS概述
一、GIS
1.什么是GIS?
以SF6作绝缘介质的气体绝缘金属封闭开关设备简称为GIS。 该设备将断路器、隔离开关、接地开关、互感器、避雷器、母 线、连接管和过渡元件(如电缆头、空气套管和油套管) 全封 闭在一个接地的金属外壳内,壳内充以SF6气体作为绝缘和灭 弧介质。
3、操动机构的储压系统 包括压力监测和电动机启动时间间隔及转动时间监测 4、灭弧室和灭弧触头电磨损监测 通过分断电流累计值或加权分段累计间接估计电磨损程度 5、绝缘监测 局部放电的监测 6、断路器主触头及导电部分检测 包括壳体温升的监测和壳体振动的监测
暂时性状态监测技术
即断路器暂时退出运行处于离线状态,但不需将断路器解体, 运用体外检测技术来诊断其内部状态 1、分合过程中壳体或外壳机械振动的检测 2、动态回路电阻的检测,从而监测触头磨损情况 3、液压机构低速驱动时的驱动力的监测
机械故障的检测和诊断
1.断路器合闸、分闸线圈电流监测 分合闸线圈电流是表征断路器操作机构动作性能的关键特征, 电流波形中蕴含丰富的信息 。 断路器操作的第一级控制元件为电磁铁
线圈
铁心
衔铁
No Image
总结:
分析i的波形和不同时刻及对应的电流等特征值可以计算出铁 心启动时间、铁心运动时间、线圈通电时间等参数,得出操 动机构的工作状态从而预告故障的前兆
小电流开断性能断路器的开断和关合 5. 其他条件下 近区故障开断性能 的开断性能 失步开断性能
异相接地开断性能 发展性故障开断性能
机械性故障 70~80% 拒分、拒合和误动作 46%

高压开关柜的在线监测与故障诊断技术(三篇)

高压开关柜的在线监测与故障诊断技术(三篇)

高压开关柜的在线监测与故障诊断技术高压开关柜是电力系统中重要的电气设备之一,用于控制和保护电力系统中的电器设备。

其在线监测与故障诊断技术的研究和应用对于确保电力系统的稳定运行和故障快速处理具有重要意义。

本文将从高压开关柜的在线监测技术和故障诊断技术两个方面展开论述。

高压开关柜的在线监测技术是指通过传感器和数据采集装置将开关柜的运行状态参数进行实时监测,并通过远程通信技术传输到监控中心,进行实时分析和监控。

其主要包括以下几个方面的内容:第一,温度监测。

高压开关柜中的电器设备在运行时会产生一定的热量,如果温度过高可能导致设备失效或发生故障。

因此,通过设置温度传感器对高压开关柜的关键部位进行温度监测,可以及时发现异常情况并进行预警。

第二,电流监测。

高压开关柜中的电流是电力系统正常运行的基本依据,通过安装电流传感器对高压开关柜中电流进行实时监测,可以掌握设备的运行状态,提前预防设备过载或短路等故障的发生。

第三,压力监测。

高压开关柜中的气体压力是其正常运行的重要参数,通过安装压力传感器对高压开关柜中的气体压力进行监测,可以及时发现气体泄漏或压力异常,防止设备损坏或发生爆炸等事故。

第四,湿度监测。

高压开关柜中的湿度会影响设备的绝缘性能和运行稳定性,通过安装湿度传感器对高压开关柜中的湿度进行监测,可以及时发现湿度过高或过低的情况,采取相应的措施保障设备的正常运行。

高压开关柜的故障诊断技术是指通过监测和分析高压开关柜运行时产生的信号,判断设备是否存在故障,并通过相应的算法和方法对故障进行诊断和定位。

其主要包括以下几个方面的内容:第一,振动分析。

高压开关柜在运行时会产生一定的振动信号,通过对振动信号进行分析,可以判断设备是否存在运行不稳定、松动或其他故障。

第二,红外热像技术。

通过红外热像仪对高压开关柜的外观进行拍摄,可以观察设备局部温度分布情况,通过温度异常点的识别和定位,判断设备是否存在故障。

第三,气体分析。

高压开关柜在运行时会产生一定的气体,通过对开关柜内气体的成分和浓度进行分析,可以判断设备是否存在绝缘失效、短路故障等情况。

电力设备的在线监测与故障诊断第二版课程设计

电力设备的在线监测与故障诊断第二版课程设计

电力设备的在线监测与故障诊断第二版课程设计一、背景介绍电力设备在长期运行过程中企业中无法避免出现一些故障,如果不能及时诊断和解决,会对正常的生产经营产生不良的影响。

因此,针对电力设备的在线监测与故障诊断是电力生产企业所必须掌握的重要技术之一。

为此,在电力行业中,电力设备的在线监测与故障诊断具有十分重要的地位。

二、课程目标本课程旨在让学员了解电力设备的管理及监测方法,相关设备的维护与保养,以及故障诊断技术等方面的知识。

课程将从以下三个方面来进行讲解:1.电力设备的在线监测技术2.电力设备的故障诊断技术3.电力设备的维护与保养三、课程大纲1. 电力设备的在线监测技术1.1 监测手段•无线传感器网络•云平台监测•其他现代化的监测手段1.2 监测器件•传感器•监测仪•其他相关器件1.3 监测内容•温度•压力•振动•声音•工作情况•等等2. 电力设备的故障诊断技术2.1 诊断手段•媒介传播法•特征频率法•神经网络法•统计学法•等等2.2 诊断技术•健康评估•健康预警•健康诊断•健康维护•等等2.3 故障诊断范例与案例分析3. 电力设备的维护与保养3.1 维护•正确的验收•定期的维护•现场维护•等等3.2 保养•运行保养•停机保养•季节保养•等等3.3 保养计划四、课程特点本课程采用在线教学方式,主要通过PPT讲解、实验、讨论、案例介绍等形式来进行。

优点如下:1.根据适合学员的学习情况分为基础知识讲解,课堂互动讨论和案例学习等不同环节2.加强实际应用的训练,每个环节都涉及到实际操作3.采用案例式教学,理论和实践相结合,使学员掌握知识更有针对性,容易理解五、课程考核1.考勤是否到达2.平时作业得分3.实验报告4.期末大作业六、总结在电力行业中,电力设备的在线监测与故障诊断相当重要。

本课程着重从技术、方法和管理三个方面对学生进行思维和实践的训练,让他们在日后的工作中表现更为优秀。

电气设备在线监测与故障诊断技术综述

电气设备在线监测与故障诊断技术综述

电气设备在线监测与故障诊断技术综述周远超摘㊀要:随着经济的发展ꎬ国内电量需求日益加大ꎬ电网超负荷运转ꎬ再加上电网设备自身存在一些故障ꎬ导致国内电网大面积停电的事故时有发生ꎮ文章在阐述电气设备状态监测及诊断相关概念的基础上ꎬ分析电气设备状态监测与故障诊断系统的组成及相应功能ꎬ总结并提出了目前常用的在线监测与故障诊断技术存在的问题及解决办法ꎮ关键词:电气设备ꎻ在线监测ꎻ故障诊断一㊁电气设备在线监测与故障诊断的定义与实现(一)电气设备在线监测与故障诊断的定义1.在线监测在线监测是在电气设备正常运行的前提下ꎬ利用传感技术㊁计算机技术和光电技术对电气设备状态进行连续㊁自动的监测方法ꎮ为防止产品质量问题对电气设备运行可靠性造成不利影响ꎬ采用在线监测技术ꎬ对电气设备的运行状态进行实时监测ꎬ及时发现隐患ꎮ2.故障诊断故障诊断主要是对电气设备的在线实时监测数据进行比较分析ꎬ给出设备的故障点㊁故障类型和故障发展趋势ꎬ提出有效的维修策略ꎬ以保证设备安全稳定运行ꎬ减少电气设备故障造成的不利影响ꎮ(二)电气设备在线监测与故障诊断的实现一般来说ꎬ电气设备的在线监测和故障诊断过程可分为运行信号检测㊁信号特征提取㊁运行状态识别和故障诊断结果ꎮ运行信号检测:根据对电气设备的监测和监测目的ꎬ选择相应的不同传感器ꎬ对电气设备的运行信号进行监测ꎬ将模拟信号同声传译为数字信号ꎮ信号特征提取:保留或增加信号中有用的部分ꎬ提取一些与电气设备故障有关的信号ꎬ便于后续故障诊断ꎮ二㊁制约电气设备状态在线监测与故障诊断技术的问题根据以往的经验ꎬ从停电后电气设备的诊断和维护过渡到电气设备的诊断和评估ꎬ确定电气设备的剩余寿命ꎬ并提供维修计划ꎬ是一项重大的技术变革ꎮ它需要大量的技术支持ꎮ根据我国国情ꎬ引进先进技术ꎬ开展长期的实践工作和经验ꎬ总结了防治的技术流程ꎮ电气设备的在线监测与故障诊断技术是实现无停电检修的基本和必要条件ꎮ因此ꎬ要发展电气设备在线监测与故障诊断技术ꎬ必须解决运行中存在的问题ꎮ(一)在线监测设备稳定性在线监测设备的稳定性是电气设备在线监测与故障诊断技术广泛应用的基础和必要条件ꎮ电气设备监测元件老化㊁电气设备状态在线监测和故障诊断设备中使用的元器件种类繁多ꎬ而电子元器件在恶劣的环境条件下ꎬ经受住电网电压㊁短路等正常故障的考验ꎬ很容易损坏ꎮ对于温度变化范围大㊁工作环境恶劣的电器元件ꎬ也要求其工作温度和稳定性要求较高ꎮ但是ꎬ如果后台工控机的质量不能得到保证ꎬ很容易受到负载的冲击ꎬ导致主板㊁控制器等元器件损坏ꎬ导致频繁的死机ꎮ监测电气设备的电磁兼容性和防止电磁干扰一直是阻碍电气设备在线监测与故障诊断技术发展的重要原因ꎮ制造商一直在不断地研究和探索这个问题ꎮ从现有技术来看ꎬ在线监测主要是软硬件结合ꎬ软件是电气设备在线监测的主导因素ꎬ但在强电磁场干扰下ꎬ监测信号的提取非常困难ꎮ虽然已经取得了一流的进展ꎬ但在实际运行过程中ꎬ不同变电站的干扰是不同的ꎬ需要具体分析才能得到在线监测结果ꎮ因此ꎬ有必要在积累大量经验的基础上ꎬ根据不同的工作环境定制相应的设备标准ꎮ电气设备的现场维护监测ꎬ由于电气设备的在线监测设备长期工作在复杂的环境中ꎬ受多种因素的影响ꎮ电子元器件的老化速度和灵敏度下降很快ꎬ导致采集的数据存在一定的误差ꎬ需要定期更换和维修ꎮ这就要求生产厂家对电气设备进行在线监测ꎬ给出准确的设备维护和更换时间ꎮ电力监控不仅可以对这些设备进行归档ꎬ建立信息ꎬ以便及时更换和维护以及相应的维修队伍ꎬ并增设专职岗位负责ꎮ(二)实行电气设备状态在线监测与故障诊断系统标准化电气设备在线监测与故障诊断技术尚处于起步阶段ꎮ相关软件和技术还不成熟ꎬ软件有待开发和完善ꎮ而且ꎬ互相交流是不现实的ꎮ电气设备在线监测与故障诊断技术的标准化在短期内是不可能建立的ꎮ为了发展电气设备在线监测和故障诊断技术ꎬ必须建立标准的产品模型和信息管理系统ꎬ采用标准的现场总线技术和数据管理系统ꎬ相互借鉴ꎬ统一标准ꎬ使设备的任何一部分都可以由不同的厂家更换ꎬ不同厂家的不同产品具有一定的可开发性㊁互换性和可扩展性ꎬ减少维修的制约性和依赖性ꎬ降低维修成本和人员ꎬ以便用户及时维修和维护电气监控设备ꎮ(三)电气设备剩余寿命的精确预测电气设备在线监测与故障诊断技术的最大优点是根据大量的数据和实证分析来判断电气设备在正常情况下的使用寿命ꎮ在电气设备正常运行的情况下ꎬ故障主要分为初次安装调试一年左右暴露的故障ꎬ在稳定期为5~10年期间ꎬ定期检查主要是为了延长电气监控设备的使用寿命ꎻ在劣化期从10年开始到20年ꎬ根据实际情况逐步增加定期检查的频率ꎬ根据大量监测数据判断电气设备的剩余寿命ꎻ主要采用20年以上的风险期ꎬ要持续监测ꎬ准确预测剩余寿命ꎬ制订更换和维护计划ꎮ三㊁结束语随着电力设备状态检修策略的全面推广和智能电网的加速发展ꎬ状态监测与故障诊断技术将得到广泛应用ꎮ电气设备状态监测系统和诊断结果的准确性将直接影响状态检修策略的有效实施ꎮ因此ꎬ电力系统状态监测应与前沿技术成果紧密结合ꎬ创新开发智能化㊁系统化的信息诊断专家应用系统ꎬ提高电气设备运行的可靠性ꎬ优化设备状态检修策略ꎮ参考文献:[1]钟连宏ꎬ梁异先.智能变电站技术应用[M].北京:北京出版社ꎬ2019.[2]王波ꎬ陆承宇.数字化变电站继电保护的GOOSE网络方案[J].电力系统自动化ꎬ2019(37).作者简介:周远超ꎬ男ꎬ山东省青岛市ꎬ研究方向:电气方向ꎮ222。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河海大学物联网工程学院在线监测与故障诊断学习报告授课班号专业学号学生姓名指导教师目录一:在线监测1.1 相关概念 (3)1.2 在线监测系统的构成 (4)1.3 在线监测系统的分类 (5)二:故障诊断2.1 相关概念 (5)2.2 故障诊断系统的分类 (6)2.3 故障诊断技术的发展历程 (7)2.4 常用的故障诊断算法 (7)三:相关应用及其未来展望 (10)一:在线监测1.1 相关概念1.1.1 状态监测对运转中的设备整体或其零部件的技术状态进行检查鉴定,以判断其运转是否正常,有无异常与劣化征兆,或对异常情况进行追踪,预测其劣化趋势,确定其劣化及磨损程度等,这种活动就称为状态监测(Condition Monitoring)。

状态检测的目的在于掌握设备发生故障之前的异常征兆与劣化信息,以便事前采取针对性措施控制和防止故障地发生,从而减少故障停机时间与停机损失,降低维修费用和提高设备有效利用率。

对于在使用状态下的设备进行不停机或在线监测,能够确切掌握设备的实际特性有助于判定需要修复或更换的零部件和元器件,充分利用设备和零件的潜力,避免过剩维修,节约维修费用,减少停机损失。

特别是对自动线、程式、流水式生产线或复杂的关键设备来说,意义更为突出。

1.1.2 设备状态监测的分类设备状态监测按其监测的对象和状态量划分,可分为两方面的监测:①机器设备的状态监测。

指监测设备的运行状态,如监测设备的振动、温度、油压、油质劣化、泄漏等情况。

②生产过程的状态监测。

指监测由几个因素构成的生产过程的状态,如监测产品质量、流量、成分、温度或工艺参数量等。

上述两方面的状态监测是相互关联的。

例如生产过程发生异常,将会发现设备的异常或导致设备的故障;反之,往往由于设备运行状态发生异常,出现生产过程的异常。

设备状态监测按监测手段划分,可分为两类型的监测:①主观型状态监测。

即由设备维修或检测人员凭感官感觉和技术经验对设备的技术状态进行检查和判断。

这是目前在设备状态监测中使用较为普及的一种监测方法。

由于这种方法依靠的是人的主观感觉和经验、技能,要准确的做出判断难度较大,因此必须重视对检测维修人员进行技术培训,编制各种检查指导书,绘制不同状态比较图,以提高主观检测的可靠程度。

②客观型状态监测。

即由设备维修或检测人员利用各种监测器械和仪表,直接对设备的关键部位进行定期、间断或连续监测,以获得设备技术状态(如磨损、温度、振动、噪音、压力等)变化的图像、参数等确切信息。

这是一种能精确测定劣化数据和故障信息的方法。

1.1.3 状态监测的其他说明当系统地实施状态监测时,应尽可能采用客观监测法。

在一般情况下,使用一些简易方法是可以达到客观监测的效果的。

但是,为能在不停机和不拆卸设备的情况下取得精确的检测参数和信息,就需要购买一些专门的检测仪器和装置,其中有些仪器装置的价值比较昂贵。

因此,在选择监测方法时,必须从技术与经济两个方面进行综合考虑,既要能不停机地迅速取得正确可靠的信息,又必须经济合理。

这就要将购买仪器装置所需费用同故障停机造成的总损失加以比较,来确定应当选择何种监测方法。

一般地说,对以下四种设备应考虑采用客观监测方法:发生故障时对整个系统影响大的设备,特别是自动化流水生产线和联动设备;必须确保安全性能的设备,如动能设备;价格昂贵的精密、大型,重型、稀有设备;故障停机修理费用及停机损失大的设备1.2 在线监测系统的构成在线监测系统组成框图信号变送一般由相应的传感器来完成,从电气设备上检测出那些反映设备状态的物理量,并将其转换为合适的电信号,传送到后续单元。

它对监测信号起着观测和读数的作用。

信号处理对传感器变送来的信号进行预处理,对干扰信号进行抑制。

数据采集对经过处理的信号进行采集、A/D转换和记录。

信号传输将采集到的信号传送到后续单元,对固定型的监测系统,须配置专门的信号传送单元;对便携式的监测装置只需要对信号进行适当的变换和隔离。

数据处理对所采集到的数据进行处理和分析,如读取特征值,并作必要的分析,为故障诊断提供有效的数据和信息。

故障诊断对历史数据和当前数据分析、比较后诊断或依赖人工智能技术、专家系统诊断1.3 在线监测系统的分类二:故障诊断2.1 相关概念2.1.1 定义利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。

故障检测和故障定位同属网络生存性范畴。

要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。

故障诊断就是指故障检测和故障隔离的过程。

2.1.2 故障诊断的由来系统故障诊断是对系统运行状态和异常情况作出判断,并根据诊断作出判断为系统故障恢复提供依据。

要对系统进行故障诊断,首先必须对其进行检测,在发生系统故障时,对故障类型、故障部位及原因进行诊断,最终给出解决方案,实现故障恢复。

2.1.3 故障诊断的任务故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。

其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复。

2.1.4 故障诊断的性能指标评价一个故障诊断系统的性能指标有:1)故障检测的及时性:是指系统在发生故障后,故障诊断系统在最短时间内检测到故障的能力。

故障发生到被检测出的时间越短说明故障检测的及时性越好。

2)早期检测的灵敏度:是指故障诊断系统对微小故障信号的检测能力。

故障诊断系统能检测到的故障信号越小说明其早期检测的灵敏度越高。

3)故障的误报率和漏报率:误报指系统没有出去故障却被错误检测出发生故障;漏报是指系统发生故障却没有被检测出来。

一个可靠的故障诊断系统应尽可能使误报率和漏报率最小化。

4)故障分离能力:是指诊断系统对不同故障的区别能力。

故障分离能力越强说明诊断系统对不同故障的区别能力越强,对故障的定位就越准确。

5)故障辨识能力:是指诊断系统辨识故障大小和时变特性的能力。

故障辨识能力越高说明诊断系统对故障的辨识越准确,也就越有利于对故障的评价和维修。

6)鲁棒性:是指诊断系统在存在噪声、干扰等的情况下正确完成故障诊断任务,同时保持低误报率和漏报率的能力。

鲁棒性越强,说明诊断系统的可靠性越高。

7)自适应能力:是指故障诊断系统对于变化的被测对象具有自适应能力,并且能够充分利用变化产生的新信息来改善自身。

以上性能指标在实际应用中,需要根据实际条件来分析判断哪些性能是主要的,哪些是次要的,然后对诊断方法进行分析,经过适当的取舍后得出最终的诊断方案。

2.2 故障诊断系统的分类2.2.1离线系统(巡检系统)也称为机械故障巡检系统,通常由传感器、便携式数据采集器和计算机软件组成。

采用定期巡回检测和离线分析的方式工作。

适合于对工厂中量大面广的中、小型机械设备,尤其是那些尚无固定监测点的机器进行定期的状态监测与故障诊断。

2.2.2在线系统(集中式、分布式)在线监测与诊断系统具有数据采集连续、快速、数据处理实时性好、分析诊断功能全面、丰富等特点。

适用于具有固定监测点的大型连续运转的关键机械设备。

这类系统又可分为集中式单机系统、集散式系统以及分布式系统。

集中式结构是以单一(微型)计算机为主体的监测与诊断系统。

由计算机主控完成现场工况监测、数据采集、信号处理与分析、故障诊断等全部工作。

优点:便于管理控制,具有较高的稳定性和可靠性;系统具备信号处理、特征提取、状态分类、趋势分析以及分析报告生成、数据库管理等多方面的功能。

集散式结构利用多台计算机来联合实施监测与诊断,但这里的每台计算机彼此相互独立,基本上没有联系,其实质是集中式结构的简单迭加。

通过RS232或RS422串行通讯方式把一台主控计算机与若干台从属计算机联接起来协同工作的主从式结构。

其中,从属计算机(或称辅助计算机)分别独立地完成现场数据采集与状态监测并共享主机,而主机则负责完成分析与诊断功能并始终肩负对从属机进行管理和控制的任务。

分布式结构针对地域分布较广的多台机器设备,通过计算机网络把分布于各局部现场、独立完成特定功能的本地计算机互联接起来,并在一台主控计算机的控制下,构成分级管理模式,最终达到资源共享、协同工作、分散监测与集中管理、诊断的目的。

2.2.3 远程故障诊断系统远程诊断系统能够方便地实现企业内部、行业内部、甚至更大范围的诊断数据和知识的共享,能够有效地组织异地专家会诊等。

远程诊断系统还是一个集咨询、培训、讨论、数据交换等于一体的全方位的信息交流系统。

这样既解决了生产企业技术力量不足和技术水平提高的问题又有利于研究机构更准确、更有效的获得设备运行的第一手资料,充实理论和技术研究。

一个完整的远程故障诊断系统通常应当包括三个主要子系统远程诊断中心:在高性能WEB服务器和数据库服务器的支撑下担负整个系统的控制协调任务。

企业监测分析中心(初级诊断中心):主要负责企业内部的监测、分析和诊断,以及设备管理工作,同时负责对下属监测工作站的控制及管理。

现场监测工作站:由网络化的高性能再线数据采集器或便携式数据采集器所构成,主要负责数据采集、预处理以及报警监控等工作。

2.3 故障诊断技术的发展历程故障诊断(FD)始于(机械)设备故障诊断,其全名是状态监测与故障诊断(CMFD)。

它包含两方面内容:一是对设备的运行状态进行监测;二是在发现异常情况后对设备的故障进行分析、诊断。

设备故障诊断是随设备管理和设备维修发展起来的。

欧洲各国在欧洲维修团体联盟(FENMS)推动下,主要以英国倡导的设备综合工程学为指导;美国以后勤学(Logistics)为指导;日本吸收二者特点,提出了全员生产维修(TPM)的观点。

美国自1961年开始执行阿波罗计划后,出现一系列因设备故障造成的事故,导致1967年在美国宇航局(NASA)倡导下,由美国海军研究室(ONR)主持成立了美国机械故障预防小组(MFPG),并积极从事技术诊断的开发。

美国诊断技术在航空、航天、军事、核能等尖端部门仍处于世界领先地位。

英国在60~70年代,以Collacott为首的英国机器保健和状态监测协会(MHMG & CMA)最先开始研究故障诊断技术。

英国在摩擦磨损、汽车和飞机发电机监测和诊断方面具领先地位。

日本的新日铁自1971年开发诊断技术,1976年达到实用化。

日本诊断技术在钢铁、化工和铁路等部门处领先地位。

我国在故障诊断技术方面起步较晚,1979年才初步接触设备诊断技术。

相关文档
最新文档