本科毕业设计---极限的产生与发展

合集下载

浅析极限思想的产生与发展9(1)汇编

浅析极限思想的产生与发展9(1)汇编

题 目: 浅析极限思想的产生与发展学 院:数学与信息科学学院 专 业:数学与应用数学 班 级:2011级1班 姓 名:季满 学 号: 20110501005 指导教师: 曹志军2015 年 5月 20 日毕 业 论 文浅析极限思想的产生和发展【摘要】极限思想是一种重要的数学思想,这个理论的完善历经几个世纪。

由远古的萌芽时期,到中世纪后随着微积分的创立和应用得到进一步发展,再到18世纪后随着微积分的严密化极限思想达到成熟,形成完善系统的极限理论,这期间布满了众多数学家和哲学家辛勤的汗水和孜孜追求的奋斗足迹。

极限思想的发展历程,充分体现了人类探索真理、追求创新的宝贵精神,充分体现了人类认识世界和改造世界的强烈愿望。

极限思想是一种重要的数学思想,是辩证法在数学中的完美体现。

本文阐述了对极限思想的辩证理解,阐述了通过极限这一工具,如何从有限认识了无限,从对事物的近似认识到精确认识,从事物的多样性变化中认识了统一性的变化,在直与曲的对立中认识了统一。

【关键词】极限思想;发展;辩证法;辩证统一The emergence and development of the limit idea 【Abstract】limit thought is an important mathematical idea. It is formed through a long historical process. It is from ancient infancy to the further development with the creation and application of calculus in the middle ages. It forms a complete system limit theory with the further close of calculus which is after the eighteenth century. The process is filled with many sweats and the struggle footprints of mathematicians and philosophers. The development process of limit thought fully reflects the human search for truth and the precious spirit which is in pursuit of innovation. The development process of limit thought also fully reflects strong desire to understand the word and transform the world.Limit thought is an important mathematical idea. Dialectics is displayed perfectly in the mathematics. The paper describes the dialectical understanding about limit thought. We recognize the infinite from limited thought and the accurate understanding from approximate understanding through the limit thought. We recognize the unity changes from diversity changes and recognize straight and curved unity from the opposition.【Key Words】limit thought ;development ;dialectics ;dialectical unity目录1 引言 (1)2极限思想的发展分期 (1)2.1极限思想的萌芽时期 (1)2.2极限思想的发展时期 (2)2.3极限思想的完善时期 (2)3极限思想的本质探索 (3)3.1有限运算的规律不能用于无限运算 (3)3.2极限概念的代数化 (3)3.3极限概念的本质 (4)4极限思想的辩证理解 (4)4.1有限与无限的辩证统一 (4)4.2量变与质变的辩证统一 (5)4.3多样性与统一性的辩证统一 (5)4.4直与曲的辩证统一 (5)结论 (6)参考文献 (6)致谢 (7)石家庄学院毕业论文1引言极限思想的萌芽时期可以追溯到2000多年前,其中著名的古希腊哲学家芝诺,提出了一个悖论,那就是运动不存在,从经验上来看,这个悖论的结论是荒谬的,但是由于当时人们的认识有限,特别是对极限缺乏认识,使得这个悖论当时没有人能够给出正确的解释,这也是人们第一次闯进极限这个领域。

极限思想的产生与发展

极限思想的产生与发展

极限思想的产生与发展内容摘要:极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限思想来定义的,极限思想的应用无处不在,合理应用极限思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果.本文主要对极限思想的产生与发展进行探究。

关键词:极限思想产生发展概念目录第一章极限思想的产生与发展 (1)1.1极限思想的产生 (1)1.2极限思想的发展 (1)1.3极限思想的完善 (4)1.4 极限的概念 (4)1.5极限思想的思维功能 (5)结论 (19)参考文献 ................................................. 致谢 (21)极限思想的产生与发展1、极限思想的产生极限思想的产生,是社会发展,科学进步的客观需求。

是人在探索改造自然过程中逐渐形成的一新的思想方法。

极限的思想可以追溯到古代,在《庄子·天下篇》中有:“一尺之棰,日取其半,万世不竭”其含义是:长为一尺的木棒,第一天截取它的一半,第二天截取剩下的一半,这样的过程无穷无尽地进行下去。

这样一直进行下去,留下来的木棒越来越短,可以再分的部分越来越小,一直到无穷小不可以再切割,但永远不会消失。

公元前5世纪,有关无穷小的概念就已经作为希腊人关于什么是世界的设想而进入了数学思潮,而希腊数学家所普遍接受的观点则是阿拿萨哥拉提出的:“在小的当中不存在最小的,但总有更小的”。

对于以严密著称的古希腊来说,古希腊学者观念上不能摆脱对无限的恐惧,而是借助于其它的方法来完成有关的证明。

刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也。

”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的。

极限思想的产生和发展

极限思想的产生和发展

极限思想的产生和发展微积分的建立跟极限思想的发展有着十分密切的联系。

自进入16世纪之后,欧洲就处于资本主义的萌芽时期,极大地发展了自身的生产力。

于是,在生产以及科学技术等方面均出现了许多诸如变力做功问题、最值问题、曲线的切线问题、力学中的速度问题等关于变量的问题。

这些问题已经不再是初等数学能够解决的,解决它们所需要的是全新的数学思想、数学方式方法等,必须要成功突破传统的常量研究范围,开发出可以用于对运用以及变化过程进行研究描述的新工具。

同时,这些问题的出现为发展极限思想提供了良好契机。

一、产生极限思想所有科学的思想方法均是源自人们对于社会实践的体验以及总结,极限思想也不例外。

极限思想的产生可以追根溯源到古代,在我国,极限思想于春秋战国时期就已萌芽,然而纵观史料,极限思想被局限于哲学的领域,并没有被运用到数学当中去,于是应用极限的方法对数学问题进行研究就更是无从谈起。

一直到后来的公元3世纪,我国魏晋时期的著名数学家刘徽对《九章算术》进行注释,并在其中创设出了“割圆术”。

刘徽的极限思想是这样表述的:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失”。

因此,刘徽是在数学领域运用极限思想的第一人。

这种关于无限接近的思想正是后来极限概念得以建立的重要基础。

刘徽所创设的“割圆术”是对原始极限思想的一种有效运用。

在古希腊有着一种穷竭法,这其中也包含了极限的思想,但是希腊人对于极限是相当恐惧的,所以他们并不会明显地去求极限,而是依据归谬法这一间接的证明法完成对极限相关思想的论证。

直到16世纪荷兰的数学家斯泰文在对三角形的重心这一问题进行研究时对古希腊人的穷竭法做出改进,他思考问题所采用的是几何直观,并合理运用极限思想,撇开了对归谬法的运用。

因此,极限在斯泰文的研究之下演变成了一个实用的概念。

二、发展极限思想微积分的建立对极限思想的深层次发展起到了一定程度的促进作用。

最初,莱布尼茨、牛顿建立微积分所依据的是无穷小这一概念,但是后面遭遇了逻辑难题,因而在他们研究的晚期,他们都对极限思想有一定程度的接受。

极限的产生

极限的产生

极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。

用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果。

极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限来定义的。

如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科”。

公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。

作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。

比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。

三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。

”这些都是朴素的、也是很典型的概念。

由此开启了探讨极限思想的历程。

经过数学家们多年的致力研究及辛苦努力终于得出现代函数极限的含义:设函数f(x)在点x。

的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0<|x-x。

|<δ时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε那么常数A就叫做函数f(x)当x→x。

时的极限。

极限思想在现代数学乃至物理学等学科中有着广泛的应用,这是由它本身固有的思维功能所决定的。

极限思想揭示了变量与常量、无限与有限的对立统一关系,是唯物辩证法的对立统一规律在数学领域中的应用。

借助极限思想,人们可以从有限认识无限,从“不变”认识“变”,从直线形认识曲线形,从量变认识质变,从近似认识精确。

极限概念的产生与发展

极限概念的产生与发展

但他们当时也还没有完全弄清楚极限的概念,没能把他们 的工作建立在严密的理论基础上,他们更多的是凭借几何和物 理直观去开展研究工作。
到了 18 世纪,数学家们基本上弄清了极限的描述性定义。 例如牛顿用路程的改变量 s 与时间的改变量 t 之比s t 表示物体的平均速度,让 t 无限趋近于零,得到物体的瞬时 速度,那时所运用的极限只是接近于直观性的语言描述:“如
lim f (x) A。这
xx0样的定义是严格Fra bibliotek,至今还被所有微积分的教科书(至少是
在本质上)普遍采用。
极限理论的建立,在思想方法上深刻影响了近代数学的
发展。
一个数学概念的形成经历了这样漫长的岁月,大家仅从
这一点就可以想像出极限概念在微积分这门学科中显得多
么重要了。
极限概念的产生与发展
极限概念的形成经历了漫长的岁月。 早在两千多年前,我国的惠施就在庄子的《天下篇》中有 一句著名的话:“一尺之棰,日取其半,万世不竭”,惠施提出 了无限变小的过程,这是我国古代极限思想的萌芽。 我国三国时期的大数学家刘徽(约 225 年~295 年)的割 圆术,通过不断倍增圆内接正多边形的边数来逼近圆周,刘徽 计 算 了 圆 内 接 正 3072 边 形 的 面 积 和 周 长 , 从 而 推 得 3.141024< π <3.142704。在国外一千多年以后欧洲人安托尼兹 才算到同样精确度的小数。"π"这扇窗口闪烁着我国古代数学家 的数学水平和才能的光辉。 16 世纪前后,欧洲资本主义的萌芽和文艺复兴运动促进了 生产力和自然科学的发展。17 世纪,牛顿(Newton)和莱布尼 兹(Leibniz)在总结前人经验的基础上,创立了微积分。
果当自变量 x 无限地趋近于 x0时,函数 f (x)无限地趋近于 A, 那么就说 f (x)以 A 为极限”。这种描述性语言虽然人们易于接 受,但是这种定义没有定量地给出两个“无限过程”之间的联 系,不能作为科学论证的逻辑基础。正因为当时缺少严格的极 限定义,微积分理论受到人们的怀疑和攻击。起初微积分主要 应用于力学.天文学和光学,而且出现的数量关系比较简单, 因此在那个时候,极限理论方面的缺限还没有构成严重障碍。

极限思想的产生和发展

极限思想的产生和发展
为基 础 , 一 些 典 型 例 子 中 寻找 极 限 思 想 的 产 生 与 发 展 . 从 主 要 是 以 历 史 辩 证 唯 物 主 义观 来 重新 分 析 、 概 述 有 关 极 限 思
想 的 问 题 :
关键 词 : 限 思 想 产 生 发 展 完 善 思 维功 能 极
1极 限思 想 的产 生 . 与 一 切科 学 的思 想 方 法 一 样 ,极 限 思想 也是 社 会 实 践 的 产 物 。 限 的思 想 可 以追 溯 到 古代 , 徽 的割 圆 术 就是 建 立 在 极 刘 直 观 基 础 上 的一 种 原 始 的 极 限 思 想 的 应 用 ;古 希 腊 人 的穷 竭 法 也 蕴含 了极 限 思 想 , 由 于希 腊 人 “ 无 限 的恐 惧 ” 他 们 避 但 对 . 免 明 显 地 “ 极 限 ” 而是 借 助 于 间 接 证 法 — — 归 谬 法 来 完 成 取 , 有 关 的证 明 。 到 了 l 世 纪 ,荷 兰数 学 家 斯 泰 文 在 考 察 三 角 形 重 心 的 过 6 程 中 改进 了古 希腊 人 的穷 竭 法 , 借 助几 何 直 观 . 他 大胆 地运 用 极 限思 想 思 考 问题 . 弃 了 归缪 法 的证 明 。如 此 , 就 在无 意 放 他 中 “ 出 了把 极 限 方法 发展 成 为 一 个 实用 概 念 的 方 向 ” 指 。 2极 限 思 想 的发 展 . 极 限 思 想 的进 一 步 发 展 是 与 微 积 分 的 建 立 紧 密 相 联 系 的。l世 纪 的 欧洲 处 于 资 本 主义 萌 芽 时 期 , 产 力 得 到极 大 的 6 生 发 展 ,生产 和 技 术 中 大 量 的 问 题用 初 等 数 学 的方 法 已无 法 解 决 , 求 数 学 突破 只研 究 常 量 的 传 统 范 围 , 提 供 能 够 用 以 描 要 而 述 和 研 究 运 动 、 化 过 程 的 新 工 具 , 是 促 进 极 限 发 展 、 立 变 这 建 微 积分 的社 会 背 景 。 起 初 牛 顿 和 莱 布 尼 茨 以无 穷 小 概 念 为 基 础 建 立 微 积 分 . ・ 后 来 因遇 到 逻辑 困难 ,所 以在 他 们 的晚 期 都 不 同 程度 地 接 受 了极 限 思 想 。 牛 顿用 路 程 的改 变 量 与 时 间 的 改 变 量之 比表 示 运 动物 体 的 平均 速 度 , 无 限趋 近 于零 , 让 对求 极 限得 到 物 体 的 瞬 时速 度 , 由此 引 出导 数 概 念 和微 分 学 理 论 。 意识 到极 限 并 他 概 念 的 重要 性 , 图 以极 限 概 念作 为 微 积 分 的基 础 。 说 : 两 试 他 “ 个 量 和 量之 比 , 如果 在有 限时 间 内不 断 趋 于 相 等 . 在 这 一 时 且 间 终 止前 互 相 靠 近 , 得 其 差 小 于 任 意 给 定 的 差 , 最 终 就 成 使 则

极限的发展历史

极限的发展历史1.数学极限的起源与发展历史高等数学中,极限是一个重要的概念。

极限可分为数列极限和函数极限,分别定义如下。

首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。

为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An 无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3。

.)得到圆周率=3927/1250约等于3.14159265。

数列极限:定义:设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为的极限,或称数列收敛于a,记为liman=a。

或:an→a,当n→∞。

函数极限:设f为定义在[a,+∞)上的函数,A为定数。

若对任给的ε>0,存在正数M(>=a),使得当x>M时有:|f(x)-A|<;ε,则称函数f当x趋于+∞时以A为极限,记作lim f(x) = A 或 f(x)->A(x->;+∞)有关公式lim(f(x)+g(x))=limf(x)+limg(x)lim(f(x)-g(x))=limf(x)-limg(x)lim(f(x)*g(x))=limf(x)*limg(x)lim(f(x)/g(x))=limf(x)/limg(x) limg(x)不等于0lim(f(x))^n=(limf(x))^n以上limf(x) limg(x)都存在时才成立========================================================================举两个例子说明一下一、0.999999 (1)谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。

浅析极限思想的产生及发展

【Abstract】limit thought is an important mathematical idea. It is formed through a long historical process. It is from ancient infancy to the furtherdevelopment with the creation and application of calculus in the middle ages. It forms a plete system limit theory with the further close of calculus which is after the eighteenth century. The process is filled with many sweats and the struggle footprints of mathematicians and philosophers. The development process of limit thought fully reflects the human search for truth and the precious spirit which is in pursuit of innovation. The development process of limit thought also fully reflects strong desire to understand the word and transform the world.
2.3极限思想的完善时期
极限思想的完善与微积分的严格化是密切联系的。19世纪,柯西给出了极限一个定义,但他只是定性的描述了什么是极限,而没有进展定量地刻画。定义为,如果某变量无限趋近于一常数,并和这个常数的差越来越小,这个常数就是极限值。定义存在的缺陷就是,无限趋近,越来越小等词语给人以直观想象的感觉,没有明确的标准来说明,缺乏严密性,因此不能用于数学命题的证明。例如,数列 的极限是 ,假设说 也是该数列的极限,那么我们就无法用这个极限的定义来否认它。所以,柯西的极限定义需要准确化。这一任务,留给了下一个伟大的德国数学家维尔斯特拉斯。维尔斯特拉斯把这种描述代数化,给出了完善化的极限定义。他给出的极限定义是, 当 时,总有 ,就说 是数列 的极限。与柯西的定义不同的是,他只用了“任意〞和“存在〞等词语,就是这种词语的改变,却使极限理论实现了彻底的完善化,给微积分提供了严格的理论根底。实际上,柯西与维尔斯特拉斯给出的极限定义,在根本精神上,他们是一致的,只不过,后者的定义更加的准确。维尔斯特拉斯不仅定性的描述了极限,而且也定量地刻画了极限。

极限思想毕业论文

极限思想毕业论文目录摘要 (I)Abstract (II)第1章极限思想的形成与发展 (1)1.1 极限思想的萌芽 (1)1.2 极限思想的发展 (1)1.3 极限思想的形成 (2)1.4 极限思想的完善 (3)第2章极限思想在数学分析中的应用 (3)2.1 极限思想在概念里的渗透 (3)2.2极限思想在导数中的应用 (4)2.3 极限思想在积分中的应用 (5)第3章证明极限存在以及求极限的方法 (6)3.1 极限的四则运算法则和简单求极限技巧 (6)3.2 用迫敛性准则求极限 (7)3.3 用泰勒公式求极限 (7)3.4 用等价无穷小求极限 (8)3.5 用洛必达法则求极限 (8)3.6 用微分中值定理和积分中值定理求极限 (9)第4章总结 (10)参考文献 (11)致谢 (12)第1章 极限思想的形成与发展极限思想作为一种重要的数学思想,在整个数学发展史上占有重要地位,是研究数学、应用数学、推动数学发展必不可少的有力工具.本文通过论述极限思想的发展过程以及它在诸多数学分支中的应用来说明极限在数学中的重要地位.按照极限思想的萌芽、发展、形成与完善过程,可将它分为4个阶段.1.1极限思想的萌芽古希腊时代欧多克斯提出的“穷竭法”和芝诺的“二分法”可以说是极限理论的雏形.在我国,极限思想的萌芽最早可以追溯到战国末期,在哲学著作《庄子.天下篇》中就引进了惠施的著名命题:“一尺之锤,日取其半,万世不竭”,它可以写成一个无穷等比递减数列: ,,211⋯⋯,,,,n 32212121当n 无限增大(n=1,2,3,……)时, ……可取无限的小数,它的极限为零,这样借助实物,极限的概念便被形象的表达出来了.然而在我国最早创立极限概念,并用它来解决实际问题的却是数学家刘徽.他指出:“割之弥细,失之弥少,割之又割,以至于不可割,则与圆合体而无所失矣.”并最终利用这极限思想求得了圆周率的近似值,独立的创造出了“割圆术”.然而当时人们在直观上对极限概念有了清楚的理解,但由于没有无穷小的概念,因此也就不可能用数学语言准确的描述出极限概念,并且极限思想也没有作为单独的研究对象真正独立出来.这在某种程度上是由于当时的经济状况和生产力水平对数学的要求只停留在对度量和计量有用的范围内决定的.1.2极限思想的发展17世纪以天文学、力学及航海为中心的一系列问题导致了微积分的产生.微积分尽管在实践中非常成功,但它的思想基础——无穷小量在逻辑上却有很多缺陷,被称为“失去了量的鬼魂”,并由此直接导致了第二次数学危机.为了消除危机,许多数学家便主张利用极限的方法为微积分提供论证和说明的工具.于是,他们对极限思想进行了深入研究,其阶段性的主要成绩如下.(1)达朗贝尔“理性的”极限概念达朗贝尔脱下了“微分学神秘的外衣”(马克思语),首次尝试将微分学建立在“理性的”极限观念基础上.他认为“一个量永远不会重合,但它总是无限的接近它的极限,并且与极限的差要有多小有多小”,这样达朗贝尔给出了极限的描述性定义,但这个定义比较模糊,缺乏严密性.(2)罗伊里埃用极限奠定的微积分基础数学家罗伊里埃用极限思想对古希腊的“穷竭法”做了修改,并用极限定义导数,进而由导数来定义微分,排除了无穷小量和00等有神秘色彩的概念和符号.表明极限思想作为微积分基础的正确思想,然而他的缺点是只有单侧极限的概念.(3)柯西的变量极限概念19世纪大数学家柯西抛弃了物理和几何直观,通过变量首次给出了建立在数和函数上的极限定义:“当一个变量逐次所取的值无限趋向于某一数值,最终使变量的值与该定值之差要多小有多小,这个定值就叫做所有 其他值得极限”.柯西的变量极限概念的提出,标志着极限概念向“算术话”迈出了决定性的一步,是数学史上的重大创新之一.此外,柯西还把无穷小定义为一个极限为零的变量,从而把极限原理和无穷小量有机的联系在一起.在此基础上,柯西又给出了函数的连续性、导数和微分的概念,特别是他首先给出了定积分作为和式极限的定义.然而,虽然柯西把纷乱的极限概念理出了头绪,为精确极限定义的产生做出了开拓性的工作,但他的工作任然不够严格、精确.例如,他在定义中提到的“无限趋近”和“要多小有多小”只是一种直观的定性语言,而不是一种精确的数学语言.1.3极限思想的形成在柯西关于变量极限的直观动态基础上,德国数学家维尔斯特拉斯从静态的观点出发,把变量解释成一个字母(该字母表示某区间的数),给出了严格定义的极限概念,即他本人在1856年首先提出的现今广泛采用的δε—极限定义:(1)N —ε的数列极限定义:{}是一个数列设n a ,a 是一个确定的数,若对于,,a ,,0εε<->∃>∀a N n N n 时,有当{}的极限为数列则称n a a .(2)δε-的函数极限定义:设函数f 在点0x 的某个空心领域),(00δ'x u 内有定义,A 是一个确定的数,若对任给的ε,总存在某个正数)(δδ'<,使得当δ<-<00x x 时都有ε<-A x f )(,则称函数f 当x 趋向于0x 时极限存在,且以A 为极限.这样极限的δε-定义便用静态的有限量刻画了动态的无限量,不仅排除了无穷小这个有争议的概念,而且排除了柯西在定义函数的连续性中用到的“变为并且保持小于任意给定的量”这种说法的含糊性,这标志着清晰而明确的极限概念的真正建立.此外,维尔斯特拉斯还用这一方法定义了连续函数、函数的导数和积分的概念,使微积分的定义摆脱了几何直观所带来的含糊观念最终成了今天的形式.1.4极限思想的完善尽管用ε-语言定义的极限概念非常严密,并以占领微积分课堂100年之久,但他复杂的课堂逻辑结构却成为微积分入门难以理解和掌握的难点之一.近年来众多的专家学者在该研究领域取得了突破性的进展.特别是广州大学张景中院士提出了和ε-语言同样严格但易于被初学者所掌握的D-语言极限.(1)D-数列极限定义:若存在恒正递增无界数列{}n D ,使得对一切数列n ,总有nn D a a 1<-,则aa n n =∞→lim .(2)D-函数极限定义:设函数f(x)在0x 的空心领域)(00x u 有定义,A x f x x =→)(lim 0是指存在零的某右领域),0(δ内的恒正递增无界函数)(1h D ,使得当δ<-<00x x 时,总有)(1)(0x x D A x f -<-.从极限概念的“ε-语言”到“D-语言”的过程其实就是不断简化ε-语言的逻辑结构,化逻辑为运算的过程,他的基本思想是用简单的单调过程刻画一般的,复杂的极限过程,并且在刻画极限的过程中ε-语言与D-语言还具有实质的等价性.D-语言的提出,为数学分析课程的教学改革指出了一个新的方向,也为极限思想的进一步完善开辟了道路.第2章 极限思想在数学分析中的应用2.1极限思想在概念里的渗透极限的思想方法贯穿于数学分析课程的始终,可以说数学分析中的几乎所有的概念都离不开极限,在几乎所有的数学分析著作中都是先介绍函数理论和极限的思想方法给出连续函数、导数、定积分、极数的敛散性,重积分和曲线积分与曲面积分的概念.(1) 如以函数()y f x =在点0x 连续的定义.记0x x x ∆=-称为自变量x (在点0x )的增量或改变量,设00()y f x =,相应的函数y (在点0x )的增量记为0000()()()()y f x f x f x x f x y y ∆=-=+∆-=-,可见,函数()y f x =在点0x 连续等价于0lim 0x y ∆→∆=,是当自变量x 得增量x ∆时,函数值得增量y ∆趋于零时的极限.(2)函数()y f x =在点0x 导数的定义.设函数()y f x =在点0x 的某邻域内有定义,若极限000()()limx x f x f x x x →--存在,则称函数f 在点0x 处可导,令0x x x =+∆,00()()y f x x f x ∆=+∆-,则可写为0000()()limlim x x x f x x f x yx x→→+∆-∆==∆∆()0'f x ,所以,导数是函数增量y ∆与自变量增量x ∆之比yx ∆∆的极限.(3) 函数()y f x =在区间[],a b 上的定积分的定义。

极限的产生与应用解读

目录摘要........................................- 2 -Abstract ......................................- 3 -引言..........................................- 4 -1.极限思想的产生及发展.......................- 4 -1.1极限思想的产生........................................... - 4 -1.2极限思想的发展........................................... - 5 -1.3极限思想的完善.......................................... - 6 -2、极限思想的概念及其性质.....................- 7 -2.1极限的现代定义........................................... - 7 -2.2函数极限的性质........................................... - 7 -3 极限思想在解题中的应用......................- 7 -3.1在开方方面的应用......................................... - 7 -3.2 在求某一点的应用........................................ - 9 -3.4 在解析几何中的应用..................................... - 12 -4 探索极限思想在各个领域的应用............... - 15 -4.1在物理学中的应用........................................ - 15 -4.2 在化学中的应用......................................... - 16 -4.3在建筑学中的应用........................................ - 17 -4.4 在宏观经济学中的应用................................... - 17 -4.4.1计划经济.......................................... - 18 -4.5 在微观经济学中的应用................................... - 20 -4.5.1完全竞争市场...................................... - 20 -参考文献..................................... - 22 -致谢......................................... - 24 -摘要极限思想作为一种数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生毕业论文(设计)册学院:数学与信息科学学院专业:数学与应用数学班级:学生:指导教师:河北师范大学本科毕业论文(设计)任务书论文(设计)题目:极限思想的产生与发展学院:数学与信息科学学院专业:数学与应用数学班级:学生姓名:学号:指导教师:职称:1、论文(设计)研究目标及主要任务[1] 进行文献检索与收集,填写任务书、撰写文献综述、开题报告,参加开题答辩并获得通过。

[2] 按照指导教师要求,撰写论文写作提纲、初稿、修改稿及定稿,达到本科生毕业论文撰写规范的写作要求;[3] 参加毕业论文答辩并获得通过。

2、论文(设计)的主要内容论文第一部分从历史的角度出发,讲述了极限思想的产生,发展,完善过程,在第一部分结束时给出极限的定义。

第二部分,开始讲述极限思想的应用,主要从极限思想在概念里的渗透,极限在导数中的应用和极限在积分中的应用三个方面来阐述极限思想的应用。

最后一个部分对全文做了简要的总结。

3、论文(设计)的基础条件及研究路线基础条件:图书馆借阅及网上查阅相关资料。

研究路线:首先,以历史为出发点,研究了极限思想在历史发展过程中是如何产生,发展,并且逐渐完善的。

从而得到极限的定义,并从定义出发,具体讨论了如何由极限的思想方法得到连续函数,导数及定积分的概念,由浅入深,进一步讨论如何由已知的运动规律求速度和如何由已知曲线求它的切线,进而得到极限思想在导数中的应用,不定积分是求导数的逆运算,而定积分则是特殊形式,从而引出极限思想在积分中的应用。

4、主要参考文献[1]梁宗巨.世界数学通史[M].沈阳:辽宁教育出版社,1996.[2]华东师范大学数学系:数学分析同步辅导及习题全解[M].中国矿业大学出版社.2009.[3]华东师范大学数学系:数学分析[M].高等教育出版社.2007.[4] Finney Weir Giordano.Thomas’CALCULUS.高等教育出版社[M].2004.指导教师: 年月日教研室主任: 年月日河北师范大学本科生毕业论文(设计)开题报告书河北师范大学本科生毕业论文(设计)开题报告书(附页)课题论证:高等数学的基础是微积分,在学习微积分时接触的第一个重要定义就是极限,极限思想是微积分的基本思想,在数学分析中,连续函数,导数,定积分等重要定义都是用极限来定义的,极限运算是微积分的运算基础。

因此要学好数学分析,学好微积分,掌握并且能合理的应用极限是十分重要的。

在历史发展的长河里,极限思想的产生和其他学科的产生是一样的,在极限产生,发展,完善的过程中,并不是一帆风顺的,是经过无数数学家长时间共同努力的结果。

极限思想的发展过程,充分的体现了人类认识自然,改造自然的过程,从有穷到无穷的过程是极限发展的基本过程,在其产生,发展,完善的过程中体现了一门科学在历史进程中的发展历程,具有一般性。

研究极限思想产生的历史过程,可以使我们更好的理解极限,用极限的思想方法解决现实生活中所遇到的各种问题。

在极限的ε-N定义提出后,极限的发展已经趋于完善,不再局限于特定的问题中,在定义的描述的上抛弃了直观性的几何描述法,使完善后的定义更具有严谨性,逻辑性,这对于数学的学习和创新具有指导性的作用。

本文第二部分通过极限在数学、物理等学科中的应用,说明极限的具体应用方向,如计算曲线的切线,曲面的面积,变力做功,和求运动物体的速度等问题。

通过这些应用使我们对极限在现实生活中的具体作用有了更明确的理解,使我们对极限思想体系有了更为立体的感受。

最后对全文进行了全面的总结。

从微积分的产生到极限理论的建立,这个历史过程生动地表明:任何科学的发展都不是一帆风顺的,要经过长时间不间断的探索,科学的发展是随着社会生产的发展一同进步,但科学的发展同时也制约着生产的发展,当科学的发展不再适应社会的进步,不能满足社会发展的需要,就必须进行创新,每一次创新都将为科学的发展以及社会的发展开创一个崭新的时代,科学的发展是建立在人认识改造自然的基础上的,随着时间的发展,科学技术已经越来越在社会进步的过程中起中流砥柱的作用,科学的发展一定要经过由定性认识转化为定量认识,形成概念和理论的系统,否则,就不可能成为严谨的科学体系,也不能满足生产发展的需要与社会进步的脚步。

河北师范大学本科生毕业论文(设计)文献综述河北师范大学本科生毕业论文(设计)翻译文章本科生毕业论文设计极限思想的产生与发展作者姓名:指导教师:所在学院:数学与信息科学学院专业(系):数学与应用数学班级(届):届数学班年月日目录中文摘要、关键字 (2)1.引言 (3)2. 极限思想的产生与发展 (3)2.1极限思想的产生 (3)2.2极限思想的发展 (6)2.3极限思想的完善 (7)2.4极限的概念 (9)2.5极限思想的思维功能 (9)3. 极限的应用 (10)3.1极限在概念里的渗透 (10)3.2极限在导数中的应用 (12)3.3极限在积分中的应用 (14)4.总结 (18)参考文献 (19)英文摘要、关键字 (20)数学与信息科学学院数学与应用数学专业指导教师作者摘要:极限思想是微积分的基本思想,数学分析中的一系列重要概念,如函数的连续性、导数以及定积分等等都是借助于极限思想来定义的,极限思想的应用无处不在,合理应用极限思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果.本文主要对极限思想的产生与发展进行探究,并对其在数学分析中的应用展开探索。

关键词:极限思想产生发展应用1.引言极限的思想是数学中重要的思想,在数学分析中,极限是最基本的概念。

函数的连续性、导数,微积分等等都是通过极限理论才得到的。

极限思想也是微积分的基本思想,极限是微积分中的基本工具,是微积分的基础, 贯穿整个微积分的内容。

极限思想的应用已经渗透到我们所认识到的各个学科之间,数学,物理学,化学,生物学等,极限在现今的科学技术领域起着不可磨灭的重要作用,能够深刻的理解掌握极限及其基本思想对于我们在实际问题中解决问题有着重大意义。

2.极限思想的产生与发展2.1极限思想的产生极限思想的产生,是社会发展,科学进步的客观需求。

是人在探索改造自然过程中逐渐形成的一新的思想方法。

极限的思想可以追溯到古代,在《庄子·天下篇》中有:“一尺之棰,日取其半,万世不竭”其含义是:长为一尺的木棒,第一天截取它的一半,第二天截取剩下的一半,这样的过程无穷无尽地进行下去。

这样一直进行下去,留下来的木棒越来越短,可以再分的部分越来越小,一直到无穷小不可以再切割,但永远不会消失。

公元前5世纪,有关无穷小的概念就已经作为希腊人关于什么是世界的设想而进入了数学思潮,而希腊数学家所普遍接受的观点则是阿拿萨哥拉提出的:“在小的当中不存在最小的,但总有更小的”。

对于以严密著称的古希腊来说,古希腊学者观念上不能摆脱对无限的恐惧,而是借助于其它的方法来完成有关的证明。

刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也。

”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的。

(如图1)图1刘徽对此的证明运用了出入相补原理和无穷分割求和原理,具体如下:把阳马和鳖臑沿各边的中点做进一步的分割(如图2),这样就把阳马分成了2个小阳马,1个小立方体和2个小堑堵;把鳖臑分成了2个小鳖臑和2个小堑堵。

先把2个小阳马和2个小鳖臑放一边,则各自剩下的部分体积比显然为2:1。

再将放一边的小阳马和小鳖臑做同样的分割,则可得到更小的阳马、立方体、堑堵和鳖臑,把4个小小阳马和4个小小鳖臑放一边,各自剩下的部分体积比仍然为2:1。

此过程可以无限的做下去,直到剩余部分体积为0。

而整个过程中各自剩下部分体积比总为2:1。

这样刘徽就证明了“不易之率”。

图2到了16世纪,通过对三角形重心问题的深入研究荷兰数学家斯泰文,借助更为直观的几何问题,放弃了古希腊人的证明方法,通过极限的思想及其方法,解决了问题。

从而他提出要把极限思想方法发展成为一门可以在社会各个领域中应用的思想方法。

数学家拉夫纶捷夫曾说:“数学极限方法的创造是对那些不能够用算术、代数和初等几何的简单方法来求解的问题进行了许多世纪的顽强探索的结果。

”提到极限思想,就不得不提到著名的芝诺悖论。

他提出著名四个悖论:(1)一个从A点出发要到B点去的人,首先要到达的地方是12AB,接下来要到达的地方是111*222+AB AB ,接下来要到达的地方是111111***222222++AB AB AB ……如此循环下去,这个人永远不能走到终点。

(2)设想有一支飞行的箭矢,在每一瞬时的时间点,它位于空间中的一个特定位置。

由于时间是瞬时的,不连续的时间点,箭在每个时刻都没有运动而只能是静止的。

由于整个运动的时间是有无限个时间点组成的,而在每个时间点箭又只能静止,所以芝诺断定,飞行的箭在每一个时间点上是静止不动的。

(3)游行队伍问题,首先假设在操场上,有三列观众(图2.3.1),在一瞬间(一个极短的时间里)里,相对于观众席A ,列队B 、C 将分别各向右和左移动一个距离单位(图2.3.2)。

而此时,对队列B 来说队列C 向左移动了两个距离单位。

也就是,队列既可以在一瞬间(一个极短的时间里)里移动一个距离单位,也可以在半个极短时间里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。

因此他得出队列是不可能移动的。

(4)著名的阿基里斯悖论:阿基里斯是古希腊神话中善跑的英雄。

在他和乌龟的竞赛中,乌龟的速度为他的十分之一,他在乌龟后面100米处追乌龟,但他永远也追不上乌龟。

在比赛中,阿基里斯必须先达到乌龟的起点100米处,当阿基里斯到达乌龟的起点处,乌龟又已经向前方前进了10米,于是,对于阿基里斯来说又产生了一个新的需要到达的起点;阿基里斯若要追赶上乌龟就必须再一次到达乌龟的新起点,而当他再一次追乌龟到达乌龟新的起点处,乌龟又已经向前方前进了1米,阿基里斯只能在次到大乌龟的新起点才能追上乌龟。

就这样一直下去,只要乌龟在前进,就会有新的起点产生,阿基里斯总是有新的起点需要到达,这样,不管阿基里斯如何努力,只要乌龟不停的前进,阿基里斯就不会追上乌龟。

芝诺悖论的错误在于:(1)对于时间做了限定,在速度不能改变的情况下,路程图2.3.1 图2.3.2就不可以改变。

(2)对于时间与空间的分割,无论你能分的多么小,但其大小仍然存在,不能变成无(第二次数学危机):无限小是没有还是一个非常非常小的数,结果证明无限小是大于0的。

芝诺悖论的顺利解决对于极限思想的发展和普及起了至关重要的作用,为微积分的出现提供了条件。

相关文档
最新文档