微型机械将该技术
机械电子学-第01章参考答案

机械电子学-第1章习题-参考答案1-1试说明较为人们接受的机电一体化的含义。
(★)答:机电一体化乃是在机械的主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
1-2机电一体化的目的是什么?答:提高系统的附加价值,即多功能、高效率、高可靠性、省材料省能源,并使产品结构向短小轻薄化方向发展从而不断满足人们生活的多样化和生产的省力化、自动化需求。
1-3机电一体化时代的特征是什么?(★)答:机电一体化时代是以机电有机结合为时代特征,具体的说就是以微型计算机为代表的微电子技术逐步向机械领域渗透,并与机械技术有机的结合,为机械增添“头脑”,使其增加新的功能。
1-4何谓机电一体化技术革命?(★)答:将微型计算机等微电子技术用于机械并给机械以“智能”的技术革新潮流可称“机电一体化技术革命”。
1-5说明我国机电一体化优先发展的领域?答:数控机床等机制设备、电子化量具量仪、工业自动化控制仪表、电子化低压电表、工业机器人、电子化家用电器、电子控制轻工机械、电子控制纺织机械、机电一体化医疗机械、汽车机电一体化、机电一体化办公机械、机电一体化印刷机械、机电控制系统电子化、数码照相机、数码摄影机。
1-6优先发展的机电一体化领域必须同时具备哪些条件?答:a、短期或中期普遍需要;b、具有显著的经济效益;c、具备或经过短期努力能具备必需的物质技术基础;d、社会效益十分显著。
1-7.机电一体化系统有哪些基本要素组成?分别实现哪些功能?(★)答:1-8.工业三大要素指的是什么?(★)答:物质、能量、信息。
1-9.机电一体化的三大效果是什么?答:省能、省资源、智能化。
1-10.说明机电一体化系统(产品)的设计步骤。
答1-11.机电一体化系统(产品)的主要评价内容是什么?答:①、主功能,高性能化、低价格化、高可靠性化;②、计测、控制功能,智能化;③、动力功能,智能化;④、构造功能,轻薄短小化。
举例说明mems的应用及例中mems器件的原理

举例说明mems的应用及例中mems器件的原理MEMS(微机电系统)是一种将微型机械结构与电子技术相结合的技术,它可以将传感器、执行器和其他微型器件集成在一起,以实现各种应用。
下面将以几个常见的MEMS应用为例,详细介绍其原理。
1.加速度计加速度计是一种测量物体加速度的传感器,广泛应用于智能手机、游戏手柄、汽车安全气囊等设备中。
MEMS加速度计通常由一个微型质量块和一对微型弹簧组成。
当被测试物体加速度改变时,质量块会移动,并产生微小的尺寸变化。
这种变化可以通过电容或压阻传感器来检测,从而得到加速度的值。
2.陀螺仪陀螺仪是用于测量物体角速度的传感器,常见于飞行器、导航设备等应用中。
MEMS陀螺仪通常由两个共面的振动器组成。
当物体发生旋转时,由于科里奥利力的作用,振动器之间会产生微小的力。
这种力会导致振动器的位移,通过检测振动器的位移变化,可以得到物体的角速度。
3.压力传感器压力传感器用于测量气体或液体的压力,广泛应用于医疗设备、工业自动化等领域。
MEMS压力传感器通常由一个微型薄膜和一个微型腔室组成。
当受到外部压力时,微型薄膜会发生微小的弯曲变形。
通过检测薄膜的变形,可以得到压力的值。
4.振动传感器振动传感器用于测量物体的振动或震动,常见于汽车、建筑结构监测等领域。
MEMS振动传感器通常由一个微型质量块和一个微型弹簧组成,类似于加速度计的结构。
当物体振动时,质量块会受到振动力的作用,从而产生微小的尺寸变化。
这种变化可以通过电容或压阻传感器来检测,从而得到振动的值。
总结起来,MEMS器件的原理都是基于微小的物理变化或力的作用。
通过将微型机械结构和电子技术相结合,可以实现对这种变化或力的检测和测量,从而得到各种物理量的值。
这种集成化的设计使得MEMS器件具有体积小、功耗低、响应速度快、成本低等优点,因此在越来越多的应用中得到了广泛的应用。
微机电系统技术及应用

微机电系统技术及应用微机电系统技术(Micro-Electro-Mechanical Systems,MEMS)是指一种集成微型机械、电子和计算机技术的系统,它利用微型加工技术将传感器、执行器和电子元器件等多种功能集成到一个芯片上,从而实现在微小空间内进行感测、信号处理和控制的复杂系统。
自20世纪80年代以来,MEMS技术在各个领域得到了广泛的应用,成为现代科技进步的重要方向之一。
一、MEMS技术的基本原理MEMS技术的实现基于微机械制造技术,即利用光刻、蚀刻、离子注入、薄膜沉积、微调工艺等多种微加工技术,在硅基底板上制造出微型机械和微型电子元器件,将它们集成在一起实现控制系统的复杂功能。
常见的MEMS元件包括传感器和执行器两类。
传感器一般是将物理量转换成电信号输出的元件,MEMS传感器主要有压力传感器、加速度传感器、角速度传感器、温度传感器、化学传感器等,它们的结构和工作原理各不相同。
以加速度传感器为例,它主要是通过微型悬臂等结构感受加速度的作用,在振动部件上加上感应电极,利用柔性连接器将机械运动转化成电信号输出。
执行器是将电信号转换成物理运动的设备,MEMS执行器主要有微型电机、微泵、微阀门和微喷头等。
以微型电机为例,它主要包括固定部件和旋转部件,其结构具有一定的复杂性。
电机的旋转部件通常采用转子-定子结构,采用MEMS技术可以制造出特殊形状的转子并将其悬挂在薄膜支撑结构上,转子与定子之间通过电容传感器实现控制,电容传感器输出的信号被用于控制电机的转速和方向。
二、MEMS技术的应用领域MEMS技术的应用范围非常广泛,包括空间、军事、医疗、汽车、电子信息等多个领域,在以下几个方面得到了广泛应用。
1.传感器MEMS传感器可以感测体积小、重量轻、功耗低、响应速度快、精度高等诸多优点,使之成为传感器领域的重要技术。
它广泛应用于汽车行业、工业自动化控制、医疗设备等领域,如安全气囊用于汽车碰撞检测、指纹识别传感器、手机加速度传感器等。
微型机器人的设计与应用

微型机器人的设计与应用近年来,微型机器人进入了人类的视野,在科技创新领域得到了广泛的应用和推广。
微型机器人是一种小型化的机器人,其体积和重量十分微小,可以执行各种任务和动作。
微型机器人的设计和应用,具有重要的意义和价值。
一、微型机器人的设计微型机器人的设计需要同步兼顾机械学、电子学、计算机学和材料学等方面的知识。
微型机器人的结构一般分为传感器、动力系统、执行器和控制系统四大部分。
1. 传感器:微型机器人需要配备各种传感器,以便感知周围环境,获取位置信息、姿态信息和环境信息等。
如机械臂可以使用红外传感器、超声波传感器、摄像头等,进行识别操作。
2. 动力系统:微型机器人需要配备适当的动力系统,以保证其运动和执行任务的能力。
可以使用微型电动机,燃料电池或者电池。
3. 执行器:微型机器人需要配备不同类型的执行器,以便可以完成各种任务。
如手臂遥控铲子等。
4. 控制系统:微型机器人需要配置合适的控制系统,控制其运动、姿态和高度等。
可以使用微型处理器、信号减弱器等,进行精细控制。
二、微型机器人的应用微型机器人的应用十分广泛,包括医疗、工业、探测和作战等领域。
以下是几个典型的应用领域。
1. 医疗领域:微型机器人可以在人体内进行手术操作,避免了传统手术中的切割、疼痛和创伤等。
如微型机器人可以用于神经外科、心外科和小部位手术等领域。
2. 工业领域:微型机器人可以在狭小空间内执行特殊机械操作。
如微型机器人可以用于汽车、飞机等复杂机器的维修。
3. 探测领域:微型机器人可以应用于各种环境探测,如化学污染物、地震监测、火灾探测、防疫等。
如微型机器人可以在受污染的环境下完成精确探测,找到污染源。
4. 军事领域:微型机器人可以进行隐蔽侦察、地雷拆除和训练等。
如微型机器人可以用于敌后侦察和情报获取等任务中。
三、微型机器人的发展趋势微型机器人在目前不断发展,未来也会有更多的应用和推广。
以下是几项未来发展趋势。
1. 更小更强的机器人:未来的微型机器人将变得更小、更敏捷、更强大。
微型机器人技术的研究现状和趋势

微型机器人技术的研究现状和趋势随着科技的发展和人们对机器人应用的需求增加,微型机器人技术逐渐引起了广泛关注。
本文将简要介绍微型机器人技术的研究现状,并展望未来的发展趋势。
一、微型机器人技术的定义和特点微型机器人是指尺寸小于一米的机器人系统。
与传统的机器人相比,微型机器人具有以下几个显著特点:1. 小巧灵活:由于尺寸的限制,微型机器人可以在狭小的空间内灵活操作,具备更广泛的应用场景。
2. 高度精准:微型机器人采用先进的传感器和控制系统,能够实现高精度的运动和操作。
3. 多功能性:微型机器人可以具备多种功能,如检测、监控、医疗等,实现多样化的任务。
二、微型机器人技术的研究现状1. 结构和材料:微型机器人的结构设计和材料选择是关键。
目前,研究者提出了多种创新的结构设计理念,例如仿生机器人、可展开式机器人等。
材料方面,研究者正在尝试使用纳米材料和生物材料,以提高机器人的性能和适应性。
2. 动力和驱动:微型机器人的动力和驱动系统是实现其运动和操作的关键。
电磁力、磁力、压力等多种驱动方式被用于微型机器人的驱动系统中。
此外,太阳能、燃料电池等新型能源也被研究者探索和应用。
3. 传感和控制:微型机器人的传感和控制系统是实现其高精度运动和操作的基础。
传感器技术的发展使得微型机器人能够获取更加准确的环境信息,而先进的控制算法则实现了机器人的自主决策与行动。
4. 应用领域:微型机器人技术在医疗、环境监测、无人探测等领域有着广阔的应用前景。
例如,在医疗领域,微型机器人可以用于内窥镜等医疗器械的操控和手术辅助;在环境监测领域,微型机器人可以用于检测和修复污染区域;在无人探测领域,微型机器人可以用于勘探灾难现场或危险环境。
三、微型机器人技术的发展趋势1. 多机器人协作:未来,微型机器人将更多地实现多机器人协作,形成机器人网络,实现复杂任务的分工合作。
2. 智能化:随着人工智能技术的进步,微型机器人将具备更高的自主决策能力和智能感知能力,能够更好地适应复杂环境和任务需求。
浅论微型机械加工技术及其应用

术一般采用万 向腐蚀剂 、异向腐蚀剂对单晶硅进行化学腐蚀 ,等到形成 不 同形状 的硅体后就移走腐蚀剂 , 再利用薄膜喷镀 、晶体移植、粘合等 技术来增 添所需材料,从而制成各种所需的微型机械元件。采用整体微 加工技术制成的微型机械各元件之间相互联结而达到非常精确匹配的结 构性能 , 但是单晶硅 内形成的元件都是薄膜型结构 ( 单簧、箔片、桥形 体等 ),或者是孔腔和 凹凸型结构( 洞孔、曲边、槽道等) 。这些元件只 能制造各种传感器 , 因而严重限制了微型机械的结构设计和应用潜力。 2 微型 机械 加工 技术 的应 用
1 微型 机械 加工技 术
11 集成 电路 J -技 术 . jr n
集成 电路加工技术是一种制作大规模集成 电路的平 面加工技术 ,目 前 已经成为一种较成熟 、发展快 的微型机枕 9工技术。这种技术的优点 口 在于 :第一 ,它和集成 电路具有非常好 的相容性 ,所 以,目前它已经成 功地运用于微型机械的光显示器 、加速度传感器等。第二 ,在制作微型 机械零部件中 ,该技术可以将刻蚀深度 降到最低 ,只有数百纳米 。但其 局限性在于只能用来制作硅材料的零部件。
构件。键合加工技术用于硅一硅直接键合 ,最大好处就是省去了磨片减 薄、抛光等复杂的工艺 ,从而为制造微 型机械构件节省 了大量时间。同 时, 键合加工技术还可以进行硅—玻璃键合 ,并通过与其它加工技术 的 结合而形成了掩 映一无掩膜腐蚀技术 、片上封装技术 、防粘附技术等 ,
为制作多层结构的微型机械构件创造了十分有利 的条件。 17 整 体 微 机 械 加 工 技 术 - 采用整体微加工技术来进行微型机械加工时,一般选用硅材料,因 为硅的导电性 能、伸缩性能非常好 , 适合制造 1 O 大小的零件 。该技 m
微型化机电一体化技术例子

微型化机电一体化技术例子微型化机电一体化技术是一种将微型化技术和机电一体化技术相结合的新型技术,它可以将机械、电子、计算机等多种技术融合在一起,实现微型化、高效化、智能化的目标。
下面,我们将列举一些微型化机电一体化技术的例子。
1. 微型化机器人微型化机器人是一种可以在微观尺度下进行操作的机器人,它可以在微观尺度下进行精确的操作,如微型加工、微型组装等。
微型化机器人通常由微型电机、微型传感器、微型控制器等组成,可以实现高精度、高效率的微型化操作。
2. 微型化传感器微型化传感器是一种可以在微观尺度下进行测量的传感器,它可以测量微小的物理量,如温度、压力、湿度等。
微型化传感器通常由微型电子元件、微型机械元件等组成,可以实现高精度、高灵敏度的测量。
3. 微型化电机微型化电机是一种可以在微观尺度下进行驱动的电机,它可以驱动微型机械、微型器件等进行运动。
微型化电机通常由微型电子元件、微型机械元件等组成,可以实现高效率、高精度的驱动。
4. 微型化液压系统微型化液压系统是一种可以在微观尺度下进行液压传动的系统,它可以实现微型机械的驱动、控制等功能。
微型化液压系统通常由微型液压元件、微型电子元件等组成,可以实现高精度、高效率的液压传动。
5. 微型化气动系统微型化气动系统是一种可以在微观尺度下进行气动传动的系统,它可以实现微型机械的驱动、控制等功能。
微型化气动系统通常由微型气动元件、微型电子元件等组成,可以实现高精度、高效率的气动传动。
6. 微型化机械臂微型化机械臂是一种可以在微观尺度下进行操作的机械臂,它可以实现微型物体的抓取、移动、放置等功能。
微型化机械臂通常由微型电机、微型传感器、微型控制器等组成,可以实现高精度、高效率的微型化操作。
7. 微型化机械加工系统微型化机械加工系统是一种可以在微观尺度下进行加工的系统,它可以实现微型零件的加工、制造等功能。
微型化机械加工系统通常由微型电机、微型传感器、微型控制器等组成,可以实现高精度、高效率的微型化加工。
mems微机电系统名词解释

mems微机电系统名词解释MEMS(Micro-Electro-Mechanical Systems,微机电系统)是一种集成微型机械、电子与传感器功能于一身的微型设备。
它结合了传统的机械制造技术、半导体工艺和微纳米技术,将微型机械部件、传感器、电子电路以及微纳加工技术集成在一个晶圆上,以实现微型化、多功能化和集成化的目标。
以下是一些与MEMS相关的名词解释:1. 传感器(Sensor):一种能够感知并转换外部物理量、化学量或生物量的设备,可以将感应到的物理量转化为电信号。
2. 执行器(Actuator):一种能够接收电信号并将其转化为相应的机械运动的设备,用来实现对外界的控制或作用。
3. 微型机械(Micro-Mechanical):指尺寸在微米或纳米级别的机械部件,由微细加工技术制造而成,具有微小、精确和高效的特点。
4. 纳米技术(Nanotechnology):一种研究和应用物质在纳米尺度下的特性、制备和操作的技术,常用于MEMS器件的加工制造。
5. 惯性传感器(Inertial Sensor):一种基于测量物体运动状态和变化的MEMS传感器,如加速度计和陀螺仪。
6. 压力传感器(Pressure Sensor):一种可以测量气体或液体压力的MEMS传感器,常用于汽车、医疗、工业等领域。
7. 加速度计(Accelerometer):一种测量物体在空间中加速度的MEMS传感器,常用于移动设备、运动检测等应用。
8. 微镜(Micro-Mirror):一种利用MEMS技术制造的微型反射镜,通常用于显示、成像和光学通信等应用。
9. 微流体器件(Microfluidic Device):一种用于实现微小流体控制的MEMS器件,常用于生化分析、药物传递和微生物学研究等领域。
10. 无线传感器网络(Wireless Sensor Network):一种由多个分布式的MEMS传感器节点组成的网络系统,可以实现对环境信息的实时采集、处理和通信。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微型机械将该技术.txt7温暖是飘飘洒洒的春雨;温暖是写在脸上的笑影;温暖是义无反顾的响应;温暖是一丝不苟的配合。
8尊重是一缕春风,一泓清泉,一颗给人温暖的舒心丸,一剂催人奋进的强心剂一、概念微型机械加工或称微型机电系统或微型系统是只可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通讯电路和电源等于一体的微型器件或系统。
其主要特点有:体积小(特征尺寸范围为:1μm-10mm)、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。
微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化、来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。
微型机械加工技术是指制作为机械装置的微细加工技术。
微细加工的出现和发展早是与大规模集成电路密切相关的,集成电路要求在微小面积的半导体上能容纳更多的电子元件,以形成功能复杂而完善的电路。
电路微细图案中的最小线条宽度是提高集成电路集成度的关键技术标志,微细加工对微电子工业而言就是一种加工尺度从微米到纳米量级的制造微小尺寸元器件或薄模图形的先进制造技术。
目前微型加工技术主要有基于从半导体集成电路微细加工工艺中发展起来的硅平面加工和体加工工艺,上世纪八十年代中期以后在LIGA加工(微型铸模电镀工艺)、准LIGA加工,超微细加工、微细电火花加工(EDM)、等离子束加工、电子束加工、快速原型制造(RPM)以及键合技术等微细加工工艺方面取得相当大的进展。
微型机械系统可以完成大型机电系统所不能完成的任务。
微型机械与电子技术紧密结合,将使种类繁多的微型器件问世,这些微器件采用大批量集成制造,价格低廉,将广泛地应用于人类生活众多领域。
可以预料,在本世纪内,微型机械将逐步从实验室走向适用化,对工农业、信息、环境、生物医疗、空间、国防等领域的发展将产生重大影响。
微细机械加工技术是微型机械技术领域的一个非常重要而又非常活跃的技术领域,其发展不仅可带动许多相关学科的发展,更是与国家科技发展、经济和国防建设息息相关。
微型机械加工技术的发展有着巨大的产业化应用前景。
二、国外发展现状1959年,Richard PFeynman(1965年诺贝尔物理奖获得者)就提出了微型机械的设想。
1962年第一个硅微型压力传感器问世,气候开发出尺寸为50~500μm的齿轮、齿轮泵、气动涡轮及联接件等微机械。
1965年,斯坦福大学研制出硅脑电极探针,后来又在扫描隧道显微镜、微型传感器方面取得成功。
1987年美国加州大学伯克利分校研制出转子直径为60~12μm的利用硅微型静电机,显示出利用硅微加工工艺制造小可动结构并与集成电路兼容以制造微小系统的潜力。
微型机械在国外已受到政府部门、企业界、高等学校与研究机构的高度重视。
美国MIT、Berkeley、Stanford\AT&T和的15名科学家在上世纪八十年代末提出“小机器、大机遇:关于新兴领域--微动力学的报告”的国家建议书,声称“由于微动力学(微系统)在美国的紧迫性,应在这样一个新的重要技术领域与其他国家的竞争中走在前面”,建议中央财政预支费用为五年5000万美元,得到美国领导机构重视,连续大力投资,并把航空航天、信息和MEMS 作为科技发展的三大重点。
美国宇航局投资1亿美元着手研制“发现号微型卫星”,美国国家科学基金会把MEMS作为一个新崛起的研究领域制定了资助微型电子机械系统的研究的计划,从1998年开始,资助MIT,加州大学等8所大学和贝尔实验室从事这一领域的研究与开发,年资助额从100万、200万加到1993年的500万美元。
1994年发布的《美国国防部技术计划》报告,把MEMS列为关键技术项目。
美国国防部高级研究计划局积极领导和支持MEMS的研究和军事应用,现已建成一条MEMS标准工艺线以促进新型元件/装置的研究与开发。
美国工业主要致力于传感器、位移传感器、应变仪和加速度表等传感器有关领域的研究。
很多机构参加了微型机械系统的研究,如康奈尔大学、斯坦福大学、加州大学伯克利分校、密执安大学、威斯康星大学、老伦兹得莫尔国家研究等。
加州大学伯克利传感器和执行器中心(BSAC)得到国防部和十几家公司资助1500万元后,建立了1115m2研究开发MEMS的超净实验室。
日本通产省1991年开始启动一项为期10年、耗资250亿日元的微型大型研究计划,研制两台样机,一台用于医疗、进入人体进行诊断和微型手术,另一台用于工业,对飞机发动机和原子能设备的微小裂纹实施维修。
该计划有筑波大学、东京工业大学、东北大学、早稻田大学和富士通研究所等几十家单位参加。
欧洲工业发达国家也相继对微型系统的研究开发进行了重点投资,德国自1988年开始微加工十年计划项目,其科技部于1990~1993年拨款4万马克支持“微系统计划”研究,并把微系统列为本世纪初科技发展的重点,德国首创的LIGA工艺,为MEMS的发展提供了新的技术手段,并已成为三维结构制作的优选工艺。
法国1993年启动的7000万法郎的“微系统与技术”项目。
欧共体组成“多功能微系统研究网络NEXUS”,联合协调46个研究所的研究。
瑞士在其传统的钟表制造行业和小型精密机械工业的基础上也投入了MEMS的开发工作,1992年投资为1000万美元。
英国政府也制订了纳米科学计划。
在机械、光学、电子学等领域列出8个项目进行研究与开发。
为了加强欧洲开发MEMS的力量,一些欧洲公司已组成MEMS开发集团。
目前已有大量的微型机械或微型系统被研究出来,例如:尖端直径为5μm的微型镊子可以夹起一个红血球,尺寸为7mm×7mm×2mm的微型泵流量可达250μl/min能开动的汽车,在磁场中飞行的机器蝴蝶,以及集微型速度计、微型陀螺和信号处理系统为一体的微型惯性组合(MIMU)。
德国创造了LIGA工艺,制成了悬臂梁、执行机构以及微型泵、微型喷嘴、湿度、流量传感器以及多种光学器件。
美国加州理工学院在飞机翼面粘上相当数量的1mm的微梁,控制其弯曲角度以影响飞机的空气动力学特性。
美国大批量生产的硅加速度计把微型传感器(机械部分)和集成电路(电信号源、放大器、信号处理和正检正电路等)一起集成在硅片上3mm×3mm的范围内。
日本研制的数厘米见方的微型车床可加工精度达1.5μm的微细轴。
三、国内现状我国在科技部、国家自然基金委,教育部和总装备部的资助下,一直在跟踪国外的微型机械研究,积极开展MEMS的研究。
现有的微电子设备和同步加速器为微系统提供了基本条件,微细驱动器和微型机器人的开发早已列入国家863高技术计划及攀登计划中。
已有近40个研究小组,取得了以下一些研究成果。
广东工业大学与日本筑波大学合作,开展了生物和医用微型机器人的研究,已研制出一维、二维联动压电陶瓷驱动器,其位移范围为10μm×10μm;位移分辨率为0.01μm,精度为0.1μm,正在研制6自由度微型机器人;长春光学精密机器研究所研制出直径为Φ3mm的压电电机、电磁电机、微测试仪器和微操作系统。
上海冶金研究所研制出了微电机、多晶硅梁结构、微泵与阀。
上海交通大学研制出Φ2mm的电磁电机,南开大学开展了微型机器人控制技术的研究等。
我国有很多机构对多种微型机械加工的方法开展了相应的研究,已奠定了一定的加工基础,能进行硅平面加工和体硅加工、LIGA加工、微细电火花加工及立体光刻造型法加工等。
四、技术发展趋势微型机械加工技术的发展刚刚经历了十几年,在加工技术不断发展的同时发展了一批微小器件和系统,显示了巨大生命力。
作为大批量生产的微型机械产品,将以其价格低廉和优良性能赢得市场,在生物工程、化学、微分析、光学、国防、航天、工业控制、医疗、通讯及信息处理、农业和家庭服务等领域有着潜在的巨大应用前景。
当前,作为大批量生产的微型机械产品如微型压力传感器、微细加速度计和喷墨打印头已经占领了巨大市场。
目前市场上以流体调节与控制的微机电系统为主,其次为压力传感器和惯性传感器。
1995年全球微型机械的销售额为15亿美元,有人预计到2002年,相关产品值将达到400亿美元。
显然微型机械及其加工技术有着巨大的市场和经济效益。
微型机械是一门交叉科学,和它相关的每一技术的发展都会促使微型机械的发展。
随着微电子学、材料学、信息学等的不断发展,微型机械具备了更好的发展基础。
由于其巨大的应用前景和经济效益以及政府、企业的重视,微型机械发展必将有更大的飞跃。
新原理、新功能、新结构体系的微传感器、微执行器和系统将不断出现,并可嵌入大的机械设备,提高自动化和智能水平。
微型机械加工技术作为微型机械的最关键技术,也必将有一个大的发展。
硅加工、LIGA 加工和准LIGA加工正向着更复杂、更高深度适合各种要求的材料特性和表面特性的微结构以及制作不同材料特别是功能材料微结构、更易于与电路集成的方向发展,多种加工技术结合也是其重要方向。
微型机械在设计方面正向着进行结构和工艺设计的同时实现器件和系统的特性分析和评价的设计系统的实现方向发展,引入虚拟现实技术。
我国在微型加工技术发展的优先发展领域是生物学、环境监控、航空航天、工业与国防等领域,建设好几个有世界先进水平的微型机械研究开发基地,同时亦重视微观尺度上的新物理现象和新效应的研究,加速我国微型机械的研究与开发,迎接二十一世纪技术与产业革命的挑战。
五、关键技术微型机械是一个新兴的、多学科交叉的高科技领域,面临许多课题,涉及许多关键技术。
当一个系统的特征尺寸达到微米级和纳米级时,将会产生许多新的科学问题。
例如随着尺寸的减少,表面积与体积之比增加,表面力学、表面物理效应将起主导作用,传统的设计和分析方法将不再适用。
为摩擦学、微热力这等问题在微系统中将至关重要。
微系统尺度效应研究将有助于微系统的创新。
微型机械不是传统机械直接微型化,它远超出了传统机械的概念和范畴。
微型机械在尺度效应、结构、材料、制造方法和工作原理等方面,都与传统机械截然不同。
微系统的尺度效应、物理特性研究、设计、制造和测试研究是微系统领域的重要研究内容。
在微系统的研究工作方面,一些国内外研究机构已在微小型化尺寸效应,微细加工工艺、微型机械材料和微型结构件、微型传感器、微型执行器、微型机构测量技术、微量流体控制和微系统集成控制以及应用等方面取得不同程度的阶段性成果。
微型机械加工技术是微型机械发展的关键基础技术,其中包括微型机械设计微细加工技术、微型机械组装和封装技术、为系统的表征和测量技术及微系统集成技术。
六、前沿关键技术1、微系统设计技术主要是微结构设计数据库、有限元和边界分析、CAD/CAM仿真和拟实技术、微系统建模等,微小型化的尺寸效应和微小型理论基础研究也是设计研究不可缺少的课题,如:力的尺寸效应、微结构表面效应、微观摩擦机理、热传导、误差效应和微构件材料性能等。