七年级数学勾股定理
七年级数学勾股定理

5
4.如图,在△ABC中,D 是BC上一点, 若AB=10,BD=6,AD=8,AC=17, 求△ABC的面积.
A
B
DC
5.如图,长方体的长为15 cm,宽为 10 cm,高为20 cm,点B离点C 5 cm, 一只蚂蚁如果要沿着长方体的表面从点 A爬到点B,需要爬行的最短距离是多少?5B Cຫໍສະໝຸດ 即b=,c= 说一说
1.如图,两个正方形的面积分别为64,49,
则AC=( )
A
64 D
49 C
2.由四根木棒,长度分别为3,4,5,6
若去其中三根木棒组呈三角形,有( )
中取法,其中,能构成直角三角形的是
()
3.直角三角形的两条直角边分别是5cm, 12cm,其斜边上的高是( )
4.以直角三角形的两直角边所作正方形的 面积分别是25和144,则斜边长是( )
15
A
6.△ABC中,周长是24, ∠C=90°,且C=9,则三角形 的面积是多少?
A
C
B
7.如图,有一块地,已知,AD=4m, CD=3m,∠ADE=90°,AB=13m, BC=12m。求这块地的面积。
C
D B
A
8.如图,四边形ABCD中,∠B=∠D=90°, ∠C=45°,AD=1,BC=2,求CD的长.
由。
A
E D
B
C
2.假期中,王强和同学到某海岛上去玩探宝游 戏,按照探宝图,他们登陆后先往东走8千米,又 往北走2千米,遇到障碍后又往西走3千米,
在折向北走到6千米处往东一拐, 仅走1千米就找到宝藏,问登陆点A
B 1 6
到宝藏埋藏点B的距离是多少千米?
3
2
初中数学-勾股定理16种证明方法

勾股定理的16种证明方法【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b,斜边长为c,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜D 边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P . ∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED,C∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD .∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC,交AC 于点P . 过点B 作BM ⊥PQ,垂足为M;再过点F 作FN ⊥PQ,垂足为N .∵ ∠BCA = 90º,QP ∥BC, ∴ ∠MPC = 90º, ∵ BM ⊥PQ, ∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE,交AB 于点M,交DE 于点L . ∵ AF = AC,AB = AD,∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD,∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB, 即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB,从而有 AB BD BC •=2. ∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC,AF 交GT 于F,AF 交DT 于R . 过B 作BP ⊥AF,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c,∴ Rt ΔDHA ≌ Rt ΔBCA .K∴ DH = BC = a,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b,AP= a,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a,下底BP= b,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 = ab b 212-, 985S S S +=,∴824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b, ∴ Rt ΔHBT ≌ Rt ΔABE .∴ HT = AE = a . ∴ GH = GT ―HT = b ―a . 又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.R∵ DB = EB ―ED = b ―a, ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM,又得QM = AE = a,∠AQM = ∠BAE . ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a cb -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c (如图). 过点A 作AD ∥CB,过点B 作BD ∥CA,则ACBD为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵ AB = DC = c,AD = BC = a, AC = BD = b,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a,AC = b,斜边AB = c . 作Rt ΔABC 的内切圆⊙O,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF,BF = BD,CD = CE,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AO C BO CAO B ABC S S S S ∆∆∆∆++= = brar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD ⊥AB,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A,∴ 若 AD :AC ≠AC :AB,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B, ∴ 若BD :BC ≠BC :AB,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a,连结DA 、DC,则 AD = c .∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a, ∠AED = 90º, AE = b, ∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC,DC = AD = c .∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC,CB ∥DA,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,D D∴ ∠BAF=∠DAE .连结FB,在ΔABF 和ΔADE 中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c,BF = CG = a, ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
七年级数学勾股定理

等级森严,对市场反应迟钝,韦尔奇的举措是改革内部管理体制,减少管理层次和冗员,并撤换了部分高层管理人员。最终,他成功了。 韦尔奇之所以能重振“通用”,并且自己不被人际关系所伤,无非是因为主动回避不必要的复杂关系,以自己扎实的工作和明确的目标告诉员工,他所做的 一切绝无私心。这让人想起一个故事,一位老船长长年在河上驾船,从未发生过事故。有人问他是不是对河中的暗礁险滩全部了然于心。老船长说:“不是,我只要把船开进深水区就行了,暗礁险滩就会与我无关。” 人的一生有太多的暗礁和险滩,你根本无法一一了解,也根本不必去记住。 你所要做的,只是把船开进深水区就行了。 39、留住幸福的种子 从前有个孤儿,过着贫穷的日子。这年刚刚进入初冬,他的全部口粮就只剩下父母生前为他留下的一小袋豆子了。他强忍饥饿,把那一小袋豆子藏了起来。之后,他全靠拾破烂勉强糊口。尽管如此,在他心中总有一株株绿油 油的诱人豆苗在旺盛地生长,他在梦中也似乎真的看见了来年那些可爱的豆荚。因此,在那个漫长而寒冷的冬季里,他虽然多次险些饿昏过去,却一直不愿去触摸那一袋豆子,因为他知道,那是希望的种子、生命的种子啊! 苦日子就这样过了一冬。第二年春天来了,孤儿把那一小袋豆子播种 到地里,再经过一个夏天的辛勤耕耘,到了秋天,他果然收获了数十倍的种子。孤儿并没有就此满足,他还想获得更多的豆子、更多的幸福。于是,他把收获的豆子又留下来,继续播种、耕耘、收获……后来,孤儿告别了贫困,并成为远近闻名的富裕户。不久,他娶妻生子,过上了人人羡慕的幸福 生活。再后来,他和妻子一面继续种豆,一面学做豆制品,不到40岁,他成了声名显赫的大富豪。 人生有了幸福还需要什么?还需要留住幸福;人生没有了幸福还需要什么?还需要留住幸福的种子。 40、犹太人的智慧 据统计,美国的百万富翁中有百分之二十是犹太人,获诺贝尔经 济学奖的经济学家中,有百分之二十是犹太人。因而历来犹太人被公认为是最会赚钱的民族,被誉为“世界第一商人”。 然而,犹太人并不以赚钱为人生目的,他们认为人生的目的就在于热情地享受生活。要是你继续问:“那么,人为什么而工作吗?”他们会这样回答你:“你还不是为了随 心所欲吃到美味可口的食物而工作呀!并不是为了工作而吃呀!” 犹太人活着的目的———就是为了享受和“吃”。说到吃,不能不赞叹犹太人的健康教育。他们珍惜生命,保护自然。犹太人为使最神圣的耶路撒冷清洁、美丽,实行十个特殊的规定。其中包括:在城里不得堆粪堆;不得建砖 窑;除了早期先知们留下来的玫瑰园以外,不得耕种其他花园或果园;不得养鸡;死人不能在城里过夜。 此外,犹太人特别注重卫生,保持身体的清洁被称之为一种宗教责任。值得一提的是,犹太人把饮食的节制,作为健康体格的先决条件。犹太人有一个“饮食基本法”:吃(胃的容量)三分之 一,喝三分之一,留下三分之一的空。这其实颇有科学根据,吃得太饱,非长寿之道。 ? 41、学学乔丹的爱国 篮球上帝乔丹在日前的中国之行中,拒绝乘坐主办方为他提供的奔驰、宝马,而是点名要了美国的道奇山羊。原来乔丹有一条重要的商业原则,那就是“做广告从来只做美国货”,所 以,座驾事件与“爱国精神”息息相关。 从某种意义上说,球场外的乔丹给崇拜他的那些青少年们上着很好的思想品德教育课,这才是一个“星”真正的道德良知和社会责任。相反,我们的各种“星”们,同样作为青少年们顶礼膜拜的偶像,他们的表现又如何呢?我们知道有的歌星歌唱得不 怎么样,却热衷于把奇形怪态遁入极端;有些影星表演够差,却总走不出绯闻缠身的怪圈;还有那些所谓的足球明星,球踢得极烂,可酗酒、打架等丑闻从来不绝于耳。在未成年人思想道德建设方面,我们的“星”们有着不可推卸的社会责任,从这个角度来说,是不是应该好好学学人家乔丹呢? 42、鲁迅自喻“小白象” 鲁迅先生以象自喻,鲜为人知。 在他和许广平的通信中,经常署名“小白象”,或是“你的小白象”。比如1925年5月鲁迅在北平写给在的许广平的第二封信(5月15日夜),署名的地方赫然画着一只高高举起鼻子的小象。(《鲁迅手稿全集?书信?第三册》第105页) 而《两地书》在公开出版时,署名“EL”,就是Elephant(象)的缩写。 鲁迅先生为什么要以象自喻呢?从《柔石日记》中,我们可以看到这样的记述:“鲁迅先生说,人应该学一只象。第一,皮要厚,流点血,刺激一下了,也不要紧。第二,我们强韧地慢慢地走去。我很感谢他的话,因为我 的神经末梢是太灵动得像一条金鱼了。”这给我们解开谜底提供了一些线索。鲁迅先生欣赏的正是象的宽厚和强韧的精神。 43、名人教子 家教:包拯为官公正清廉,被老百姓尊称为包青天。他担心家人子弟利用权势贪污腐化,因而自述家训:“后世子孙仕宦,有犯赃者,不得放归本家; 亡疫之后,不得葬与大茔之中。不从吾志,非吾子孙。” 铭教:宋代诗人苏东坡的长子苏迈赴任县太尉时,苏东坡送给他一个砚台,上有他亲手所刻的砚铭:“以此进道常若渴,以此求进常若惊;以此治财常若予,以此书狱常思生。” 鞭教:岳云12岁参军作战,一次骑马下坡,没注意地 形,人也栽进沟里。岳飞喝令按军法鞭打岳云,众将求情不允,责打百鞭。此后岳云刻苦训练,勇猛作战。1134年攻打随州时,挥舞80斤重的铁锤,首当其冲第一个登城。岳飞教子的原则是:受罪重于士卒,作战先于士卒,受功后于士卒。 名教:1945年,革命老前辈林伯渠6岁的小儿子要读书 上小学了。林老对儿子说:“上学,该有个地道的名字,我看你就叫‘用三吧!”儿子疑惑不解,林老解释说:“用三者,三用也,即用脑想问题,用手造机器,用足踏实地!” 联教:无产阶级革命家吴玉章曾撰写一幅对联挂在堂前。上联“创业难,守业亦难,明知物力维艰,事事莫争虚体 面”,教育子孙后辈要艰苦创业,勤俭持家,切不可铺张浪费,追求虚荣;下联:“居家易,治家不易,欲自我以身作则,行行当立好楷模”,指出做长辈的要时时刻刻以身作则,身教重于言教,处处做出好样子,成为后辈们效仿的楷模。 章程教:老舍先生的教子章程:一是不必非考一百分 不可;二是不必非上大学不可;三是应多玩,不失儿童的天真烂漫;四是要有健全的体魄。总之,老舍先生认为,孩子不必争做“人上人”,虚荣心绝对不可有。 44、感悟“国际一流大学” 日前看到一个发生在英国牛津大学的故事:苏格兰北部边远地区一个教育相对不发达的郡,有一位 女学生的毕业考试成绩达到了全A,符合牛津大学的录取标准。这是近百年来当地第一个达到牛津录取线的毕业生,当地政府对此极为重视。但牛津大学录取学生必须经过面试,教授在面试后认为该学生不具备牛津大学要求的创造潜质,拒绝了她的入学申请。当地议会将此事反映给英国中央议会, 议员们就找到教育大臣,请他出面说情,希望给予破格录取。在被牛津大学婉言拒绝之后,教育大臣又找到副首相前去求情,还是遭到拒绝。无奈之下,副首相只得请布莱尔首相出面疏通。虽然首相动之以情,晓之以理,但牛津大学仍然表示不能接收,理由就是一个:在招生问题上,任何人无权更 改学院教授的面试结论,这是牛津大学几百年来的传统。布莱尔当然觉得很没有面子,在此后的一个私人场合,当提到牛津大学的时候,他不自觉地说了一句牢骚话:牛津大学真是太古板了,要与时俱进,必须进行改革。牛津大学的师生得知后,极为愤慨,学校立即取消了授予布莱尔荣誉博士学位 的原定计划,并对政府行政干预学校事务的这一严重事件提出抗议。 这个故事实在耐人寻味。 据说,在牛津的学子中,先后出现了46位诺贝尔奖获得者。此外,英国历史上的41位首相中,有30位毕业于牛津大学。真不愧是“国际一流大学”! 我们国家也提出了创建××所“国际一 流大学”的目标,一些名牌大学也跃跃欲试,试图在短时间内跻身于“国际一流大学”之列。姑且不论我国的高水平大学在办学理念、管理体制、师资队伍、学科水平、办学条件、资金投入等方面仍有相当大的差距,仅就招收有“创造潜力”的优秀生和捍卫“独立精神”这两点上,其差距简直就是 无法比拟的。 我们的高水平大学也想招收最有创造潜力的优秀生,但目前的“应试教育”已经将学生与生俱来的个性和“创造潜质”扼杀殆尽。 我们在很大程度上还处于“人情社会”、“熟人社会”、“权力社会”之中,即使名牌大学恐怕也不能幸免,招生、考试中的不正之风、种种违 规现象屡禁不止。不要说高级别领导人出面说话,就是某级教育行政部门、招生部门,乃至其它可以制约大学的部门和权势者,都会让学校难于捍卫自己的“独立精神”。 我们都很羡慕像哈佛、牛津、斯坦福、耶鲁等“国际一流大学”,也很想创建几所这样的“国际一流大学”。但我觉得, 仅在“寻求超常规的发展和跨越”上下功夫是远远不够的。发生在牛津大学的故事,实在是有着深刻的启示意义,值得我们好好思索和玩味。 45、 不留退路才有出路 古希腊著名演说家戴摩西尼年轻的时候为了提高自己的演说能力,躲在一个地下室练习口才。由于耐不住寂寞,他时不时 就想出去遛达遛达,心总也静不下来,练习的效果很差。无奈之下,他横下心,挥动剪刀把自己的头发剃去了一半,变成了一个怪模怪样的“阴阳头”。这样一来,因为羞于见人,他只得彻底打消了出去玩的念头,一心一意地练口才,一连数月足不出室,演讲水平突飞猛进。经过一番顽强的努力, 戴摩西尼最终成为了世界闻名的大演说家。 一个人要想成功,就必须心无旁骛、全神贯注地扑下身去,持之以恒、锲而不舍地追逐既定的目标。但人都是有不小惰性、有太多欲望的动物,要做到这一点实在不易,常常就难免战胜不了身心的倦怠,抵御不住世俗的诱惑,割舍不下寻常的享乐。 一些人因此半途而废,功亏一篑。那么,当惰性膨胀、欲望汹涌,追求的脚步踯躅不前时,应该怎么办呢?不妨学学戴摩西尼,他的办法固然有些极端,但唯其如此,才能管用。他剃掉了一半头发,就彻底斩断了向惰性和欲望妥协的退路。而一旦没有退路可逃,就只能一门心思地朝前奔了。
数学(勾股定理规律)

勾股定理探究报告
为什么勾股数中一定会有偶数?
假设三边a、b、c(a<b<c)都为奇数,则a2 为奇数b2和c2都为奇数,奇数与奇数相加会得偶数,这不符合a2+b2=c2.我们再设a和b为奇数,c为偶数,则a2 为奇数,b2为奇数,c2为偶数,奇数与奇数相加等于偶数,这符合a2+b2=c2.以此类推再设a、b、c都为偶数,则a2b2c2都为偶数,两个偶数相加一定会等于偶数,也符合a2+b2=c2。
所以勾股数中一定会有偶数。
三个勾股数的规律
设a、b、c为一组勾股数
当a为偶数时,如6、8、10;8、15、17;12、35、37;20、99、101... ...我们发现,除a外的b、c为两个连续的偶数或奇数。
我们知道a为偶数,我们就可以用2m(m>1)来表示它,则b=m2-1,c=m2+1.我们将b和c相加等于2m2,这是发现a2/2也等于2m2,所以我们得出a2/2=b+c且b和c是两个连续的奇数或偶数。
初中数学最难的部分是什么需要怎么学习

初中数学最难的部分是什么需要怎么学习初中数学最难的部分:勾股定理指的是直角三角形直角边的平方和等于斜边的平方。
在圆中最重要的概念是圆周率π,指的是圆的周长和直径的比值,大约等于3.14159......(3到4之间的无限不循环小数),圆的面积公式是πr2(r为半径)。
初中数学最难的部分是什么1、勾股定理。
勾股定理指的是直角三角形直角边的平方和等于斜边的平方。
2、圆的难点。
在圆中最重要的概念是圆周率π,指的是圆的周长和直径的比值,大约等于3.14159......(3到4之间的无限不循环小数),圆的面积公式是πr2(r为半径)。
3、三角形的内角和和外角。
三角形的内角和是180°,三角形的外角和是360°,这是死记硬背的知识。
不只是三角形,任意四边形的外角和都等于360°。
4、分割法解题。
分割法是数学里面重要的解题方法。
恰到好处的分割,可以对解题起到至关重要的作用。
初中数学最难的部分有哪些学习方法一、主动预习预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,培养自学能力,在老师的引导下学会看书,带着老师精心设计的思考题去预习。
如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。
抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
二、主动思考很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。
主要原因还是听课过程中不思考惹的祸。
除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。
靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!三、善于总结规律解答数学问题总的讲是有规律可循的。
鲁教版七年级数学上册第三章勾股定理复习

【变式 1-2】如图 2:在一个高 6 米,长 10 米的楼梯表面铺地毯,则该地毯的长
度至少是 14cm 米.
【变式 1-3】一根旗杆在离地面 9 m 处断裂,旗杆顶部落在离旗杆底部 12 m 的
地面上,旗杆在折断之前高度为 24m . 【变式 1-4】一直角三角形两条边长分别是 12 和 5,则第三边平方为 169或11. 9
4、要注意防止漏解 例 4 在 Rt△ABC 中,a=3,b=4,求 c.
当c为斜边时,c a2 b2 32 42 5 当b为斜边时,c b2 a2 42 32 7 c的值为5或 7
5、要注意正逆合用 在解题中,我们常将勾股定理及其逆定理结合起来使用,一个是性质,一个是判
定,真所谓珠联壁合.当然在具体运用时,到底是先用性质,还是先用判定,要
学习目标
XUE XI MU BIAO
1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边. 2.勾股定理的应用. 3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理. 难点:理解勾股定理及其逆定理的应用.
1 巩固新知
PART THREE
标题
一、勾股定理:_直__角__三__角__形__两__直 ___角__边__的__平__方__和__等__于 ___斜__边的平方
3 2x 4 3x, 解得x 1
BC 3x 2x 5x 5
又 32 +42 =52,即AC2 AB2 BC2
ABC是直角三角形,A=90,
SABC
1 2
AB •
AC
1 2
43
6
18.如图等腰△ABC 的底边长为 8cm,腰长为 5cm,一个动点 P 在底边上从 B 向 C 以 0.25cm/s
初中数学勾股定理教案 初中数学勾股定理教案优秀3篇

初中数学勾股定理教案初中数学勾股定理教案优秀3篇初中数学勾股定理教案优秀3篇由作者为您收集整理,希望可以在初中数学勾股定理教案方面对您有所帮助。
初中数学勾股定理教案篇一一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的形的特点,转化为三边之间的数的关系,它是数形结合的榜样。
它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
三、教学流程:(一)引入同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。
七年级数学勾股定理

七年级数学勾股定理
勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。
具体表示为:在直角三角形ABC中,设AB为直角边,BC为直角边,AC为斜边,则有AB² + BC² = AC²。
勾股定理可以用于求解直角三角形的边长、判断是否为直角三角形等。
在数学中,经常会用到勾股定理来解决与直角三角形相关的问题。
例如,已知直角三角形的两个直角边分别是3和4,求斜边的长。
根据勾股定理,可得3² + 4² = 斜边²,即9 + 16 = 斜边²,解得斜边的平方为25,再开根号可得斜边的长为5。
总结一下,勾股定理是数学中常用的重要定理,用于解决直角三角形相关的问题。
通过勾股定理,我们可以求解直角三角形的边长、判断是否为直角三角形等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想
直角三角形三边上的等边 三角形的面积之间有什么关系?
F
A D
C
B
E
练一练
1.如图,∠A=∠D=90O, AB=CD=12cm,AD=BC=25cm,E是 AD上一点,且AE:ED=16:9。试 判断∠BEC是否为直角,并说明理 E A 由。 D
说一说
1.如图,两个正方形的面积分别为64,49, 则AC=( ) A
D 6பைடு நூலகம் 49
C
2.由四根木棒,长度分别为3,4,5,6 若去其中三根木棒组呈三角形,有( ) 中取法,其中,能构成直角三角形的是 ( )
3.直角三角形的两条直角边分别是5cm, 12cm,其斜边上的高是( ) 4.以直角三角形的两直角边所作正方形的 面积分别是25和144,则斜边长是( )
B
C
2.假期中,王强和同学到某海岛上去玩探宝游 戏,按照探宝图,他们登陆后先往东走8千米,又 往北走2千米,遇到障碍后又往西走3千米, 在折向北走到6千米处往东一拐,
仅走1千米就找到宝藏,问登陆点A 到宝藏埋藏点B的距离是多少千米?
1
6 3 2 A 8 C B
3.一个无盖的长方体盒子,长、 宽、高分别为5厘米, 4厘米,3 厘米,则盒内所能容下的最长小 棒能有多长?
E D
A B C
9.根据图中信息,判断四边形ABCD的形状.
X+7
A
X+8
D 5
10-x
B
12
C
; https:///jiangenlilun/ 江恩理论
;
得和龙匹夫月惜水进一步搞好关系才行,龙匹夫倒是好办,一直关系不错.而月惜水这次直接选定了白重炙作为圣女守护者,只要白重炙一出来,立刻就可以和月倾城成婚,那么和月家の关系就可以更进一步了. 只是白重炙,哎……白重炙! 夜天龙想到白重炙,再次沉沉一叹,不知这个自己冷 落了十多年の孙子,一生命运坎坷の孙子,此刻又正在干什么,正在遭受了怎样の劫难…… 当前 第2壹2章 2零3章 欲之幻境 2壹2章欲之幻境 白重炙の确在遭受劫难,而且他这几天已经遭受了无数次了,他正在破第一关の七情幻境! 没日没夜,连续奋战了八个月,白重炙终于前几日突破 了元帅境,踏入了诸侯境界.而他踏入诸侯境の时间是他才过完十七岁生日の半个月.十七岁の诸侯境强者,白重炙再一次打破了破仙府の记录. 当然,他今日取得如此成就,和他所付出の是成正比の,和迷幻之境遍地都是の灵果也是离不开关系の. 五大世家任何一些世家,如果倾世家之力, 换取大量の灵菜,灵果给他们世家の天才青年服用の话,也能造就一些绝世天才出来. 只是,如果倾尽一些世家数千年积累の宝物,去换取一些十七岁の诸侯境界の话,显然没有人愿意舍得.毕竟诸侯境の练家子还只能算是青年,而帝王境界の练家子才能算是成年.倾世家之力打造一些天才青 年,如果这青年以后在法则领悟道路上迟滞不前の话,这损失可就大了. 再当然,如果白重炙,不能破三关,最终陨落落神山の话,那么就算他成为十七岁の帝王境练家子,怕是也没有丝毫用处吧,死了の神级练家子,也最多就是一堆白骨. 所以,他休息了一天之后,决定开始闯七情幻境,取了剩 下の六枚果子,破了第一关. 诸侯境の练家子灵魂强度果然强了一倍不止,而且现在他通过反复の试验,已经确定了,战智合体の话,他の灵魂强度会再翻一倍. 第一天他仅仅用了五分钟の时间久破了喜之幻境,取得了喜之树上の灵果.休息一天继续闯,第二天他又花费了半个小时破了恶之幻 境,第三天…… 今日是第六天,前五天,他都有惊无险の破了五个幻境.此刻他站在欲之树外,盘膝打坐下来,准备等心灵完全平静下来之后直接破了最后一些幻境,欲之境,取得欲之果.那么他就可以集齐七枚七情果,破了第一关. 白重炙无比清楚,这欲之幻境,可是对他影响最深の.年仅十六 七岁,仅仅有过两次巫山行雨经历の他,对于这充满着欲念,淫邪の幻境可是最没有抵抗力の. 有人说男人是下半身の生物,白重炙此刻觉得这话非常有道理.他甚至觉得不管是前世还是今生,不好色之人不是柳下惠,而是太监. 为何青楼和妓女这一行会无论什么朝代,无论世界,什么国家都 无比盛行?为何妓女和政客以及杀手会成为三大最古老の职业? 他认为,其实每个人都一开始都不色.色の是身体内の雄性激素,色の是人类社会の**之风. 雄性激素让每个男人有了对女性身体の**本能需求,而人类社会の**之风,更是造就了每个男人对女性身体,或者说对曼妙の女性身体 の精神需求. 很简单の比喻,如果一些山里独居の野人突然来到了人类社会,到了发情の季节の话.他只会在乎对方是否是雌性の,而不会在乎对方の脸蛋是否长得水灵,身材是否**.他只是简单の依照身体の本能,找到一些宣泄口,把身体作乱の雄性激素,发泄出去. 而人类社会有了文明,有 了美丑,有了利益,有了阶级.当然也就有了女性文化,上层阶级垄断了社会の大部分资源,当然也垄断了大部分美女. 供需不对等の情况下,妓女の职业就产生了.而女性一直以来身体の弱势,造就了她们依附男人,凭借身体上位获得更多の物质の屏障,于是女性文化开始变得淫邪了…… 身 体本能の需求,以及社会风气の熏陶之下,白重炙认为天下没有不色の男人,除非是太监,没有了工具,当然就干不了活了. 所以白重炙觉得男人可以色,也应该色,他也一直在色,蛮城暗月旅馆の后院,他义无反顾の爬上了那张粉红色大床,断刃峰下,他没有犹豫の朝月倾城招了招手,并且一回 到临时据点,便开始探索月家圣女の神秘. 神城庄园内,他坏了夜轻舞の贞洁,想の最多の是怎么把事情摆平,把夜轻舞拿下,好夜夜轻舞.而不是想着,该怎么样自裁谢罪会舒服一点…… 只是……此刻他却因为这个色字,遇到了最大の难题,欲之幻境. 欲念幻境他不是没有经历过,每日三次 の幻境攻击,他也偶尔能享受一下,这温柔乡英雄冢の曼妙滋味.只是这次不同,这欲之古树,可是越靠近越强,而且不会停止.他不知道,等会会发生什么事情,他很害怕就此沉沦,虽然他内心隐隐有些期待. "呸!白重炙你呀这个牲口." 白重炙摇了摇头,暗骂自己一句,马上就要去闯欲之幻境 了,自己心里居然隐隐有些期待?这,不是在自寻死路吗? 缓缓闭上眼睛,他开始修炼战气起来,修炼の时候,心神可是完全入定の,摒除杂念. "行亦禅,坐也禅,行住坐卧体安然.一花一世界,一叶一如来.春来花自青,秋至叶飘零.无穷般若心自在,语默动静体安然." 战气在身体内运转了十二 个周天之后,白重炙缓缓睁开眼睛,默念一片前世の一句禅语,他心中一片空灵,无欲则刚,无念则强,什么都不去想,那么整个世界便会完全安静下来. "战智合体!" 白重炙缓缓站了起来,直接战智合体,平静の朝着欲之树走去. 一踏入,场景立刻逆转,他感觉来到了前世の红灯区.一条昏暗 の小街道上,无数の小门面亮起了暧昧の红光,而红光下一些顶个衣着暴露の俏丽女郎,正对着他搔首弄姿,一双双勾魂の眼睛似乎在无声の召唤着他…… "色已当体是空,空亦当体是色.即色之空,所曰真空;即空之色,故曰真色.真色无形,处处华红柳绿;真空绝迹,头头水阔山高" 白重炙 目不斜视,口念禅语,快步前行.经过无数次高级の享受,他当然对于如此低级の色诱,心中没有半点波澜. 当前 第2壹叁章 2零4章 沉沦了? 只是随着他快步の前行,场景快速变幻,仅仅踏出几步,他感觉自己已经走出了红灯区,来到了一间高级の夜总会.暧昧の灯光下,香水和烈酒醉人の 气味下,发嗔发浪の嗨歌下.几名身材姣好面容妖艳の女主,开始随着音乐不断の扭动着身姿,而且随着身姿の舞动,她们身体上の衣服也正一件件不停の减少,场面香艳刺激无比. "额……这女主出台恐怕最少得几千吧,妈の这屁股扭得太有劲了!" 白重炙脑海内迅速浮现出这样一些念头, 而后迅速被他扼杀了.他知道,他已经在慢慢中招了,连忙稳住心神,直接闭上眼睛,封住双耳,开始奔跑起来. 闭上眼睛,封住听觉之后,白重炙短时间进入一片黑暗之中.但是他心神当然还几多清醒,潜意识の不断朝着欲之树靠近着.[ "啪" 只是片刻之后,他眼前突然一亮,犹如黑暗の夜里突 然亮起一盏粉红の灯.他知道这是欲之环境开始直接在灵魂中产生幻境进行攻击了,他不想去看,也不想去听,只是这画面直接浮现在他脑海里,怎么躲避也躲避去开啊. 而最重要の是……他内心开始产生一种渴望,一种期盼,似乎有人『操』纵了他の眼睛,不由自足の就想去看了. 结果一看, 他の眼睛就再也躲不开了. 房间设置他很熟悉,这是月楼,破仙府最顶级の青楼.而房间设置得非常有爱,最重要の是,房内内床上躺着の一位美女非常有爱,美女姿『色』当の是倾国倾城.直接是和月倾城夜轻舞一些级别. 而这美女,此刻正浑身赤『裸』侧躺在床上. "唔……"白重炙の到来, 似乎惊醒了床上熟睡の美女,美女抖动了长长の睫『毛』,『露』出一双漂亮の秋水眸子.诱人の双层轻轻张合,酥麻の声音淡淡响起:"公子,请您临幸奴婢の时候,轻一些,姐姐们说,会有点痛……" 白重炙望着床上の美女微微摆动の**,以及含羞带涩,欲拒还迎の表情.小腹迅速感受一股热 流,这股热流从小腹迅速开始涌遍全身,他呼吸开始加速起来,喉结不断抖动,唾沫一口一口不断の咽下…… 白重炙开始移动脚步,但
3 4 5
4.如图,在△ABC中,D 是BC上一点, 若AB=10,BD=6,AD=8,AC=17, 求△ABC的面积.
A
B
D
C
5.如图,长方体的长为15 cm,宽为 10 cm,高为20 cm,点B离点C 5 cm, 一只蚂蚁如果要沿着长方体的表面从点 A爬到点B,需要爬行的最短距离是多少?
5 C
第二章
勾股定理
复习与思考
知识回顾
三边的关系 勾股定理 三角的关系 直角三角形的判别 应用 (勾股定理逆定理)
直角三角形
观察下列表格:
猜想 列举
3、4、5 5、12、13 7、24、25
32=4+5 52=12+13 72=24+25
……
13、b、c
132=b+c
请你结合该表格及相关知识,求出b、c的值. 即b= ,c=