上海市16区2013届高三二模数学(文)试题分类汇编15:其它选修部分

合集下载

2013年上海市闵行区高考数学二模试卷(文科)含详解

2013年上海市闵行区高考数学二模试卷(文科)含详解

2013年上海市闵行区高考数学二模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)方程组的增广矩阵为.2.(4分)已知集合M={x|x2<4,x∈R},N={x|log2x>0},则集合M∩N=.3.(4分)若,且为实数,则实数a的值为.4.(4分)用二分法研究方程x3+3x﹣1=0的近似解x=x0,借助计算器经过若干次运算得下表:运算次数1…456…解的范围(0,0.5)…(0.3125,0.375)(0.3125,0.34375)(0.3125,0.328125)…若精确到0.1,至少运算n次,则n+x0的值为.5.(4分)已知是夹角为的两个单位向量,向量,若,则实数k的值为.6.(4分)某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96,106],样本中净重在区间[96,100)的产品个数是24,则样本中净重在区间[100,104)的产品个数是.7.(4分)一个圆锥的底面积为4π,且该圆锥的母线与底面所成的角为,则该圆锥的侧面积为.8.(4分)公差为d,各项均为正整数的等差数列{a n}中,若a1=1,a n=65,则n+d 的最小值等于.9.(4分)设双曲线x2﹣y2=6的左右顶点分别为A1、A2,P为双曲线右支上一点,且位于第一象限,直线P A1、P A2的斜率分别为k1、k2,则k1•k2的值为.10.(4分)设△ABC的三个内角A、B、C所对的边长依次为a、b、c,若△ABC 的面积为S,且S=a2﹣(b﹣c)2,则=.11.(4分)袋中装有7个大小相同的小球,每个小球上标记一个正整数号码,号码各不相同,且成等差数列,这7个号码的和为49,现从袋中任取两个小球,则这两个小球上的号码均小于7的概率为.12.(4分)设f(x)=ax2+bx,且1≤f(﹣1)≤2,2≤f(1)≤4,则f(2)的最大值为.13.(4分)已知△ABC的重心为O,AC=6,BC=7,AB=8,则=.14.(4分)设f(x)是定义在R上的函数,若f(0)=,且对任意的x∈R,满足f(x+2)﹣f(x)≤3x,f(x+4)﹣f(x+2)≥9×3x,则f(8)=.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)二项式展开式中x4的系数为()A.15B.﹣15C.6D.﹣616.(5分)在△ABC中,“”是“△ABC是钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.(5分)设函数,则函数f(x)的最小值是()A.﹣1B.0C.D.18.(5分)给出下列四个命题:①如果复数z满足|z+i|+|z﹣i|=2,则复数z在复平面的对应点的轨迹是椭圆.②若对任意的n∈N*,(a n+1﹣a n﹣1)(a n+1﹣2a n)=0恒成立,则数列{a n}是等差数列或等比数列.③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(﹣x)|恒成立,则f(x)是R上的奇函数或偶函数.④已知曲线和两定点E(﹣5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|﹣|PF||<6.上述命题中错误的个数是()A.1B.2C.3D.4三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,,AB=AC=2,AA1=6,点E、F分别在棱AA1、CC1上,且AE=C1F=2.(1)求三棱锥A1﹣B1C1F的体积;(2)求异面直线BE与A1F所成的角的大小.20.(14分)如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.(1)请你在下列两个小题中选择一题作答即可:①设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.②设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.21.(14分)已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过两点.(1)求椭圆E的方程;(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,直线MA与MB的斜率分别为k1、k2,求证:k1+k2=0.22.(16分)已知函数.(1)当a=1时,指出f(x)的单调递减区间和奇偶性(不需说明理由);(2)当a=1时,求函数y=f(2x)的零点;(3)若对任何x∈[0,1]不等式f(x)<0恒成立,求实数a的取值范围.23.(18分)过坐标原点O作倾斜角为60°的直线交抛物线Γ:y2=x于P1点,过P1点作倾斜角为120°的直线交x轴于Q1点,交Γ于P2点;过P2点作倾斜角为60°的直线交x轴于Q2点,交Γ于P3点;过P3点作倾斜角为120°的直线,交x轴于Q3点,交Γ于P4点;如此下去….又设线段OQ1,Q1Q2,Q2Q3,…,Q n﹣1Q n,…的长分别为a1,a2,a3,…,a n,…,数列{a n}的前n 项的和为S n.(1)求a1,a2;(2)求a n,S n;(3)设,数列{b n}的前n项和为T n,若正整数p,q,r,s 成等差数列,且p<q<r<s,试比较T p•T s与T q•T r的大小.2013年上海市闵行区高考数学二模试卷(文科)参考答案与试题解析一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.(4分)方程组的增广矩阵为.【考点】OC:几种特殊的矩阵变换.【专题】29:规律型.【分析】理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.【解答】解:由题意,方程组的增广矩阵为其系数及常数项构成的矩阵故方程组的增广矩阵是.故答案为:.【点评】本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.2.(4分)已知集合M={x|x2<4,x∈R},N={x|log2x>0},则集合M∩N={x|1<x<2}.【考点】1E:交集及其运算.【专题】11:计算题.【分析】通过求解二次不等式和对数不等式化简集合M与集合N,然后直接利用交集运算求解.【解答】解:由M={x|x2<4,x∈R}={x|﹣2<x<2},N={x|log2x>0}={x|x>1},则集合M∩N={x|﹣2<x<2}∩{x|x>1}={x|1<x<2}.故答案为{x|1<x<2}.【点评】本题考查了交集及其运算,考查了二次不等式和对数不等式的解法,是基础题.3.(4分)若,且为实数,则实数a的值为.【考点】A5:复数的运算;ON:二阶行列式与逆矩阵.【专题】11:计算题.【分析】根据题意求得=3﹣4i,再利用两个复数代数形式的乘除法法则化简,再根据为实数求得a的值.【解答】解:∵z1=a+2i ,=3﹣4i,∴===.再由为实数,可得6+4a=0,a=﹣,故答案为﹣.【点评】本题主要考查行列式的运算,两个复数代数形式的乘除法法则,属于基础题.4.(4分)用二分法研究方程x3+3x﹣1=0的近似解x=x0,借助计算器经过若干次运算得下表:运算次数1…456…解的范围(0,0.5)…(0.3125,0.375)(0.3125,0.34375)(0.3125,0.328125)…若精确到0.1,至少运算n次,则n+x0的值为 5.3.【考点】55:二分法的定义与应用.【专题】51:函数的性质及应用.【分析】区间长度要小于精度0.1,且区间端点对应的函数值的符号相反,满足此两个条件即可求出n和x0的值.【解答】解:根据运算得下表:运算1…456…次数解的范围(0,0.5)…(0.3125,0.375)(0.3125,0.34375)(0.3125,0.328125)…因为f(0.3125)<0,且f(0.34375>0,满足f(0.3125)×f(0.34375)<0,且区间长度:0.34375﹣0.3125=0.03125<0.1,∴n=5,x0=0.3,n+x0=5.3.故答案为:5.3.【点评】不断将区间(0,0.5)二等分时,每次都取端点函数值异号的区间,直到区间长度小于或等于题目所给的精度为止.5.(4分)已知是夹角为的两个单位向量,向量,若,则实数k 的值为.【考点】96:平行向量(共线);9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】由题意可得是平面向量的一个基底,再由平面内两个向量共线的条件可得,由此解得k的值.【解答】解:由题意可得=0,且是平面向量的一个基底.∵向量,且,∴,解得k=﹣,故答案为﹣.【点评】本题主要考查平面内两个向量共线的条件,基底的定义,属于中档题.6.(4分)某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间[96,106],样本中净重在区间[96,100)的产品个数是24,则样本中净重在区间[100,104)的产品个数是44.【考点】B8:频率分布直方图.【专题】27:图表型.【分析】根据频率直方图的意义,由样本中净重在[96,100)的产品个数是24可求样本容量,进而求得样本中净重在[100,104)的产品个数.【解答】解:由题意可知:样本中净重在[96,100)的产品的频率=(0.05+0.1)×2=0.3,∴样本容量==80,∴样本中净重在[100,104)的产品个数=(0.15+0.125)×2×80=44.故答案为:44.【点评】本题是对频率、频数灵活运用的综合考查.频率、频数的关系:频率=频数÷数据总和.7.(4分)一个圆锥的底面积为4π,且该圆锥的母线与底面所成的角为,则该圆锥的侧面积为8π.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】5F:空间位置关系与距离.【分析】利用圆锥的底面积为4π求出其底面半径,利用圆锥的母线与底面所成的角为求出母线长,最后利用圆锥的侧面积公式求出即可.【解答】解:依题意圆锥的底面积为4π,知底面半径r=2,又该圆锥的母线与底面所成的角为,故母线长l=2r=4,则由圆锥的侧面积公式得S=πrl=π×2×4=8π.故答案为:8π.【点评】此题主要考查了圆锥侧面面积的计算,熟练记忆圆锥的侧面积公式是解决问题的关键.8.(4分)公差为d,各项均为正整数的等差数列{a n}中,若a1=1,a n=65,则n+d 的最小值等于17.【考点】84:等差数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等差数列的通项公式即可得到,可得n+d=n+=,利用基本不等式即可得出.【解答】解:∵公差为d,各项均为正整数的等差数列{a n}中,a1=1,a n=65,∴d>0,n>1,1+(n﹣1)d=65,∴,∴n+d=n+==17,当且仅当,n>1,即n=9,d=8时取等号.因此n+d的最小值等于17.故答案为17.【点评】熟练掌握等差数列的通项公式、基本不等式的性质是解题的关键.9.(4分)设双曲线x2﹣y2=6的左右顶点分别为A1、A2,P为双曲线右支上一点,且位于第一象限,直线P A1、P A2的斜率分别为k1、k2,则k1•k2的值为1.【考点】KC:双曲线的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设点P(x0,y0),则点P的坐标满足双曲线的方程.利用双曲线x2﹣y2=6的方程即可得到顶点A1、A2的坐标,利用斜率计算公式即可得到直线P A1、P A2的斜率并相乘得k1•k2=即可证明.【解答】解:设点P(x0,y0),则.由双曲线x2﹣y2=6得a2=6,解得.∴,.∴k1•k2===1.故答案为1.【点评】熟练掌握双曲线的方程及其性质、斜率计算公式是解题的关键.10.(4分)设△ABC的三个内角A、B、C所对的边长依次为a、b、c,若△ABC 的面积为S,且S=a2﹣(b﹣c)2,则=4.【考点】HR:余弦定理.【专题】58:解三角形.【分析】根据S=a2﹣(b﹣c)2 =bc•sin A,把余弦定理代入化简可得4﹣4cos A=sin A,由此求得的值.【解答】解:∵△ABC的面积为S,且S=a2﹣(b﹣c)2 =a2﹣b2﹣c2+2bc=bc•sin A,∴由余弦定理可得﹣2bc•cos A+2bc=bc•sin A,∴4﹣4cos A=sin A,∴==4,故答案为4.【点评】本题主要考查三角形的面积公式,余弦定理的应用,属于中档题.11.(4分)袋中装有7个大小相同的小球,每个小球上标记一个正整数号码,号码各不相同,且成等差数列,这7个号码的和为49,现从袋中任取两个小球,则这两个小球上的号码均小于7的概率为.【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】由题意可得该等差数列为1,3,5,7,9,11,13,总的方法种数为=21,而符合条件的共有=3种,代入概率公式可得答案.【解答】解:由题意设等差数列为{a n},可得其和S7===7a4=49,故a4=7,又该数列为整数,故可得该数列为1,3,5,7,9,11,13,故任取两个球的方法种数为=21,两个小球上的号码均小于7,只需从1,3,5三个号码中任取两个即可,故共有=3种,故所求概率为=故答案为:【点评】本题考查古典概型及计算公式,由题意得出该数列是解决问题的关键,属基础题.12.(4分)设f(x)=ax2+bx,且1≤f(﹣1)≤2,2≤f(1)≤4,则f(2)的最大值为14.【考点】3T:函数的值;7C:简单线性规划.【专题】11:计算题.【分析】通过已知条件求出a、b满足的不等式,求出f(2)的表达式,利用不等式的基本性质求解即可.【解答】解:因为f(x)=ax2+bx,且1≤f(﹣1)≤2,2≤f(1)≤4,所以1≤a﹣b≤2,…①,2≤a+b≤4,…②,由②×3+①可得:5≤4a+2b≤14又f(2)=4a+2b,所以f(2)的最大值为:14.故答案为:14.【点评】本题考查不等式的基本性质的应用,也可以利用线性规划解答本题,由于a、b是互相影响与制约的,不可以求出a、b的范围来解答,会使范围扩大,是易错点.13.(4分)已知△ABC的重心为O,AC=6,BC=7,AB=8,则=.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用重心的性质和向量的运算法则可得可得,再利用数量积的运算性质即可得出.【解答】解:设D为边BC的中点,如图所示,则.根据重心的性质可得==.∴====.故答案为.【点评】熟练掌握重心的性质和向量的运算法则、数量积的运算性质是解题的关键.14.(4分)设f(x)是定义在R上的函数,若f(0)=,且对任意的x∈R,满足f(x+2)﹣f(x)≤3x,f(x+4)﹣f(x+2)≥9×3x,则f(8)=.【考点】3R:函数恒成立问题.【专题】51:函数的性质及应用.【分析】先由题目中的两个不等式推导出f(x+4)﹣f(x+2)的值,然后再用累加法和等比数列求和公式即可求解【解答】解:∵f(x+2)﹣f(x)≤3x,∴f(x+4)﹣f(x+2)≤3x+2=9•3x,又f(x+4)﹣f(x+2)≥9×3x,∴f(x+4)﹣f(x+2)=9×3x,=3x+2,∴f(2)﹣f(0)=30,f(4)﹣f(2)=32,f(6)﹣f(4)=34,f(8)﹣f(6)=36,以上各式相加得,f(8)﹣f(0)=,∴f(8)=f(0)+=+=,故答案为:.【点评】本题及考察了抽象函数的相关知识,又考察了数列中的累加法和等比数列求前n项和公式,注重知识点的交汇和灵活运用.属难题二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.(5分)二项式展开式中x4的系数为()A.15B.﹣15C.6D.﹣6【考点】DA:二项式定理.【专题】11:计算题.【分析】由题可得,展开式的通项为T r+1==令6﹣2r=4可求r,代入即可求解系数【解答】解:由题可得,展开式的通项为T r+1==令6﹣2r=4可得r=1此时x4=﹣6x4,即系数为﹣6故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.16.(5分)在△ABC中,“”是“△ABC是钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题.【分析】由”可得“△ABC是钝角三角形”,而“△ABC是钝角三角形”推不出角A为钝角,由充要条件的定义可得答案.【解答】解:由题意可知若“”则必有角A为钝角,可得“△ABC是钝角三角形”,而“△ABC是钝角三角形”不一定角A为钝角,可能角B或C为钝角,故推不出角A为钝角,故可得“”是“△ABC是钝角三角形”的充分不必要条件,故选:A.【点评】本题考查充要条件的判断,涉及三角形形状的判断和向量的数量积问题,属基础题.17.(5分)设函数,则函数f(x)的最小值是()A.﹣1B.0C.D.【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】根据x的范围把分段函数分段,配方后求出函数在两个区间段内最小值,则函数在整个定义域内的最小值可求.【解答】解:由,当时,0≤sin x≤1,f(x)=sin x+cos2x=﹣2sin2x+sin x+1=.此时当sin x=1时f(x)有最小值为;当时,﹣1≤sin x<0,f(x)=﹣sin x+cos2x=﹣2sin2x﹣sin x+1=.此时当sin x=﹣1时f(x)有最小值.综上,函数f(x)的最小值是0.故选:B.【点评】本题考查了函数的定义域与值域,考查了分段函数值域的求法,训练了利用配方法求函数的值域,分段函数的值域是各区间段内值域的并集,此题是基础题.18.(5分)给出下列四个命题:①如果复数z满足|z+i|+|z﹣i|=2,则复数z在复平面的对应点的轨迹是椭圆.②若对任意的n∈N*,(a n+1﹣a n﹣1)(a n+1﹣2a n)=0恒成立,则数列{a n}是等差数列或等比数列.③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(﹣x)|恒成立,则f(x)是R上的奇函数或偶函数.④已知曲线和两定点E(﹣5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|﹣|PF||<6.上述命题中错误的个数是()A.1B.2C.3D.4【考点】2K:命题的真假判断与应用.【专题】21:阅读型.【分析】①依据|Z+i|+|Z﹣i|=2的几何意义得到对应点的轨迹是线段;②由于对任意的n∈N*,(a n+1﹣a n﹣1)(a n+1﹣2a n)=0恒成立,则由两因式分别为0,可求出数列{a n}的递推公式,继而可得到数列是等差数列或等比数列;③由于对任意的x∈R,|f(x)|=|f(﹣x)|恒成立,则f(x)=f(﹣x)或f(x)=﹣f(﹣x),则可判断函数的奇偶性;④若设P(x,y)(x>0,y≥0),则可将曲线化简为(x>0,y≥0)再画出图形,找到特殊点,当y=0时,即可求出||PE|﹣|PF||的值,继而判断正误.【解答】解:①|Z+i|表示复平面上,点Z与点﹣i的距离,|Z﹣i|表示复平面上,点Z与点i的距离,∴|Z+i|+|Z﹣i|=2,表示复平面上,点Z与点i、﹣i的距离之和等于2.则对应点的轨迹是线段,故①错;②由于对任意的n∈N*,(a n+1﹣a n﹣1)(a n+1﹣2a n)=0恒成立,则(a n+1﹣a n﹣1)=0或(a n+1﹣2a n)=0,所以a n+1﹣a n=1或a n+1=2a n,则数列{a n}是等差数列或等比数列,故②正确;③由于对任意的x∈R,|f(x)|=|f(﹣x)|恒成立,则f(x)=f(﹣x)或f(x)=﹣f(﹣x),则f(x)是R上的偶函数或奇函数,故③正确;④设P(x,y)(x>0,y≥0)是C上的动点曲线,则(x>0,y≥0)又由于两定点E(﹣5,0)、F(5,0),则P、E、F三点位置如图示.当y=0时,P点与Q点重合,即||PE|﹣|PF||=||QE|﹣|QF||=6,故④错误.故选:B.【点评】本题考查的知识点是,判断命题真假,属于基础题.我们需对四个结论逐一进行判断,可以得到正确的结论.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,,AB=AC=2,AA1=6,点E、F分别在棱AA1、CC1上,且AE=C1F=2.(1)求三棱锥A1﹣B1C1F的体积;(2)求异面直线BE与A1F所成的角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(1)利用直三棱柱ABC﹣A1B1C1中的性质,及三棱锥A1﹣B1C1F的体积==即可得出.(2)连接EC,∵A1E∥FC,A1E=FC=4,可得四边形A1ECF是平行四边形,利用其性质可得A1C∥EC,可得∠BEC是异面直线A1F与BE所成的角或其补角,在△BCE中求出即可.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,FC1⊥平面A1B1C1,故FC1=2是三棱锥A1﹣B1C1F的高.而直角三角形的===2.∴三棱锥A1﹣B1C1F的体积===.(2)连接EC,∵A1E∥FC,A1E=FC=4,∴四边形A1ECF是平行四边形,∴A1C∥EC,∴∠BEC是异面直线A1F与BE所成的角或其补角.∵AE⊥AB,AE⊥AC,AC⊥AB,AE=AB=AC=2,∴EC=EB=BC=2.∴△BCE是等边三角形.∴∠BEC=60°,即为异面直线BE与A1F所成的角.【点评】熟练利用直三棱柱的性质、三棱锥的体积及等体积变形、平行四边形的判定及性质、异面直线所成的角是解题的关键.20.(14分)如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.(1)请你在下列两个小题中选择一题作答即可:①设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.②设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.【考点】5C:根据实际问题选择函数类型;H4:正弦函数的定义域和值域.【专题】51:函数的性质及应用.【分析】(1)①连接OC,设∠BOC=θ,矩形ABCD的面积为S,则S=AB•BC=2OB •BC=900sin2θ,由三角函数的知识,得出S的最大值以及对应BC的值.②连接OC,设BC=x,矩形ABCD的面积为S;则S=AB•BC=2x=2,由基本不等式可得S的最大值以及对应的x的取值;(2)根据(1)问的解答,即可得出怎样截取才能使截得的矩形ABCD的面积最大及最大值.【解答】解:如图所示,(1)①连接OC,设∠BOC=θ,矩形ABCD的面积为S,则BC=20sinθ,OB=20cos θ(其中0<θ<);∴S=AB•BC=2OB•BC=400sin2θ,且当sin2θ=1,即θ=时,S取最大值为400,此时BC=10;所以,取BC=10时,矩形ABCD的面积最大,最大值为400cm2.②连接OC,设BC=x,矩形ABCD的面积为S;则AB=2 (其中0<x<20),∴S=2x=2 ≤x2+(400﹣x2)=400,当且仅当x2=400﹣x2,即x=10 时,S取最大值400;所以,取BC=10 cm时,矩形ABCD的面积最大,最大值为400cm2.(2)由(1)知,取∠BOC=时,得到C点,从而截得的矩形ABCD,此时截得的矩形ABCD的面积最大,最大值为400cm2.【点评】本题综合考查了二次函数、三角函数的最值问题,这里应用了基本不等式的方法求出了函数的最值.21.(14分)已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过两点.(1)求椭圆E的方程;(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,直线MA与MB的斜率分别为k1、k2,求证:k1+k2=0.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)设椭圆E的方程为mx2+ny2=1(m>0,n>0,m≠n),把点M、N 的坐标代入解出即可;(2)利用斜截式写出直线l的方程,与椭圆的方程联立得到根与系数的关系,表示出直线MA与MB的斜率分别为k1、k2,即可证明:k1+k2=0.【解答】解:(1)设椭圆E的方程为mx2+ny2=1(m>0,n>0,m≠n)将代入椭圆E的方程,得解得,所以椭圆E的方程为.(2)∵直线l平行于OM,且在y轴上的截距为b,又,∴直线l的方程为.由得x2+2bx+2b2﹣4=0,设A(x1,y1)、B(x2,y2),则.又,,故=.又,所以上式分子==故k1+k2=0.【点评】熟练掌握椭圆的标准方程、把直线与椭圆相交问题转化为一元二次方程的根与系数的关系、斜率计算公式是解题的关键.本题需要较强的计算能力.22.(16分)已知函数.(1)当a=1时,指出f(x)的单调递减区间和奇偶性(不需说明理由);(2)当a=1时,求函数y=f(2x)的零点;(3)若对任何x∈[0,1]不等式f(x)<0恒成立,求实数a的取值范围.【考点】3R:函数恒成立问题;51:函数的零点;6B:利用导数研究函数的单调性.【专题】53:导数的综合应用.【分析】(1)当a=1时,利用分段函数的图象得出函数的单调递减区间和函数f (x)既不是奇函数也不是偶函数;(2)当a=1时,,欲求函数y=f(2x)的零点,即求对应方程的根.由f(2x)=0解得x的值即可;(3)当x=0时,a取任意实数,不等式f(x)<0恒成立,故只需考虑x∈(0,1],此时原不等式变为,即.再构造函数,研究其最值即可得出实数a的取值范围.【解答】解:(1)当a=1时,函数的单调递减区间为…(2分)函数f(x)既不是奇函数也不是偶函数.…(2分)(2)当a=1时,,由f(2x)=0得…(2分)即或…(2分)解得所以或x=﹣1.…(2分)(3)当x=0时,a取任意实数,不等式f(x)<0恒成立,故只需考虑x∈(0,1],此时原不等式变为即…(2分)故又函数在(0,1]上单调递增,∴…(2分)函数在上单调递减,在上单调递增,∴;所以,即实数a的取值范围是.…(2分)【点评】本题以分段函数为载体,考查函数的奇偶性单调性、恒成立等问题,解题的关键是等价转化,构造新函数.23.(18分)过坐标原点O作倾斜角为60°的直线交抛物线Γ:y2=x于P1点,过P1点作倾斜角为120°的直线交x轴于Q1点,交Γ于P2点;过P2点作倾斜角为60°的直线交x轴于Q2点,交Γ于P3点;过P3点作倾斜角为120°的直线,交x轴于Q3点,交Γ于P4点;如此下去….又设线段OQ1,Q1Q2,Q2Q3,…,Q n﹣1Q n,…的长分别为a1,a2,a3,…,a n,…,数列{a n}的前n 项的和为S n.(1)求a1,a2;(2)求a n,S n;(3)设,数列{b n}的前n项和为T n,若正整数p,q,r,s 成等差数列,且p<q<r<s,试比较T p•T s与T q•T r的大小.【考点】8E:数列的求和;8O:数列与解析几何的综合.【专题】11:计算题;15:综合题;54:等差数列与等比数列;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据等边三角形的性质,算出点P1,代入抛物线求得,同样的方法可算出;(S n﹣1,0)建立直线Q n﹣1P n的方程,与抛物线方程消去x得关于(2)由点Q n﹣1|y|的方程,解出|y|关于S n的表示式,根据等边三角形性质和三角函数定义加以计算,化简整理得,用n+1代替n得到,将两式作差整理可得,从而得到{a n}是以为首项、为公差的等差数列,再用等差数列通项与求和公式可得a n、S n的表达式;(3)由(2)得{b n}是公比、首项的正项等比数列.因此根据等比数列的求和公式,将T p•T s与T q•T r作差,结合正整数p,q,r,s成等差数列且p<q<r<s,化简整理可得T p•T s﹣T q•T r=,讨论所得结果的可得T p•T s﹣T q•T r<0,可得必定有T p•T s<T q•T r对任意成等差数列的正整数p、q、r、s且p<q<r<s都成立,得到本题答案.【解答】解:(1)如图,由△OQ1P1是边长为a1的等边三角形,得点P1的坐标为,又∵P1在抛物线y2=x上,∴,得…(2分)同理根据P2在抛物线y2=x上,可得…(4分)的坐标为(a1+a2+a3+…+a n﹣1,0),即点(S n﹣1,0)(点(2)如图,因为点Q n﹣1Q0与原点重合,S0=0),所以直线Q nP n的方程为或,﹣1因此,点P n的坐标满足消去x得,所以…(7分)又,故从而…①由①有…②②﹣①得即(a n+1+a n)(3a n+1﹣3a n﹣2)=0,又a n>0,于是所以{a n}是以为首项、为公差的等差数列,由此可得:…(10分)(3)∵,∴数列{b n}是正项等比数列,且公比,首项,∵正整数p,q,r,s成等差数列,且p<q<r<s,设其公差为d,则d为正整数,∴q=p+d,r=p+2d,s=p+3d则,,,…(12分)T p•T s﹣T q•T r==…(14分)而==…(16分)由于a>0且a≠1,可得,又∵d为正整数,∴与同号,因此,,可得T p•T s<T q•T r.综上所述,可得若正整数p,q,r,s成等差数列,且p<q<r<s,必定有T p•T s <T q•T r.…(18分)Q n P n 【点评】本题给出抛物线中的等边三角形,求按图中作出的等边三角形Q n﹣1的边长a n的表达式,并设,数列{b n}的前n项和为T n,在成等差数列的正整数p、q、r、s满足且p<q<r<s的情况下讨论T p•T s与T q•T r的大小关系.着重考查了抛物线的几何性质、直线与抛物线的位置关系、不等式的性质和等差等比数列的通项与求和公式等知识,属于难题.、。

上海市16区2013届高三数学 二模试题分类汇编2 函数及其应用 理

上海市16区2013届高三数学 二模试题分类汇编2 函数及其应用 理

上海2013届高三理科最新数学试题精选(13份含16区二模)分类汇编2:函数及其应用一、选择题1 .(上海徐汇、松江、金山区2013年高考二模理科数学试题)已知函数()1,00,01,0x f x x x >⎧⎪==⎨⎪-<⎩,设2()()F x x f x =⋅,则()F x 是 ( )A .奇函数,在(,)-∞+∞上单调递减B .奇函数,在(,)-∞+∞上单调递增C .偶函数,在(),0-∞上递减,在()0,+∞上递增D .偶函数,在(),0-∞上递增,在()0,+∞上递减2 .(四区(静安杨浦青浦宝山)联考2012学年度第二学期高三(理))已知集合{})(),(x f y y x M ==,若对于任意M y x ∈),(11,存在M y x ∈),(22,使得02121=+y y x x 成立,则称集合M 是“Ω集合”. 给出下列4个集合: ① ⎭⎬⎫⎩⎨⎧==x y y x M 1),( ②{}2),(-==xe y y x M ③{}x y y x M cos ),(== ④ {}x y y x M ln ),(== 其中所有“Ω集合”的序号是 ( )A .②③ .B .③④ .C .①②④.D .①③④.3 .(上海市黄浦区2013年高考二模理科数学试题)函数21()1(2)2f x x x =+<-的反函数是( )A.3)y x =≤< B.3)y x => C.3)y x =≤<D.3)y x =>4 .(上海市长宁、嘉定区2013年高考二模数学(理)试题 )(理)已知0>a 且1≠a ,函数)(log )(2b x x x f a ++=在区间),(+∞-∞上既是奇函数又是增函数,则函数b x x g a -=||log )(的图象是5 .(上海市八校2013届高三下学期联合调研考试数学(理)试题)受全球金融危机和国家应对金融危机政策的影响,某公司2012年一年内每天的利润()Q t (万元)与时间t (天)的关系如图所示,已知该公司2012年的每天平均利润为35万元,令()C t (万元)表示时间段[0,]t 内该公司的平均利润,用图像描述()C t 与t之间的函数关系中较准确的是6 .(2013年上海市高三七校联考(理))若()sin f x x =在区间()()a b a b <,上单调递减,则()x a b ∈,时,( )A .sin 0x <B .cos 0x <C .tan 0x <D .tan 0x >7 .(2013届浦东二模卷理科题)已知以4为周期的函数(](]⎪⎩⎪⎨⎧∈--∈-=3,1,2cos1,1,1)(2x x x x m x f π,其中0>m .若方程3)(x x f =恰有5个实数解,则m 的取值范围为)(A 8)3 )(B )(C 48,33⎛⎫⎪⎝⎭)(D 4(3.二、填空题8 .(上海徐汇、松江、金山区2013年高考二模理科数学试题)设函数()f x x x =,将()f x 向左平移a (0)a >个单位得到函数()g x ,将()f x 向上平移a (0)a >个单位得到函数()h x ,若()g x 的图像恒在()h x 的图像的上方,则正数a 的取值范围为_____________.9 .(上海徐汇、松江、金山区2013年高考二模理科数学试题)若函数()(0,1)x f x a a a =>≠的反函数图像过点(2,1)-,则a =____________.10.(四区(静安杨浦青浦宝山)联考2012学年度第二学期高三(理))已知函数)(x f y =和函数)1(log 2+=x y 的图像关于直线0=-y x 对称,则函数)(x f y =的解析式为_____________.11.(四区(静安杨浦青浦宝山)联考2012学年度第二学期高三(理))若关于y x 、的二元一次方程组⎩⎨⎧=-+-=+-04)12(03y x m y mx 有唯一一组解,则实数m 的取值范围是_____________. 12.(上海市闸北区2013届高三第二学期期中考试数学(理)试卷)某商场在节日期间举行促销活动,规定:(1)若所购商品标价不超过200元,则不给予优惠;(2)若所购商品标价超过200元但不超过500元,则超过200元的部分给予9折优惠; (3)若所购商品标价超过500元,其500元内(含500元)的部分按第(2)条给予优惠,超过500元的部分给予8折优惠.某人来该商场购买一件家用电器共节省330元,则该件家电在商场标价为_____. 13.(上海市闸北区2013届高三第二学期期中考试数学(理)试卷)设)(x f y =为R 上的奇函数,)(x g y =为R 上的偶函数,且)1()(+=x f x g ,2)0(=g .则=)(x f ________.(只需写出一个满足条件的函数解析式即可)14.(上海市十二校2013届高三第二学期联考数学(理)试题 )函数xxa y x=(01)a <<的图像的大致形状是 ( )15.(上海市十二校2013届高三第二学期联考数学(理)试题 )下列各对函数中表示相同函数的是 ( ) A.①③④ B.④⑤ C.③⑤ D.①④①()f x =2x,g (x )=x ;②()f x =x ,g (x )=xx 2;③()f x =24x -,g (x )=22x x -+④ ()f x =x , g (x )=33x ; ⑤ ()f x =|1|x +,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩16.(上海市十二校2013届高三第二学期联考数学(理)试题 )幂函数αx y =,当α取不同的正数时,在区间[]1,0上它们的图像是一族美丽的曲线(如图).设点)1,0(),0,1(B A ,连接AB,线段AB 恰好被其中的两个幂函数βαx y x y ==,的图像三等分,即有.NA MN BM ==那么,αβ=_________.17.(上海市十二校2013届高三第二学期联考数学(理)试题 )已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若函数()()F x f x m =-(0)m >在区间[]8,8-上有四个不同的零点1234,,,x x x x ,则1234_________.x x x x +++=18.(上海市十二校2013届高三第二学期联考数学(理)试题 )设函数21(0)()2(0)x x f x x x ⎧+≥=⎨<⎩,那么1(10)f -=________. 19.(上海市普陀区2013届高三第二学期(二模)质量调研数学(理)试题)若点)2,4(在NMyB A x幂函数)(x f 的图像上,则函数)(x f 的反函数)(1x f -=________.20.(上海市普陀区2013届高三第二学期(二模)质量调研数学(理)试题)函数2log (1)y x =-的定义域为_________.21.(上海市黄浦区2013年高考二模理科数学试题)已知1()4f x x=-,若存在区间1[,](,)3a b ⊆+∞,使得{}(),[,][,]y y f x x a b ma mb =⊆=,则实数m 的取值范围是___________.22.(上海市黄浦区2013年高考二模理科数学试题)设a 为常数,函数2()43f x x x =-+,若()f x a +在[0,)+∞上是增函数,则a 的取值范围是______. 23.(上海市黄浦区2013年高考二模理科数学试题)函数()1lg(42)f x x x =++-的定义域为___________.24.(上海市虹口区2013年高考二模数学(理)试题 )已知函数aax x a x a x x f 2222)1()(22-++--+=的定义域是使得解析式有意义的x 的集合,如果对于定义域内的任意实数x ,函数值均为正,则实数a 的取值范围是________________. 25.(上海市虹口区2013年高考二模数学(理)试题 )函数1)12()(+-=x k x f 在R 上单调递减,则k 的取值范围是__________. 26.(上海市奉贤区2013年高考二模数学(理)试题 )如图放置的等腰直角三角形ABC 薄片(∠ACB =90°,AC =2)沿x 轴滚动,设顶点A (x ,y )的轨迹方程是y =f (x ),当∈x [0,224+]时y =f (x )= _____________27.(上海市奉贤区2013年高考二模数学(理)试题 )设()f x 是定义在R 上以2为周期的偶函数,已知(0,1)x ∈,()()12log 1f x x =-,则函数()f x 在(1,2) 上的解析式是____________ 28.(上海市奉贤区2013年高考二模数学(理)试题 )若实数t 满足f (t )=-t ,则称t 是函数f (x )的一个次不动点.设函数()x x f ln =与反函数的所有次不动点之和为m ,则m =______29.(上海市奉贤区2013年高考二模数学(理)试题 )已知直线y t =与函数()3x f x =及函)14(图数()43x g x =⋅的图像分别相交于A 、B 两点,则A 、B 两点之间的距离为________30.(上海市长宁、嘉定区2013年高考二模数学(理)试题 )(理)函数1sin )1()(22+++=x xx x f 的最大值和最小值分别为m M ,,则=+m M ______.31.(上海市长宁、嘉定区2013年高考二模数学(理)试题 )(理)设定义域为R 的函数⎪⎩⎪⎨⎧=≠-=)1(1)1(|1|1)(x x x x f ,若关于x 的方程)()(2=++c x bf x f 有三个不同的实数解321,,x x x ,则232221x x x ++=____________. 32.(上海市八校2013届高三下学期联合调研考试数学(理)试题))(x f 为R 上的偶函数,)(x g 为R上的奇函数且过()3,1-,)1()(-=x f x g ,则=+)2013()2012(f f _______________.33.(上海市八校2013届高三下学期联合调研考试数学(理)试题)已知(1)22x f x +=-,那么1(2)f -的值是_______.34.(上海市八校2013届高三下学期联合调研考试数学(理)试题)函数0.5log y x =的定义域为_________.35.(2013年上海市高三七校联考(理))函数()M f x 的定义域为R ,且定义如下: 1() M x x M f x x M x∈⎧⎪=⎨∉⎪⎩(其中M 是实数集R 的非空真子集),若{||1|2} {|11}A x x B x x =-≤=-≤<,,则函数2()1()()()1A B A B f x F x f x f x +=++的值域为_________.36.(2013年上海市高三七校联考(理))已知1122arcsin ()22x x x xxf x +--++=+的最大值和最小值分别是M 和m ,则M m +=____.37.(2013年上海市高三七校联考(理))若函数()8xf x =的图像经过点1()3a ,,则1(2)f a -+=________.38.(2013届浦东二模卷理科题)如果M 是函数)(x f y =图像上的点,N 是函数)(x g y =图像上的点,且N M ,两点之间的距离MN 能取到最小值d ,那么将d 称为函数)(x f y =与)(x g y =之间的距离.按这个定义,函数x x f =)(和34)(2-+-=x x x g 之间的距离是____________.39.(2013届浦东二模卷理科题)函数x x f 2log 1)(+=与)(x g y =的图像关于直线xy =对称,则=)3(g _______.40.(2013届闵行高三二模模拟试卷(数学)理科)设()f x 是定义在R 上的函数,若81)0(=f ,且对任意的x ∈R,满足(2)()3,(4)()103x x f x f x f x f x +-≤+-≥⨯,则)2014(f =_______________.41.(2013届闵行高三二模模拟试卷(数学)理科)用二分法研究方程3310x x +-=的近似解0x x =,借助计算器经过若干次运算得下表:若精确到0.1,至少运算n 次,则0n x +的值为_________________.三、解答题 42.(上海市普陀区2013届高三第二学期(二模)质量调研数学(理)试题)本大题共有2小题,第1小题满分6分,第2小题满分8分.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F +=(1)求函数)(x F 的定义域D 及其零点;(2)若关于x 的方程0)(=-m x F 在区间)1,0[内仅有一解,求实数m 的取值范围.43.(上海市奉贤区2013年高考二模数学(理)试题 )三阶行列式xbx x D 31302502-=,元素b ()R b ∈的代数余子式为()x H ,(){}0≤=x H x P , (1) 求集合P ;(2)函数()()22log 22f x ax x =-+的定义域为,Q 若,P Q ⋂≠∅求实数a 的取值范围; 44.(上海市长宁、嘉定区2013年高考二模数学(理)试题 )(本题满分14分,第1小题满分4分,第2小题满分10分)设函数)10()1()(≠>--=-a a a k a x f xx且是定义域为R 的奇函数.(1)求k 的值; (2)(理)若23)1(=f ,且)(2)(22x f m a a xg x x ⋅-+=-在),1[∞+上的最小值为2-,求m 的值. 45.(2013年上海市高三七校联考(理))本题共有3小题,第(1)小题4分,第(2)小题4分,第(3)小题8分.已知函数2()2(0)f x x ax a =->.(1)当2a =时,解关于x 的不等式3()5f x -<<;(2)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0 ()]M a ,上,不等式|()|5f x ≤恒成立. 求出()M a 的解析式;(3)函数()y f x =在[ 2]t t +,的最大值为0,最小值是4-,求实数a 和t 的值. 46.(2013届浦东二模卷理科题)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.设函数()()||f x x a x b =-+(1)当2,3a b ==,画出函数()f x 的图像,并求出函数()y f x =的零点; (2)设2b =-,且对任意[1,1]x ∈-,()0f x <恒成立,求实数a 的取值范围.47.(2013届闵行高三二模模拟试卷(数学)理科)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知()||,=-+∈R f x x x a b x .(1)当1,0a b ==时,判断()f x 的奇偶性,并说明理由; (2)当1,1a b ==时,若5(2)4xf =,求x 的值; (3)若0b <,且对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围. 解:48 .(四区(静安杨浦青浦宝山)联考2012学年度第二学期高三(理))本题共有2小题,第1小题满分7分,第2小题满分7分 . 已知函数a x x f +=2)(. (1)若12)()(++=bx x f x F 是偶函数,在定义域上ax x F ≥)(恒成立,求实数a 的取值范围;(2)当1=a 时,令)())(()(x f x f f x λϕ-=,问是否存在实数λ,使)(x ϕ在()1,-∞-上是减函数,在()0,1-上是增函数?如果存在,求出λ的值;如果不存在,请说明理由.49 .(上海市八校2013届高三下学期联合调研考试数学(理)试题)(本题满分16分;第(1)小题4分,第(2)小题6分,第(3)小题6分)已知下表为函数d cx ax x f ++=3)(部分自变量取值及其对应函数值,为了便于研究,根据表中数据,研究该函数的一些性质: (1) 判断)(x f 的奇偶性,并证明;(2) 判断)(x f 在[]6.0,55.0上是否存在零点,并说明理由; (3) 判断a 的符号,并证明)(x f 在(]35.0,-∞-是单调递减函数.50 .(上海市虹口区2013年高考二模数学(理)试题 )定义域为D 的函数)(x f ,如果对于区间I 内)(D I ⊆的任意两个数1x 、2x 都有)]()([21)2(2121x f x f x x f +≥+成立,则称此函数在区间I 上是“凸函数”.(1)判断函数x x f lg )(=在+R 上是否是“凸函数”,并证明你的结论; (2)如果函数xax x f +=2)(在]2,1[上是“凸函数”,求实数a 的取值范围; (3)对于区间],[d c 上的“凸函数”)(x f ,在],[d c 上任取1x ,2x ,3x ,,n x .① 证明: 当k n 2=(*∈N k )时,)]()()([1)(2121n n x f x f x f nn x x x f +++≥+++ 成立;② 请再选一个与①不同的且大于1的整数n , 证明:)]()()([1)(2121n n x f x f x f nn x x x f +++≥+++ 也成立.上海2013届高三理科数学最新试题精选(13份含16区二模)分类汇编2:函数及其应用参考答案一、选择题 1. B 2. A3. D4. A5. D6. B7. B 二、填空题8. 2a >9.1210. 12-=x y ;11. 31≠m ; 12. 200013. x x f 2sin 2)(π= 14. D 15. B 16. 1 17. 8- 18. 3 19. =-)(1x f2x (0≥x )20. }2|{≥x x 21. []3,422. [)2,+∞23. [)1,2- 24. 07≤<-a 或2=a ; 25. )21,(∞-; 26. ()()()()()⎪⎩⎪⎨⎧+≤≤--≤≤--=224248202822x x x x x f (每空2分)27. ()1log 21-=x y28. 0;29. 4log 3; 30. 2 31. 5 32. 3- 33. 3 34. (0,1]35. 21[1]13, 36. 4 37.2338.127- 39. 440. 832014.41. 5.3; 三、解答题42.解:(1))()(2)(x g x f x F +=xx aa -++=11log )1(log 2(0>a 且1≠a ) ⎩⎨⎧>->+0101x x ,解得11<<-x ,所以函数)(x F 的定义域为)1,1(- 令)(x F 0=,则011log )1(log 2=-++xx aa (*)方程变为 )1(log )1(log 2x x a a -=+,x x -=+1)1(2,即032=+x x解得01=x ,32-=x经检验3-=x 是(*)的增根,所以方程(*)的解为0=x 所以函数)(x F 的零点为0 (2)xx m aa -++=11log )1(log 2(10<≤x )=m )4141(log 112log 2--+-=-++x x x x x a a4141--+-=xx a m 设]1,0(1∈=-t x ,则函数tt y 4+=在区间]1,0(上是减函数 当1=t 时,此时1=x ,5min =y ,所以1≥ma①若1>a ,则0≥m ,方程有解; ②若10<<a ,则0≤m ,方程有解 43.解:(1)、()xx x x H 1252-+==2522+-x x⎭⎬⎫⎩⎨⎧≤≤=221x x P(2)、若,P Q ⋂≠∅则说明在1,22⎡⎤⎢⎥⎣⎦上至少存在一个x 值,使不等式2220ax x -+>成立,即在1,22⎡⎤⎢⎥⎣⎦上至少存在一个x 值,使222a x x >-成立,令222,u x x =-则只需min u a >即可 又22221112.22u x x x ⎛⎫=-=--+ ⎪⎝⎭当1,22x ⎡⎤∈⎢⎥⎣⎦时,11,2,2x ⎡⎤∈⎢⎥⎣⎦4,21,4min -=⎥⎦⎤⎢⎣⎡-∈u u 从而4min -=u由⑴知, min 4,u =- 4.a ∴>-44. (本题满分14分,第1小题满分4分,第2小题满分10分)解:(1)由题意,对任意R ∈x ,)()(x f x f -=-, 即x x x xa k a a k a---+-=--)1()1(,即0)())(1(=+-+---x x xxa a aa k ,0))(2(=+--x x a a k ,因为x 为任意实数,所以2=k解法二:因为)(x f 是定义域为R 的奇函数,所以0)0(=f ,即0)1(1=--k ,2=k .当2=k 时,xxa a x f --=)(,)()(x f a ax f x x-=-=--,)(x f 是奇函数.所以k 的值为2 (2)由(1)xxa a x f --=)(,因为23)1(=f ,所以231=-a a , 解得2=a . 故x xx f --=22)(,)22(222)(22x x x xm x g ----+=,令x x t --=22,则222222+=+-t x x ,由),1[∞+∈x ,得⎪⎭⎫⎢⎣⎡∞+∈,23t , 所以2222)(22)()(m m t mt t t h x g -+-=+-==,⎪⎭⎫⎢⎣⎡∞+∈,23t 当23<m 时,)(t h 在⎪⎭⎫⎢⎣⎡∞+,23上是增函数,则223-=⎪⎭⎫⎝⎛h ,22349-=+-m , 解得1225=m (舍去) 当23≥m 时,则2)(-=m f ,222-=-m ,解得2=m ,或2-=m (舍去). 综上,m 的值是245.解:(1)2a =时,{224503()5430x x f x x x --<-<<⇔-+>①②由①得,15x -<<,由②得,1x <或3x >,∴(1 1)(3 5)-,,为所求(2)∵0a >,当25a -<-,即a ,()M a a =当250a -≤-<,即0a <,()M a a =∴()a a M a a a ⎧=⎨<⎩(3)22()()(2)f x x a a t x t =--≤≤+,显然(0)(2)0f f a ==①若0t =,则1a t ≥+,且min [()]()4f x f a ==-,或min [()](2)4f x f ==-, 当2()4f a a =-=-时,2a =±,2a =-不合题意,舍去 当2(2)2224f a =-⨯=-时,2a =②若22t a +=,则1a t ≤+,且min [()]()4f x f a ==-,或min [()](22)4f x f a =-=-,当2()4f a a =-=-时,2a =±,若2a =,2t =,符合题意; 若2a =-,则与题设矛盾,不合题意,舍去当2(22)(22)2(22)4f a a a a -=---=-时,2a =,2t = 综上所述,{20a t ==和{22a t ==符合题意46.解:(1)22230()23x x x f x x x x ⎧-+≥⎪=⎨-+<⎪⎩,画图正确当0x ≥时,由()0f x =,得2230x x -+=,此时无实根;当0x <时,由()0f x =,得2230x x --=,得1,3(x x =-=舍). 所以函数的零点为1x =- (2)由()x f <0得,()||2x a x -<. 当0x =时,a 取任意实数,不等式恒成立 当01x <≤时,2a x x >-.令2()g x x x=-,则()g x 在01x <≤上单调递增, ∴max ()(1)1a g x g >==-; 当10x -≤<时,2a x x >+,令2()h x x x=+, 则()h x在上单调递减,所以()h x 在10x -≤<上单调递减. ∴ max ()(1)3a h x h >=-=- 综合 1a >-47. [解](理)(1)当1,0a b ==时,()|1|f x x x =-既不是奇函数也不是偶函数 ∵(1)2,(1)0f f -=-=,∴(1)(1),(1)(1)f f f f -≠-≠- 所以()f x 既不是奇函数,也不是偶函数 (2)当1,1a b ==时,()|1|1f x x x =-+, 由5(2)4xf =得52|21|14x x-+= 即2211(2)204x x x ⎧≥⎪⎨--=⎪⎩或2211(2)204x x x⎧<⎪⎨-+=⎪⎩解得111222222xx x ===(舍),或所以221log log (112x +==+-或1x =- (3)当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为||bx a x--< 即b b x a x x x +<<- 故(]max min ()(),0,1b bx a x x x x+<<-∈又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1bx g b x +==+;对于函数(](),0,1bh x x x x=-∈①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1bx h b x-==-,又11b b ->+,所以,此时a 的取值范围是(1,1)b b +-②当10b -≤<,在(]0,1上,()bh x x x=-≥当x =,min ()bx x-=此时要使a 存在,必须有110b b ⎧+<⎪⎨-≤<⎪⎩即13b -≤<,此时a 的取值范围是(1b +综上,当1b <-时,a 的取值范围是(1,1)b b +-;当13b -≤<时,a 的取值范围是(1b +;当30b ≤<时,a 的取值范围是∅48. 本题共有2小题,第1小题满分6分,第2小题满分8分 .解:(1)12)(2+++=bx a x x F 是偶函数,0=∴b 即2)(2++=a x x F ,R x ∈ 又ax x F ≥)(恒成立即2)1(222+≤-⇒≥++x x a ax a x 当1=x 时R a ∈⇒当1>x 时,213)1(122+-+-=-+≤x x x x a ,232+≤a当1<x 时,213)1(122+-+-=-+≥x x x x a , 232+-≥a综上: 232232+≤≤+-a (2))())(()(x f x f f x λϕ-=)2()2(24λλ-+-+=x x)(x ϕ∴是偶函数,要使)(x ϕ在()1,-∞-上是减函数在()0,1-上是增函数,即)(x ϕ只要满足在区间()+∞,1上是增函数在()1,0上是减函数.令2x t =,当()1,0∈x 时()1,0∈t ;()+∞∈,1x 时()+∞∈,1t ,由于()+∞∈,0x 时,2x t =是增函数记)2()2()()(2λλϕ-+-+==t t t H x ,故)(x ϕ与)(t H 在区间()+∞,0上有相同的增减性,当二次函数)2()2()(2λλ-+-+=t t t H 在区间()+∞,1上是增函数在()1,0上是减函数,其对称轴方程为1=t 4122=⇒=--⇒λλ. 49.036.03675.0212122>->+++∴acx x x x50. 解:(1)设1x ,2x 是+R 上的任意两个数,则01lg )(4lg 2lg 2lg lg )2(2)()(2212121212121=≤+=+-+=+-+x x x x x x x x x x f x f x f ∴)]()([21)2(2121x f x f x x f +≥+.∴函数x x f lg )(=在+R 上是 “凸函数” (2)对于]2,1[上的任意两个数1x ,2x ,均有)]()([21)2(2121x f x f x x f +≥+成立,即)]()[(212)2(22212121221x a x x a x x x a x x +++≥+++,整理得)()(21)(2121221221x x x x x x a x x +--≤-若21x x =,a 可以取任意值. 若21x x ≠,得)(212121x x x x a +-≤, 1)(2182121-<+-<-x x x x ,∴8-≤a . 综上所述得8-≤a (3)①当1=k 时由已知得)]()([21)2(2121x f x f x x f +≥+成立. 假设当mk =)(*∈N m 时,不等式成立即)]()()([21)2(2211221m kx f x f x f x x x f mm +++≥++++ 成立. 那么,由d x x x c mm≤+++≤2221 ,d x x x c mmm m m ≤+++≤+++2222212得]}22[21{)2(22221222112211mm m mm m m m m x x x x x x f x x x f +++++++++++=++++)]2()2([21222212221mm m m m m m x x x f x x x f ++++++++++≥ )]}()()([21)]()()([21{21122212221++++++++≥++m m m m x f x f x f x f x f x f m m )]()()([2112211++++=+m x f x f x f m . 即1+=m k 时,不等式也成立.根据数学归纳法原理不等式得证②比如证明3=n 不等式成立.由①知d x c ≤≤1,d x c ≤≤2,d x c ≤≤3,d x c ≤≤4,有)]()()()([41)4(43214321x f x f x f x f x x x x f +++≥+++成立.d x c ≤≤1,d x c ≤≤2,d x c ≤≤3,d x x x c ≤++≤)(31321,∴)43()3(321321321x x x x x x f x x x f +++++=++)]()()()3([41421321x f x f x f x x x f +++++≥, 从而得)]()()([31)3(321321x f x f x f x x x f ++≥++。

2013高三文科二模数学试卷(杨浦等地有答案)

2013高三文科二模数学试卷(杨浦等地有答案)

2013高三文科二模数学试卷(杨浦等地有答案)2012学年静安、杨浦、青浦宝山区高三年级高考模拟考试数学试卷(文科)2013.04.一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知全集,集合,则.2.若复数满足(是虚数单位),则.3.已知直线的倾斜角大小是,则.4.若关于的二元一次方程组有唯一一组解,则实数的取值范围是. 5.已知函数和函数的图像关于直线对称,则函数的解析式为.到渐近线的距离为.7.函数的最小正周期.8.若,则目标函数的最小值为.9.执行如图所示的程序框图,若输入的值是,则输出的值是. 10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,那么这个圆锥的母线长为.11.某中学在高一年级开设了门选修课,每名学生必须参加这门选修课中的一门,对于该年级的甲乙名学生,这名学生选择的选修课相同的概率是(结果用最简分数表示).12.各项为正数的无穷等比数列的前项和为,若,则其公比的取值范围是.13.已知函数.当时,不等式恒成立,则实数的取值范围是.14.函数的定义域为,其图像上任一点满足.①函数一定是偶函数;②函数可能既不是偶函数,也不是奇函数;③函数可以是奇函数;④函数如果是偶函数,则值域是或;⑤函数值域是,则一定是奇函数.其中正确命题的序号是(填上所有正确的序号).二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.已知,,则的值等于………………………()(A).(B).(C).(D).16.一个空间几何体的正视图、侧视图为两个边长是1的正方形,俯视图是直角边长为1的等腰直角三角形,则这个几何体的表面积等于…()(A).(B).(C).(D).17.若直线通过点,则………………………………()(A).(B).(C).(D).18.某同学为了研究函数的性质,构造了如图所示的两个边长为的正方形和,点是边上的一个动点,设,则.那么,可推知方程解的个数是………………………………………………………()(A).(B).(C).(D).三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2小题,第1小题满分5分,第2小题满分7分.如图,设计一个正四棱锥形冷水塔,高是米,底面的边长是米.(1)求这个正四棱锥形冷水塔的容积;(2)制造这个水塔的侧面需要多少平方米钢板?(精确到米2) 20.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是的中点,求;(2)设,求△周长的最大值及此时的值.21.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.已知椭圆.(1)直线过椭圆的中心交椭圆于两点,是它的右顶点,当直线的斜率为时,求△的面积;(2)设直线与椭圆交于两点,且线段的垂直平分线过椭圆与轴负半轴的交点,求实数的值.22.(本题满分16分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知函数.(1)若函数的图像过原点,求的解析式;(2)若是偶函数,在定义域上恒成立,求实数的取值范围;(3)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.23.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列的前项和为,且,.从中抽出部分项,组成的数列是等比数列,设该等比数列的公比为,其中.(1)求的值;(2)当取最小时,求的通项公式;(3)求的值.四区联考2012学年度第二学期高三数学一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.;2.;3.;4.;5.;6.;7.;8.4;9.;10.;11.;12.;13.;14.②③⑤二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15.D;16.B;17.B;18.C三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2小题,第1小题满分5分,第2小题满分7分.解:(1)如图正四棱锥底面的边长是米,高是米所以这个四棱锥冷水塔的容积是.(2)如图,取底面边长的中点,连接,答:制造这个水塔的侧面需要3.40平方米钢板.20.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.解:(1)在△中,,由得,解得.(2)∵∥,∴,在△中,由正弦定理得,即∴,又.记△的周长为,则=∴时,取得最大值为.21.(本题满分14分)本题共有2小题,第1小题满分6分,第2小题满分8分.解:(1)依题意,,,由,得,设,∴;(2)如图,由得,依题意,,设,线段的中点,则,,,由,得,∴22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.解:(1)过原点,得或(2)是偶函数,即,又恒成立即当时当时,,当时,,综上:(3)是偶函数,要使在上是减函数在上是增函数,即只要满足在区间上是增函数在上是减函数.令,当时;时,由于时,是增函数记,故与在区间上有相同的增减性,当二次函数在区间上是增函数在上是减函数,其对称轴方程为.23.(本题满分18分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.解:(1)令得,即;又(2)由和,所以数列是以2为首项,为公差的等差数列,所以.解法一:数列是正项递增等差数列,故数列的公比,若,则由得,此时,由解得,所以,同理;若,则由得,此时组成等比数列,所以,,对任何正整数,只要取,即是数列的第项.最小的公比.所以.………(10分)解法二:数列是正项递增等差数列,故数列的公比,设存在组成的数列是等比数列,则,即因为所以必有因数,即可设,当数列的公比最小时,即,最小的公比.所以.(3)由(2)可得从中抽出部分项组成的数列是等比数列,其中,那么的公比是,其中由解法二可得.,所以。

【VIP专享】【2013上海闵行二模】上海市闵行区2013届高三下学期二模数学(文)试题

【VIP专享】【2013上海闵行二模】上海市闵行区2013届高三下学期二模数学(文)试题

等于

9. 设双曲线 x2 y2 6 的左右顶点分别为 A1 、 A2 , P 为双曲线右支上一点,且位于第
5.已知
实数 k 的值为
rr e1、e2
是夹角为
4
(0.3125, 0.375)
2
的两个单位向量,向量
6.某工厂对一批产品进行抽样检测,根据抽样检测后
的产品净重(单位:克)数据绘制的频率分布直方图
如图所示,已知产品净重的范围是区间 96,106,样 本中净重在区间96,100的产品个数是 24 ,则样本中
… 学校
…… 班级
…… 准考证
…… 号密 姓名
○…
…… …… …… …… …… …… …封
○…
…… …… …… …… …… ……
…○
线… …… …… …… …… ……
闵行区 2012 学年第二学期高三年级质量调研考试 数 学 试 卷(文科)
考生注意: 1.答卷前,考生务必在答题纸上将学校、姓名填写清楚,并填涂准考证号.选择题部分必 须使用 2B 铅笔填涂;非选择题部分使用黑色字迹的钢笔、圆珠笔或签字笔书写. 2.本试卷共有 23 道题,共 5 页.满分 150 分,考试时间 120 分钟. 3.考试后只交答题纸,试卷由考生自己保留.
r a
r e1
rr 2e2 , b
0.150 距 0.125 0.100 0.075 0.050
3

6
(பைடு நூலகம்.3125, 0.328125) …

r ke1
频率/ 组
r e2 ,

r a
//

r b
,则
96 98 100 102 104 106 克

上海市普陀区2013年高考二模数学试题(文科)及参考答案

上海市普陀区2013年高考二模数学试题(文科)及参考答案

上海市普陀区2013届高三4月质量调研(二模)文科数学考生注意: 2013.41.答卷前,考生务必在答题纸上将姓名、考试号填写清楚,并在规定的区域贴上条形码.2.本试卷共有23道题,满分150分.考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数)1(log 2-=x y 的定义域为 . 2. 若53sin =θ且02sin <θ,则θtan = . 3. 若点)2,4(在幂函数)(x f 的图像上,则函数)(x f 的反函数)(1x f -= .4. 若i a z 21+=,i z +=12(表示虚数单位),且21z z 为纯虚数,则实数=a . 5. 若5522105)12(x a x a x a a x ++++=+ ,则=++-++25312420)()(a a a a a a .6. 若函数1)(2++=ax x x f 是偶函数,则函数||)(x x f y =的最小值为 . 7. 若双曲线C :22221x y a b-=的焦距为10,点)1,2(P 在C 的渐近线上,则C 的方程为 .8. 若某班从4名男生、2名女生中选出3人参加志愿者服务,则至少选出2名男生的概率为 .9. 若实数,x y 满足不等式组0220x y x x y ≥⎧⎪≥⎨⎪-+≥⎩,则2z x y =+的最大值为 .10. 若三条直线03=++y ax 02=++y x 和012=+-y x 相交于一点,则行列式11221131-a 的值为 .11. △ABC 中,角A 、B 、C 所对的边为a 、b 、c ,若3π=A ,c b 2=,则C = .12. 若圆C 的半径为3,单位向量e所在的直线与圆相切于定点A ,点B 是圆上的动点,则e AB ⋅的最大值为13. 已知函数⎩⎨⎧<≥=0,10,2)(x x x f x ,若)2()1(2a f a f >-,则实数a 的取值范围是 .14. 若,i j a 表示n n ⨯阶矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n n a n ,853543211111中第行、第j 列的元素,其中第行的元素均为,第列的元素为n ,,3,2,1 ,且1,11,,i j i j i j a a a +++=+(、1,,3,2,1-=n j ),则=∞→2,3limn a n n .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 若集合},4|{2R y x y x A ∈==,1{|0}2xB x x-=≥+,则A B = ………………( ) A . [0,1]. B .(2,1]-. C . (2,)-+∞. D . [1,)+∞.16. 若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =………………………………………………………………………………………………( )A . 1:1.B . 2:1.C . 3:2.D . 4:1.17. 若R a ∈,则“关于x 的方程012=++ax x 无实根”是“i a a z )1()12(-+-=(其中表示虚数单位)在复平面上对应的点位于第四象限”的…………………………………( )A .充分非必要条件.B .必要非充分条件.C .充要条件.D .既非充分又非必要条件.18.如图,△ABC 是边长为的正三角形,点P 在△ABC 所在的平面内,且++22||||PB PAa PC =2||(a 为常数).下列结论中,正确的是……………………………………………( )A .当10<<a 时,满足条件的点P 有且只有一个.B .当1=a 时,满足条件的点P 有三个.C .当1>a 时,满足条件的点P 有无数个.D .当a 为任意正实数时,满足条件的点P 是有限个.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分.已知函数)cos()(ϕω+=x A x f (0>A ,0>ω,02<<-ϕπ)的图像与y 轴的交点为)1,0(,它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为)2,(0x 和)2,2(0-+πx(1)求函数)(x f 的解析式; (2)若锐角θ满足31cos =θ,求)2(θf 的值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是1B B 、DC 的中点. (1)求三棱锥1E FCC -的体积.(2)求异面直线1D F 与1A E 所成角的大小(结果用反三角函数值表示). ABCP第18题第19题1C1D21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F +=(1)求函数)(x F 的定义域D 及其零点;(2)若关于x 的方程0)(=-m x F 在区间)1,0[内有解,求实数m 的取值范围.、22. (本题满分16分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分6分.在平面直角坐标系xOy 中,方向向量为),1(k d =的直线经过椭圆191822=+y x 的右焦点F ,与椭圆相交于A 、B 两点(1)若点A 在x 轴的上方,且||||OF OA =,求直线的方程; (2)若1=k ,)0,6(P ,求△PAB 的面积;(3)当k (R k ∈且0≠k )变化时,试求一点)0,(0x C ,使得直线AC和BC 的斜率之和为0.第22题Oxy F23.(本题满分18分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分8分.对于任意的*N n ∈,若数列}{n a 同时满足下列两个条件,则称数列}{n a 具有“性质m ”:①122++<+n n n a a a ; ②存在实数M ,使得M a n ≤成立. (1)数列}{n a 、}{n b 中,n a n =、6sin 2πn b n =(5,4,3,2,1=n ),判断}{n a 、}{n b 是否具有“性质m ”;(2)若各项为正数的等比数列}{n c 的前n 项和为n S ,且413=c ,473=S ,求证:数列}{n S 具有“性质m ”;(3)数列}{n d 的通项公式nn n n t d 21)23(+-⋅=(*N n ∈).对于任意]100,3[∈n 且*N n ∈,数列}{n d 具有“性质m ”,求实数的取值范围.上海市普陀区2013年高考二模数学试题(文科)参考答案一.填空题1.}1|{>x x2.43- 3.=-)(1x f 2x (0≥x )4. 2- 5.243- 6.2 7.152022=-y x8.549.6 10.0 11. 6π12.3 13.121-<<-a 14.21二.选择题题 号 15 16 1718答 案A CB C三.解答题19.[解](1)由题意可得2=A ……………………………………………………………1分π22=T 即π4=T ,21=ω……………………………………………… 3分 )21cos(2)(ϕ+=x x f ,1)0(=f由21cos =ϕ且02<<-ϕπ,得3πϕ-= (5)分函数)321cos(2)(π-=x x f ...... (6)分(2)由于1cos 3θ=且θ为锐角,所以322sin =θ…… ………………………………8分)2(θf )3sin sin 3cos(cos 2)3cos(2πθπθπθ+=-=……………………………10分)233222131(2⨯+⨯⋅=3621+=……………12分 20.[解](1)=-1FCC E V 1ECC F V -…………………………1分 由题意得⊥FC 平面1ECC 且1=FC …………………………3分222211=⨯⨯=∆ECC S …………………………5分 CD1A1B1C1DEF1ECC F V -322131311=⨯⨯=⨯⨯=∆FC S ECC =-1FCC E V 32…………………………6分 (2)取AB 的中点为G ,连接G A 1,GE由于F D G A 11//,所以直线G A 1与E A 1所成的锐角或直角即为异面直线E A 1与F D 1所成的角……9分 在GE A 1∆中,51=G A ,2=GE ,51=E A由余弦定理得,54552255cos 1=⨯⨯-+=∠E GA 0>……12分 所以54arccos1=∠E GA 即异面直线E A 1与F D 1所成的角的大小为54arccos …………14分21. 解:(1))()(2)(x g x f x F +=xx a a -++=11log )1(log 2(0>a 且1≠a ) ⎩⎨⎧>->+0101x x ,解得11<<-x ,所以函数)(x F 的定义域为)1,1(-……2分令)(x F 0=,则011log )1(log 2=-++xx a a …(*) ……3分 方程变为)1(log )1(log 2x x a a -=+x x -=+1)1(2,即032=+x x ……………………5分解得01=x ,32-=x ,经检验3-=x 是(*)的增根,所以方程(*)的解为0=x 即函数)(x F 的零点为0.……6分 (2)xx m aa -++=11log )1(log 2(10<≤x ) =)4141(log 112log 2--+-=-++x x x x x a a ……8分4141--+-=xx a m ,设]1,0(1∈=-t x ……9分 函数tt y 4+=在区间]1,0(上是减函数……………………11分 当1=t 时,此时1=x ,5min =y ,所以1≥m a ………………12分①若1>a ,则0≥m ,方程有解…………………………13分 ②若10<<a ,则0≤m ,方程有解.…………………………14分22.【解】(1)由题意182=a ,92=b 得3=c ,所以)0,3(F ………………………………1分||||OF OA =且点A 在x 轴的上方,得)3,0(A ………………………………2分1-=k ,)1,1(-=d ……………………………………3分直线:113--=-y x ,即直线的方程为03=-+y x …………………………4分 (2)设),(11y x A 、),(22y x B ,当1=k 时,直线:3-=x y …………5分将直线与椭圆方程联立⎪⎩⎪⎨⎧-==+3191822x y y x ,……………………7分 消去x 得,0322=-+y y ,解得31-=y ,12=y ……………………9分4||21=-y y ,所以64321||||2121=⨯⨯=-⨯⨯=∆y y PF S PAB ……10分(3)假设存在这样的点)0,(0x C ,使得直线AC 和BC 的斜率之和为0,由题意得,直线:)3(-=x k y (0≠k )⎪⎩⎪⎨⎧-==+)3(191822x k y y x ,消去y 得,0)1(1812)21(2222=-+-+k x k x k ……12分 0>∆恒成立,⎪⎪⎩⎪⎪⎨⎧+-=⋅+=+2221222121)1(182112k k x x k k x x ……13分011x x y k AD -=,022x x y k BD -=……14分+-=+011x x y k k BD AD 022x x y -0))(())(3())(3()3()3(0201012021022011=----+--=--+--=x x x x x x x k x x x k x x x k x x x k所以06))(3(2021021=+++-kx x x x k x kx ……15分0621)3(1221)1(36020322=+++-+-kx k x k k k k解得60=x ,所以存在一点)0,6(,使得直线AC 和BC 的斜率之和为0.…16分 23.解:(1)在数列}{n a 中,取1=n ,则23122a a a ==+,不满足条件①,所以数列}{n a 不具有“m 性质”;……2分在数列}{n b 中,11=b ,32=b ,23=b ,34=b ,15=b ,则2312323b b b =<=+,3422432b b b =<=+,4532323b b b =<=+,所以满足条件①;26sin 2≤=πn b n (5,4,3,2,1=n )满足条件②,所以数列}{n b 具有“性质m ”。

【2013上海普陀二模】上海市普陀区2013届高三下学期二模数学(文)试题

【2013上海普陀二模】上海市普陀区2013届高三下学期二模数学(文)试题

普陀区2012学年第二学期高三文科数学质量调研考生注意:2013.41.答卷前,考生务必在答题纸上将姓名、考试号填写清楚,并在规定的区域贴上条形码.2.本试卷共有23道题,满分150分.考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. 函数)1(log 2-=x y 的定义域为 . 2. 若53sin =θ且02sin <θ,则θtan = . 3. 若点)2,4(在幂函数)(x f 的图像上,则函数)(x f 的反函数)(1x f -= .4. 若i a z 21+=,i z +=12(i 表示虚数单位),且21z z 为纯虚数,则实数=a . 5. 若5522105)12(x a x a x a a x ++++=+ ,则=++-++25312420)()(a a a a a a .6. 若函数1)(2++=ax x x f 是偶函数,则函数||)(x x f y =的最小值为 . 7. 若双曲线C :22221x y a b-=的焦距为10,点)1,2(P 在C 的渐近线上,则C 的方程为 .8. 若某班从4名男生、2名女生中选出3人参加志愿者服务,则至少选出2名男生的概率为 .9. 若实数,x y 满足不等式组0220x y x x y ≥⎧⎪≥⎨⎪-+≥⎩,则2z x y =+的最大值为 .10. 若三条直线03=++y ax ,02=++y x 和012=+-y x 相交于一点,则行列式11221131-a 的值为 .11. △ABC 中,角A 、B 、C 所对的边为a 、b 、c ,若3π=A ,c b 2=,则C = .12. 若圆C 的半径为3,单位向量e 所在的直线与圆相切于定点A ,点B 是圆上的动点,则e AB ⋅ 的最大值为13. 已知函数⎩⎨⎧<≥=0,10,2)(x x x f x ,若)2()1(2a f a f >-,则实数a 的取值范围是 .14. 若,i j a 表示n n ⨯阶矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n n a n ,853543211111 中第i 行、第j 列的元素,其中第1行的元素均为1,第1列的元素为n ,,3,2,1 ,且1,11,,i j i j i j a a a +++=+(i 、1,,3,2,1-=n j ),则=∞→2,3limn a n n .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15. 若集合},4|{2R y x y x A ∈==,1{|0}2xB x x-=≥+,则A B =………………( ) A . [0,1]. B .(2,1]-. C . (2,)-+∞. D . [1,)+∞.16. 若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为1S 、2S ,则1S :2S =…………………………………………………………( )A . 1:1.B . 2:1.C . 3:2.D . 4:1.17. 若R a ∈,则“关于x 的方程012=++ax x 无实根”是“i a a z )1()12(-+-=(其中i 表示虚数单位)在复平面上对应的点位于第四象限”的…………………………( )A .充分非必要条件.B .必要非充分条件.C .充要条件.D .既非充分又非必要条件.18.如图,△ABC 是边长为1的正三角形,点P 在△ABC 所在的平面内,且++22||||PB PA a PC =2||(a 为常数).下列结论中,正确的是……………………………………………( )A .当10<<a 时,满足条件的点P 有且只有一个.B .当1=a 时,满足条件的点P 有三个.C .当1>a 时,满足条件的点P 有无数个.D .当a 为任意正实数时,满足条件的点P 是有限个.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分.已知函数)cos()(ϕω+=x A x f (0>A ,0>ω,02<<-ϕπ)的图像与y 轴的交点为)1,0(,它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为)2,(0x 和)2,2(0-+πx(1)求函数)(x f 的解析式; (2)若锐角θ满足31cos =θ,求)2(θf 的值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是1B B 、DC 的中点. (1)求三棱锥1E FCC -的体积.(2)求异面直线1D F 与1A E 所成角的大小(结果用反三角函数值表示).C第18题第19题B1C1D21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F +=(1)求函数)(x F 的定义域D 及其零点;(2)若关于x 的方程0)(=-m x F 在区间)1,0[内有解,求实数m 的取值范围. 、22. (本题满分16分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分6分.在平面直角坐标系xOy 中,方向向量为),1(k =的直线l 经过椭圆191822=+y x 的右焦点F ,与椭圆相交于A 、B 两点(1)若点A 在x 轴的上方,且||||OF OA =,求直线l 的方程; (2)若1=k ,)0,6(P ,求△PAB 的面积;(3)当k (R k ∈且0≠k )变化时,试求一点)0,(0x C ,使得直线AC 和BC 的斜率之和为0.23.(本题满分18分) 本大题共有3小题,第1小题满分4分,第2小题满分6分 ,第3小题满分8分.对于任意的*N n ∈,若数列}{n a 同时满足下列两个条件,则称数列}{n a 具有“性质m ”:①122++<+n n n a a a ; ②存在实数M ,使得M a n ≤成立. (1)数列}{n a 、}{n b 中,n a n =、6sin 2πn b n =(5,4,3,2,1=n ),判断}{n a 、}{n b 是否具有“性质m ”;(2)若各项为正数的等比数列}{n c 的前n 项和为n S ,且413=c ,473=S ,求证:数列}{n S 具有“性质m ”;(3)数列}{n d 的通项公式nn n n t d 21)23(+-⋅=(*N n ∈).对于任意]100,3[∈n 且*N n ∈,数列}{n d 具有“性质m ”,求实数t 的取值范围.普陀区2012学年第二学期高三文科数学质量调研试题答案一.填空题1.}1|{>x x2.43- 3.=-)(1x f 2x (0≥x )4. 2- 5.243- 6.2 7.152022=-y x 8.549.6 10.0 11. 6π12.3 13.121-<<-a 14.21 二.选择题三.解答题19.[解](1)由题意可得2=A ……………………………………………………………1分π22=T 即π4=T ,21=ω……………………………………………… 3分 )21cos(2)(ϕ+=x x f ,1)0(=f由21cos =ϕ且02<<-ϕπ,得3πϕ-= ………………………………5分函数)321cos(2)(π-=x x f …… …………………………………………6分(2)由于1cos 3θ=且θ为锐角,所以322sin =θ…… ………………………8分 )2(θf )3sin sin 3cos(cos 2)3cos(2πθπθπθ+=-=……………………10分)233222131(2⨯+⨯⋅=3621+=……………12分20.[解](1)=-1FCC E V 1ECC F V -…………………………1分由题意得⊥FC 平面1ECC 且1=FC …………………………3分 222211=⨯⨯=∆ECC S …………………………5分 1ECC F V -322131311=⨯⨯=⨯⨯=∆FC S ECC =-1FCC E V 32…………………………6分 1A1B1C1DE(2)取AB 的中点为G ,连接G A 1,GE由于F D G A 11//,所以直线G A 1与E A 1所成的锐角或直角即为异面直线E A 1与F D 1所成的角……9分 在GE A 1∆中,51=G A ,2=GE ,51=E A由余弦定理得,54552255cos 1=⨯⨯-+=∠E GA 0>……12分 所以54arccos 1=∠E GA即异面直线E A 1与F D 1所成的角的大小为54arccos …………14分21. 解:(1))()(2)(x g x f x F +=xx a a -++=11log )1(log 2(0>a 且1≠a ) ⎩⎨⎧>->+0101x x ,解得11<<-x ,所以函数)(x F 的定义域为)1,1(-……2分令)(x F 0=,则011log )1(log 2=-++xx aa …(*) ……3分 方程变为)1(log )1(log 2x x a a -=+x x -=+1)1(2,即032=+x x ……………………5分解得01=x ,32-=x ,经检验3-=x 是(*)的增根,所以方程(*)的解为0=x 即函数)(x F 的零点为0.……6分 (2)xx m aa -++=11log )1(log 2(10<≤x ) =)4141(log 112log 2--+-=-++xx x x x a a……8分 4141--+-=xx a m ,设]1,0(1∈=-t x ……9分 函数tt y 4+=在区间]1,0(上是减函数……………………11分 当1=t 时,此时1=x ,5min =y ,所以1≥ma ………………12分 ①若1>a ,则0≥m ,方程有解…………………………13分②若10<<a ,则0≤m ,方程有解.…………………………14分22.【解】(1)由题意182=a ,92=b 得3=c ,所以)0,3(F ………………………………1分||||=且点A 在x 轴的上方,得)3,0(A ………………………………2分 1-=k ,)1,1(-= ……………………………………3分直线l :113--=-y x ,即直线l 的方程为03=-+y x …………………………4分 (2)设),(11y x A 、),(22y x B ,当1=k 时,直线l :3-=x y …………5分将直线与椭圆方程联立⎪⎩⎪⎨⎧-==+3191822x y y x ,……………………7分 消去x 得,0322=-+y y ,解得31-=y ,12=y ……………………9分4||21=-y y ,所以64321||||2121=⨯⨯=-⨯⨯=∆y y PF S PAB ……10分(3)假设存在这样的点)0,(0x C ,使得直线AC 和BC 的斜率之和为0,由题意得,直线l :)3(-=x k y (0≠k )⎪⎩⎪⎨⎧-==+)3(191822x k y y x ,消去y 得,0)1(1812)21(2222=-+-+k x k x k ……12分 0>∆恒成立,⎪⎪⎩⎪⎪⎨⎧+-=⋅+=+2221222121)1(182112k k x x k k x x ……13分 011x x y k AD -=,022x x y k BD -=……14分+-=+011x x y k k BD AD 022x x y -0))(())(3())(3()3()3(0201012021022011=----+--=--+--=x x x x x x x k x x x k x x x k x x x k所以06))(3(2021021=+++-kx x x x k x kx ……15分0621)3(1221)1(36020322=+++-+-kx k x k k k k解得60=x ,所以存在一点)0,6(,使得直线AC 和BC 的斜率之和为0.…16分 23.解:(1)在数列}{n a 中,取1=n ,则23122a a a ==+,不满足条件①,所以数列}{n a 不具有“m 性质”;……2分在数列}{n b 中,11=b ,32=b ,23=b ,34=b ,15=b ,则2312323b b b =<=+,3422432b b b =<=+,4532323b b b =<=+,所以满足条件①;26sin 2≤=πn b n (5,4,3,2,1=n )满足条件②,所以数列}{n b 具有“性质m ”。

上海市2013年高考模拟考试试卷(二模)文科数学试题

上海市2013年高考模拟考试试卷(二模)文科数学试题

x , x ∈ [ 0, 24 ] ,写出该函数的单调区间,并选择其中一种情形进行证明; x +1
2
(2)若用每天 f ( x) 的最大值作为当天的综合放射性污染指数,并记作 M (a ) ,求 M (a ) ; (3)省政府规定,每天的综合放射性污染指数不得超过 2,试问目前市中心的综合放射性 污染 指数是否超标?
开始 输入 x 是
f ( x) > g ( x) 否 h( x) = g ( x)

3、直线 ax + 2 y + 3a = 0 与直线 3x + ( a − 1) y = a − 7 平行,则实数 a = 4、已知函数 y = f −1 ( x ) 是函数 f ( x) = 2 x −1 ( x ≥1) 的反函数,则
由余弦定理,得 c 2 = a 2 + b 2 − 2ab cos π ,即 a 2 + b2 − ab = 3 , ②
3
由①②解得 a = 1, b = 2 .
21、解: (1) 2a + 2c = 4 + 2 3 ,
3 a = c, 2
求得 a = 2, c = 3, b = 1
所以椭圆方程为
x2 + y 2 = 1。 4
11、 15、A
16、C
17、B
18、C
三、解答题 1 1 1 4 × 2 × 2 = 2 , V = S底 • h = × 2 × 2 = 2 3 3 3 (2)∵ PB / / EF , ∠BPD 即为异面直线 EF 与 PD 所成角,
(1) h = PA = 2 , S底 = 19、
PB = 2 2 , BD = 2 2 , PD = 2 2 π π ,即异同直线 EF 与 PD 所成角的大小为 。 3 3 3 sin 2 x − 1 + cos 2 x − 1 = sin(2 x − π ) − 1 , 20、 解: (1) f ( x ) = 2 2 2 6 则 f ( x ) 的最小值是-2, 最小正周期是 T = 2π = π ; 2

上海市16区高三二模数学文试题分类汇编4平面向量Word版含答案

上海市16区高三二模数学文试题分类汇编4平面向量Word版含答案

上海市16区2013届高三二模数学(文)试题分类汇编4:平面向量一、选择题1 .(上海市普陀区2013届高三第二学期(二模)质量调研数学(文)试题)如图,△ABC是边长为1的正三角形,点P 在△ABC 所在的平面内,且++22||||PB PA a PC =2||(a 为常数).下列结论中,正确的是A .当10<<a 时,满足条件的点P 有且只有一个.B .当1=a 时,满足条件的点P 有三个.C .当1>a 时,满足条件的点P 有无数个.D .当a 为任意正实数时,满足条件的点P 是有限个.2 .(上海市浦东区2013年高考二模数学(文)试题 )已知,4,33)3()(=+⋅+则a 与b 的夹角为)(A 6π3)(πB )(C 32π )(D 65π 二、填空题3 .(上海市闸北区2013届高三第二学期期中考试数学(文)试卷)在平面直角坐标系xOy 中,以向量()21,a a a =与向量()21,b b b =为邻边的平行四边形的面积为____.4 .(上海市徐汇、松江、金山2013届高三4月学习能力诊断数学(文)试题)如图,有以下命题成立:设点,P Q 是线段AB 的三等分点,则有OP OQ OA OB +=+.将此命题推广,设点12345,,,,A A A A A 是线段AB 的六等分点,则()12345OA OA OA OA OA OA OB ++++=+ .C第18题5 .(上海市普陀区2013届高三第二学期(二模)质量调研数学(文)试题)若圆C 的半径为3,单位向量e 所在的直线与圆相切于定点A ,点B 是圆上的动点,则e AB ⋅ 的最大值为___________6 .(上海市闵行区2013届高三4月质量调研考试数学(文)试题)已知ABC ∆的重心为O ,6,7,8,AC BC AB ===则AO BC ⋅=____________.7 .(上海市闵行区2013届高三4月质量调研考试数学(文)试题)已知12e e 、是夹角为2π的两个单位向量,向量12122,,a e e b ke e =-=+若//a b ,则实数k 的值为_____________. 8 .(上海市黄浦区2013年4月高考(二模)模拟考试数学(文)试题)在正△ABC 中,若2AB =,则AB AC ⋅=_____.9.(上海市虹口区2013届高三(二模)数学(文)试卷)在ABC∆中,1=AB ,2=AC ,2)(=⋅+,则ABC ∆面积等于__________.10.(上海市长宁、嘉定区2013年高考二模数学(文)试题)已知向量||).,5(),2,2(k +=-=若不超过5,则k 的取值范围是____________.三、解答题11.(上海市闸北区2013届高三第二学期期中考试数学(文)试卷)本题满分14分 已知)sin ,(cos θθ=和)cos ,sin 2(θθ-=,)2,(ππθ∈,且528||=+,求θsin 的值.12.(上海市浦东区2013年高考二模数学(文)试题 )本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分.已知向量()1,1,m =向量n 与向量m 的夹角为34π,且1m n ⋅=-. (1)求向量n ;(2)若向量n 与(1,0)q =共线,向量22cos ,cos 2C p A ⎛⎫= ⎪⎝⎭,其中A 、C 为ABC ∆的内角,且A 、B 、C 依次成等差数列,求n p +的取值范围.QPO BA第13题图上海市16区2013届高三二模数学(文)试题分类汇编4:平面向量参考答案一、选择题1. C2. C ;二、填空题 3.1221b a b a -; 4. 52; 5. 3 6. 283-; 7. 12-; 8. 2; 9. 23; 10. ]6,2[-三、解答题 11. )sin cos ,2sin (cos θθθθ++-=+=+||b a 22)sin (cos )2sin (cos θθθθ+++-)sin (cos 224θθ-+=⎪⎭⎫ ⎝⎛++=4cos 12πθ. 由528||=+,得.2574cos =⎪⎭⎫ ⎝⎛+πθ .25244cos 14sin 2±=⎪⎭⎫ ⎝⎛+-±=⎪⎭⎫ ⎝⎛+∴πθπθ 502314sin 4cos 4cos 4sin 44sin -=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=∴ππθππθππθθ或50217 πθπ2<< ,.50231sin -=∴θ另解:(2sin cos ,sin cos )a b θθθθ+=-++ 222128(2sin cos )(sin cos )4cos )25a b θθθθθθ∴+=-+++=--=sin cos θθ∴-= ① 由298(sin cos )12sin cos 625θθθθ-=-=,得5272sin cos 0625θθ=>, 3(,)2θππ∴∈sin cos 25θθ∴+==- ② 由①、②得50231sin -=θ 12.解:(1)设(,)n x y =.由1m n ⋅=-,得1x y +=- ①又向量n 与向量m 的夹角为34π,得221x y += ② 由①、②解得10x y =-⎧⎨=⎩或01x y =⎧⎨=-⎩,(1,0)n ∴=-或(0,1)n =-(2)向量n 与(1,0)q =共线知(1,0)n =-;由2B A C =+知22,,0333B A C A πππ=+=<< ()212cos ,cos cos ,cos 2C n p A C A ⎛⎫+=-+= ⎪⎝⎭, 2221cos 21cos 2cos cos 22A C n p C A --∴+=+=+ 1411cos 2cos 21cos 22323A A A ππ⎡⎤⎛⎫⎛⎫=++-=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2510,2,1cos 2333332A A A πππππ⎛⎫<<<+<∴-≤+< ⎪⎝⎭, 得151cos 2234A π⎛⎫≤++< ⎪⎝⎭,即215,24n p ⎡⎫+∈⎪⎢⎣⎭,2n p ⎡∴+∈⎢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市16区2013届高三二模数学(文)试题分类汇编15:其它选修部分
姓名____________班级___________学号____________分数______________
一、选择题
错误!未指定书签。

.(上海市奉贤区2013届高考二模数学(文)试题 )已知各项均为正数
的等比数列{}n a 的前n 项和为n S ,若1lim
1n n n S S +→+∞=, 则公比q 的取值范围是 ( ) A .01q <<
B .01q <≤
C .1q >
D .1q ≥ 【答案】B
二、填空题 错误!未指定书签。

.(上海市徐汇、松江、金山2013届高三4月学习能力诊断数学(文)试
题)在二项式63()()ax a R x
+∈的展开式中,常数项的值是20-,则23lim()n n a a a a →∞++++=________. 【答案】14
-
错误!未指定书签。

.(上海市浦东区2013年高考二模数学(文)试题 )记直线
n l :01)1(=-++y n nx (*N n ∈)与坐标轴所围成的直角三角形的面积为n S ,则=++++∞→)(lim 321n n S S S S __________. 【答案】
2
1; 错误!未指定书签。

.(上海市闵行区2013届高三4月质量调研考试数学(文)试题)方程组
25038x y x y --=⎧⎨+=⎩
的增广矩阵为___________________________. 【答案】125318-⎛⎫
⎪⎝⎭;
错误!未指定书签。

.(上海市静安、杨浦、青浦、宝山区2013届高三4月高考模拟数学(文)
试题)各项为正数的无穷等比数列{}n a 的前n 项和为n S ,若1lim 1
=+∞→n n n S S , 则其公比q 的取值范围是____.
【答案】(]1,0
错误!未指定书签。

.(上海市黄浦区2013年4月高考(二模)模拟考试数学(文)试题)已
知232012(3)(3)(3)(3)(*)N n n n x x x x a a x a x a x n ++++++++=++++∈,且n A = 012 n a a a a ++++,则lim 4n n n A →∞=_________. 【答案】
43
; 错误!未指定书签。

.(上海市虹口区2013届高三(二模)数学(文)试卷)设n x )21(+展
开式中二项式系数之和为n a ,各项系数之和为n b ,则=+-∞→n
n n n n b a b a lim
_____. 【答案】1-;。

相关文档
最新文档