【中考模拟】江苏省扬州市江都区邵樊片2018届九年级数学第二次模拟考试试题含答案
江苏省扬州市江都区中考数学第二次模拟考试试题-人教版初中九年级全册数学试题

某某省某某市江都区2015届中考数学第二次模拟考试试题(满分:150分;时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题卡..相应位置....上) 1.|-2|等于 A .2B .2-C .±2D .12±2.2015年,某某中考考生约36000人,则数据36000用科学记数法表示为 A .×105B .×103C .×104D .×1053. 下列运算正确的是A. 336a b ab +=B.32a a a -=C.632a a a ÷=D.()326a a =4.如图所示几何体的俯视图是A .B .C .D .5.如图,直线a ∥b ,点C 在直线b 上,∠DCB =90°,若∠1=70°,则∠2的度数为 A .20°B .25°C .30°D .40°6.为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.这组数据的众数和中位数分别是A. 6,4B. 6,6C. 4,4D. 4,61aD B7.我们常用“y 随x 的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A 经过路灯C 的正下方沿直线走到点B ,他与路灯C 的距离y 随他与点A 之间的距离x 的变化而变化.下列函数中y 与x 之间的变化关系,最有可能与上述情境类似的是A .y =3xB .y =-x +3C .y =-(x -3)2+3D .y =(x -3)2+38.如图,在矩形ABCD 中,AB =5,BC =7,点E 是AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A' 恰好落在∠BCD 的平分线上时,C A' 的长为 A .3或42B .32或42C .3或4D .4或3 2二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.若代数式23-x 有意义,则x 的取值X 围是▲. 10.若a -b =3,ab =2,则a 2b -ab 2=▲. 11. 反比例函数42ky x-=的图象与直线2y x =没有交点,则k 的取值X 围是▲. 12.已知方程092=++kx x 有两个相等的实数根,则=k ▲.13.某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:CAB(第7题)E DCBAA'( 第8题 )从这个袋中随机摸出一个球,是白球的概率约为▲.(结果精确到0.1)14.如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D,OD =45cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为▲cm .15.已知Rt △ABC ,∠C =90°,AB =13,AC =12,以AC 所在直线为轴将此三角形旋转一周所得圆锥的侧面积是 ▲ .(结果保留π)16.如图,四边形ABCD 内接于⊙O ,AB =AD ,∠C =110°,点E 在AD ︵上,则∠E =▲°. 17.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论:①AC =5;②∠A +∠C=180°;③AC ⊥BD ;④AC =BD .(填序号)18.在一次数学游戏中,老师在A B C 、、三个盘子里分别放了一些糖果,糖果数依次为0a ,0b,0c ,记为0G =(0a ,0b ,0c ).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n 次操作后的糖果数记为n G =(n a ,n b ,n c ).小明发现:若0G =(4,8,18),则游戏永远无法结束,那么2015G =▲.三、解答题(本大题共有10小题,共96分.请在答题卡...指定区域....内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)BCD(第14题)C(第16题)20 40 60 80 100 120 A BCD 人数情况30A B CD 28%15%52%(1)计算:()01112π2015()6tan302-+-+-︒; (2)用配方法解方程:2440x x --=.20.(本题满分8分)先化简再求值:35222x x x x +⎛⎫÷+- ⎪--⎝⎭,其中x 是不等式组3(3)1,4253x x x x --≥⎧⎨-<-⎩的一个整数解.21.(本题满分8分)小晗家客厅里装有一种三位单极开关,分别控制着A (楼梯)、B (客厅)、C (走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下其中的两个开关,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表加以说明.22.(本题满分8分)“低碳环保,你我同行”.两年来,某某市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A .每天都用;B .经常使用;C .偶尔使用;D .从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题: (1)本次活动共有▲位市民参与调查;(2)补全条形统计图;(3)根据统计结果,若该区有46万市民,请估算每天都用....公共自行车的市民约有多少人?23.(本题满分10分)已知:如图,四边形ABCD 和四边形AECF 都是矩形,AE 与BC 交于点M ,CF 与AD 交于点N . (1)求证:△ABM ≌△CDN ;(2)矩形ABCD 和矩形AECF 满足何种关系时,四边形AM 是菱形,证明你的结论.24.(本题满分10分)学校举行数学知识竞赛,设立了一、二、三等奖,计划共购买45件奖品,其中二等奖奖品件数比一等奖奖品件数的2倍还少5件,已知购买一等奖奖品x 件.各种奖品的单价如下表.奖品 一等奖奖品二等奖奖品三等奖奖品单价(元)12108(1)学校购买二等奖奖品▲件,三等奖奖品▲件;(用含x 的代数式表示) (2)若购买三等奖奖品的费用不超过二等奖奖品费用的2倍,学校为节省开支,应如何购买这三种奖品?总费用最少是多少元?25.(本题满分10分)如图,“和谐号”高铁列车的小桌板收起时,小桌板的支架底端与桌面顶端的距离OA =75厘米,且可以近似看作与地面垂直.展开小桌板使桌面保持水ABCDEFMN平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan 37°≈0.75)26.(本题满分10分)如图,在△ABC 中,点D 在AC 上,D A=DB ,∠C =∠DBC ,以AB 为直径的O ⊙交AC 于点E ,F 是O ⊙上的点,且AF =BF . (1)求证:B C 是O ⊙的切线; (2)若sin C =53,AE =23,求sin F 的值和AF 的长.27.(本题满分12分)在平面直角坐标系xOy 中,抛物线23y ax bx =++经过点N (2,-5),过点N 作x 轴的平行线交此抛物线左侧于点M ,MN =6.(1)求此抛物线的解析式;(2)点P (x ,y )为此抛物线上一动点,连接MP 交此抛物线的对称轴于点D ,当△DMN为直角三角形时,求点P 的坐标; (3)设此抛物线与y 轴交于点C ,在此抛物线上是否存在点Q ,使∠QMN =∠M ?若存在,求出点Q 的坐标;若不存在,说明理由.F28.(本题满分12分)如图,在Rt△ABC 中,∠ACB =90°,AC =10cm ,BC =5cm ,点E 从点C 出发沿射线CA 以每秒2cm 的速度运动,同时点F 从点B 出发沿射线BC 以每秒1cm 的速度运动.设运动时间为t 秒. (1)填空:AB =▲cm ;(2)若0<t <5,试问:t 为何值时,以E 、C 、F 为顶点的三角形与△ABC 相似; (3)若∠ACB 的平分线CG 交△ECF 的外接圆于点G .试探究在整个运动过程中,CE 、CF 、CG 之间存在的数量关系,并说明理由.2015年九年级中考二模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 选项 ACDCABDB二、填空题(本大题共有10小题,每小题3分,共30分)9.2x ≠10.611.2k >12.±613.14.90 15.65π 16.12517.①②④18.(9,10,11)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)原式231223=+-…………………………………………4分3=(此步错误扣1分) …………………………………………4分(2) 配方,得(x -2)2=8 (2)C A BEF分由此可得 x 1=2+22,x 2=2-22. (4)分20.原式23922x x x x +-=÷--………………………………………2分 13x =-…………………………………………………4分 解不等式组得 14x <≤, …………………………………………6分 符合不等式解集的整数是2,3,4.……………………7分当4x =时,原式1=……………………………………………………8分21.(1)小晗任意按下一个开关,正好楼梯灯亮的概率是:……………2分 (2)画树状图得:…………………………5分∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况, ∴正好客厅灯和走廊灯同时亮的概率是:=.………………8分22. (1)200; …………………………………………………2分 (2)如图;20 40 60 80 100 120 人数301056104……………………………………………5分(3)46×5%=2.3(万人).答:估计每天都用公共自行车的市民约为2.3万人.……………………………8分23.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB =CD ,AD ∥BC .……1分∵四边形AECF 是矩形,∴AE ∥CF .∴四边形AM 是平行四边形. ……………………………………2分∴AM =. ……………………………………3分 在Rt △ABM 和Rt △CDN 中,AB =CD ,AM =,∴Rt △ABM ≌Rt △CDN . ……………………………………5分(2)解:当AB =AF 时,四边形AM 是菱形. ……………………………………6分证明:∵四边形ABCD 、AECF 是矩形,∴∠B =∠BAD =∠EAF =∠F =90°.∴∠BAD -∠NAM =∠EAF -∠NAM ,即∠BAM =∠FAN .又∵AB =AF ,∴△ABM ≌△AFN . ……………………………………8分 ∴AM =AN . ……………………………………9分 由(1)知四边形AM 是平行四边形,∴平行四边形AM 是菱形. ……………………………………10分24.(1)(2x -5);(50-3x )…………………………………………………………………2分 (2)由题意可得…………………………………………4分解得:x ≥71316,且x 为整数. ………………………………………………5分设总费用为y 元,由题意得:y =12x +20x -50+400-24x=8x +350.……………………………………………………7分因此总费用y 随着x 的增大而增大,所以当x 取最小值时,总费用y 最少.……………………………………………8分 所以当x =8时,y 最小,购买方案是:一等奖奖品买8件,二等奖品奖买11件,三等奖奖品买26件. ……………………………………………………9分此时,总费用为414元.……………………………………………………10分25.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米. …1分延长CB 交OA 于点D ,由题意知,CD ⊥OA ……………………………………2分 在Rt△OBD 中,OD =OB cos37°=0.8(75-xx ………………4分BD =OB sin37°=0.6(75-xx ,………………6分所以CD =CB +BDx ,ADx ,所以tan 37°=AD CD 即0.75=x x,………………8分解之得,x ………………10分26.(1)证明:∵D A=DB ,∴∠DAB=∠DBA .……………1分又∵∠C =∠DBC ,∴∠DBA ﹢∠DBC =︒=︒⨯9018021.……………3分 ∴AB ⊥BC .又∵AB 是O ⊙的直径,∴BC 是O ⊙的切线.……………5分(2)解:如图,连接BE ,∵AB 是O ⊙的直径,∴∠AEB =90°. ∴∠EBC +∠C =90°.∵∠ABC =90°,∴∠ABE +∠EBC =90°. ∴∠C =∠ABE .O CBADFEO D11 / 13又∵∠AFE =∠ABE ,∴∠AFE =∠C . ∴sin ∠AFE =sin ∠ABE =sin C . ∴sin ∠AFE =53. …………………………………………………………………7分连接BF ,∴︒=∠90AFB . 在Rt△ABE 中,25sin =∠=ABEAEAB . (9)分∵AF =BF ,∴5==BF AF .………………………10分27. 解:(1)∵32++=bx ax y 过点M 、N (2,-5),6=MN ,由题意,得M (4-,5-).∴⎩⎨⎧-=+--=++.53416,5324b a b a 解得 ⎩⎨⎧-=-=.2,1b a∴此抛物线的解析式为322+--=x x y . (4)分(2)设抛物线的对称轴1-=x 交MN 于点G ,若△DMN 为直角三角形,则32121===MN GD GD .∴D 1(1-,2-),2D (1-,8-).………6分 直线MD 1为1-=x y ,直线2MD 为9--=x y .将P (x ,322+--x x )分别代入直线MD 1, 2MD得1322-=+--x x x ①,9322--=+--x x x ②.解①得11=x ,42-=x (舍),∴1P (1,0).…………7分解②得33=x ,44-=x (舍),∴2P (3,-12). ……………………………8分(3)设存在点Q (x ,322+--x x ),使得∠QMN =∠M .① 若点Q 在MN 上方,过点Q 作QH ⊥MN ,交MN 于点H ,12 / 13则4tan =∠=CNM MHQH. 即)(445322+=++--x x x .解得21-=x ,42-=x (舍)∴1Q (2-,3).…………10分 ②若点Q 在MN 下方,同理可得2Q (6,45-).………12分28.(1)55……………………………………2分 (2)由题意,EC =2t ,BF =t ,FC =5-t∵∠ECF =∠ACB ,∴以E 、C 、F 为顶点的三角形与△ACB 相似有两种情况: 当EC AC =FCBC时,△EFC ∽△ABC ∴2t 10=5-t 5,解得t =52…………2分 当EC BC =FCAC时,△FEC ∽△ABC ∴2t 5=5-t 10,解得t =1………6分 ∴当t =1或52秒时,以E 、C 、F 为顶点的三角形与△ABC 相似(3)当0<t <5时 过点G 作GH ⊥CG 交AC 于H∵∠ACB =90°,∴EF 为△ECF 的外接圆的直径 ∴∠EGF =90°,∴∠EGH =∠FGC ∵CG 平分∠ACB ,∴∠ECG =∠FCG =45° ∴EG ︵=FG ︵,∴EG =FG ∵∠ECG =45°,∴∠EHG =45° ∴∠EHG =∠FCG ,∴△EGH ≌△FGC ∴EH =FC∵∠EHG =∠ECG =45°,∴CH =2CGC ABEF GH CABEFCA BF GEM CABEF∵CH=CE+EH,∴CE+CF=2CG…………9分当t≥5时过点G作GM⊥CG交AC于M同理可得CE-CF=2CG …………12分13 / 13。
江苏省江都区六校2018届九年级中考模拟数学试卷(含答案)

江苏省江都区六校2018届九年级中考模拟数学试卷(含答案)(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置.......上) 1.一元二次方程x 2=2x 的解为( ▲ )A .x=0B .x=2C .x=0或x=2D .x=0且x=2 2.已知点A 在半径为r 的⊙O 内,点A 与点O 的距离为6,则r 的取值范围是( ▲ ) A .r >6 B .r ≥6 C .r <6 D .r ≤6 3.关于x 的一元二次方程(m-2)x 2+x+m 2-4=0有一个根为0,则m 的值应为( ▲ ) A .2 B .-2 C .2或﹣2 D .14.将抛物线y=x 2先向左平移3个单位,再向上平移1个单位,两次平移后得到的抛物线解析式为( ▲ )A .y=(x+3)2+1 B .y=(x+3)2-1 C .y=(x-3)2+1 D .y=(x-3)2-15.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论 错误的是( ▲ ) A .AC BC AB AC = B .BC AB BC ∙=2C .215-=AB AC D .618.0≈AC BC 6.如图,点P 在△ABC 的边AC 上,添加以下一个条件,不能判断△ABP∽△ACB 的是( ▲ ) A .∠ABP=∠C B .∠APB=∠ABC C .AC AB AB AP = D .CBACBP AB =第6题 第7题 第8题7.如图,AB 是⊙O 的直径,BC 是⊙O 的切线.点D 、E 在⊙O 上,若∠CBD=110°,则∠E 的度数是( ▲ )A .90°B .80°C .70°D .60°8.二次函数y=ax 2+bx+c(a≠0)的图象如图所示,给出下列结论:①b 2-4ac >0;②2a+b <0;③4a-2b +c=0;④a∶b ∶c=-1∶2∶3.其中正确的是( ▲ )A .①②B .②③C .③④D .①④二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.若21=y x ,则=+yx y▲ . 10.已知m 是方程x 2-4x-2=0的一个根,则代数式2m 2-8m+1的值为 ▲ .11.某超市九月份的营业额为50万元,十一月份的营业额为72万元.则每月营业额的平均增长率为 ▲ .12.若一个圆锥的底面圆的半径为3cm ,母线长6cm ,则该圆锥的侧面积是 ▲ cm 2. 13.点A (-3,y 1),B (2,y 2),C (3,y 3)在抛物线y=x 2-2x 上,则y 1,y 2,y 3的大小关系是 ▲ .(用“<”连接)14.如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AE .若∠D=72°,则∠BAE= ▲ °.第14题 第15题 第16题15.如图,学校将一面积为110m 2的矩形空地一边增加4m ,另一边增加5m 后,建成了一个正方形训练场,则此训练场的面积为 ▲ m 2.16.如图,点G 是△ABC 的重心,GE ∥AB 交BC 于点E ,GF ∥AC 交BC 于点F ,若△GEF 的周长是2,则△ABC 的周长为 ▲ .17.二次函数y=ax 2+bx+c(a ≠0)和一次函数y=-x+3的图象交于A(-2,m),B(1,n)两点,则方程ax 2+(b+1)x+c-3=0(a ≠0)的根为 ▲ . 18.如右图,已知A (6,0),B (4,3)为平面直角坐标系内两点,以点B 圆心的⊙B 经过原点O ,BC ⊥x 轴于点C ,点D 为⊙B 上一动点,E 为AD 的中点,则线段CE 长度的最大值为 ▲ . 第18题三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)用适当的方法解下列方程:(1)(x-1)2-9=0 (2)5x2+2x-1=0.20.(本题满分8分)已知关于x的一元二次方程kx2-4x+2=0有实数根.(1)求k的取值范围;(2)若△ABC中,AB=AC=2,AB、BC的长是方程kx2-4x+2=0的两根,求BC的长.21.(本题满分8分)已知二次函数y=x2-2x-3.(1)求函数图象的顶点坐标,与x轴和y轴的交点坐标,并画出函数的大致图象;(2)根据图象直接回答:当x满足▲ 时,y<0;当-1<x<2时,y的范围是▲ .22.(本题满分8分)如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.23.(本题满分10分)如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.24.(本题满分10分)如图,四边形ABCD内接于⊙O,AC是⊙O的直径,过点B作BE⊥AD,垂足为点E,AB平分∠CAE.(1)判断BE与⊙O的位置关系,并说明理由;(2)若∠ACB=30°,⊙O的半径为4,请求出图中阴影部分的面积.。
扬州市中考数学二模试卷

扬州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分)(2018·宜宾模拟) 下列运算正确的是()A . 3a2﹣2a2=1B . a2•a3=a6C . (a﹣b)2=a2﹣b2D . (a+b)2=a2+2ab+b22. (2分)与是同类二次根式的是()A .B .C .D .3. (2分)(2017·冷水滩模拟) 下列说法正确的是()A . 要了解我市九年级学生的身高,应采用普查的方式B . 若甲队成绩的方差为5,乙队成绩的方差为3,则甲队成绩不如乙队成绩稳定C . 如果明天下雨的概率是99%,那么明天一定会下雨D . 一组数据4,6,7,6,7,8,9的中位数和众数都是64. (2分) (2020八下·哈尔滨月考) 若三角形三个内角的度数比为1:1:2,则此三角形三个内角的对边的比为()A . 1:1:2B .C .D . 1:1:45. (2分)(2018·达州) 平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知 =(x1 , y1), =(x2 , y2),若x1x2+y1y2=0,则与互相垂直.下面四组向量:① =(3,﹣9), =(1,﹣);② =(2,π0), =(2﹣1 ,﹣1);③=(cos30°,tan45°), =(sin30°,tan45°);④ =( +2,), =(﹣2,).其中互相垂直的组有()A . 1组B . 2组C . 3组D . 4组6. (2分)(2011·来宾) 已知⊙O1和⊙O2的半径分别是4和5,且O1O2=8,则这两个圆的位置关系是()A . 外离B . 外切C . 相交D . 内含二、填空题: (共12题;共16分)7. (1分)把3x3﹣6x2y+3xy2分解因式的结果是________ .8. (2分)已知方程3ax2﹣bx﹣1=0和ax2+2bx﹣5=0有共同的根﹣1,则a=________,b=________.9. (1分)(2016·呼伦贝尔) 不等式组的解集是________.10. (1分)代数式中,自变量x的取值范围是________11. (1分)关于x的一元二次方程的两个实数根分别是,且,则m的值是________.12. (1分)如图,在平面直角坐标系中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(-4,0),点D的坐标为(-1,4),反比例函数的图象恰好经过点C,则k的值为________.13. (1分) (2015九上·重庆期末) 从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是________.14. (1分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2 ,如此继续下去,则正六边形A4B4C4D4E4F4的面积是________.15. (1分)(2020·北京模拟) 如图,在正方形 ABCD 中,对角线 AC,BD 相交于点 O,E 是 OB 的中点,连接 AE 并延长交 BC 于点 F,若△BEF 的面积为 2,则△AED 的面积为________.16. (4分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是________ 并补全频数分布直方图;(2)C组学生的频率为________ ,在扇形统计图中D组的圆心角是________ 度;(3)请你估计该校初三年级体重超过60kg的学生大约有________ 名?17. (1分) (2019九上·潮南期末) 如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E.若DE=1,则AC的长为________.18. (1分)(2017·淄川模拟) 如图,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F,现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1 ,若△E1FA1∽△E1BF,则AD=________.三、解答题: (共7题;共70分)19. (10分) (2018八下·广东期中) 计算:(1);(2)(2 )()20. (5分) (2019九上·南海月考) 解一元二次方程21. (15分)如图,已知直线l:y=kx+b(k<0,b>0,且k、b为常数)与y轴、x轴分别交于A点、B点,双曲线C:y=(x>0).(1)当k=﹣1,b=2 时,求直线l与双曲线C公共点的坐标;(2)当b=2 时,求证:不论k为任何小于零的实数,直线l与双曲线C只有一个公共点(设为P),并求公共点P的坐标(用k的式子表示).(3)①在(2)的条件下,试猜想线段PA、PB是否相等.若相等,请加以证明;若不相等,请说明理由;②若直线l与双曲线C相交于两点P1、P2 ,猜想并证明P1A与P2B之间的数量关系.22. (5分) (2017八下·定安期末) 列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?23. (15分)(2017·薛城模拟) 如图(1),E是正方形ABCD的边BC上的一个点(E与B,C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当 = 时,求sin∠CFE的值.24. (10分)(2019·永昌模拟) 如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;25. (10分)(2019·湖州) 已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2: y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,为半径画圆.①当点Q与点C重合时,求证: 直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN. 问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.参考答案一、选择题: (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题: (共12题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题: (共7题;共70分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、25-1、。
扬州市九年级中考数学全真模拟试卷(二)

扬州市九年级中考数学全真模拟试卷(二)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·萧山模拟) 相反数不大于它本身的数是()A . 正数B . 负数C . 非正数D . 非负数2. (2分)(2018·河东模拟) 据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A . 0.1263×108B . 1.263×107C . 12.63×106D . 126.3×1053. (2分)将一张正方形纸片,按如图步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A .B .C .D .4. (2分)(2018·随州) 下列运算正确的是()A . a2•a3=a6B . a3÷a﹣3=1C . (a﹣b)2=a2﹣ab+b2D . (﹣a2)3=﹣a65. (2分)若一组数据1、a、2、3、4的平均数与中位数相同,则a不可能是下列选项中的()A . 0B . 2.5C . 3D . 56. (2分) (2019七下·长兴期末) 如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需要将方向调整到与出发时一致,则方向的调整应为()A . 左转80°B . 右转80°C . 左转100°D . 右转100°7. (2分)在实数范围内定义一种新运算“*”,其规则是a*b=a2-b2,如果(x+2)*5>(x-5)(5+x),则x的取值范围是()A . x>-1B . x<-1C . x>46D . x<468. (2分)如图,已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线BC为轴旋转一周得一个圆锥,则这个圆锥的表面积为()cm2.A . 65πB . 90πC . 156πD . 300π9. (2分)(2013·宜宾) 若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A . k<1B . k>1C . k=1D . k≥010. (2分) (2018九上·宁波期中) 如图,有一块直角三角形余料ABC,∠BAC=90°,G,D分别是AB,AC 边上的一点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,若BF=4.5cm,CE=2cm,则GF的长为()A . 3cmB . 2 cmC . 2.5cmD . 3.5cm11. (2分)(2019·石家庄模拟) 如图为二次函数y=ax2+bx+c的图象,在下列说法中正确的是,()① ac>0 ②方程ax2+bx+c=0的根是x1=-1,x2=3③a+b+c<0④当x>1时,y随x的增大而增大A . ①③B . ②④C . ①②④D . ②③④12. (2分)如图,点D、E分别在AB、AC上,以下能推得DE∥BC的条件是()A . AD:AB=DE:BCB . AD:DB=DE:BCC . AD:DB=AE:ECD . AE:AC=AD:DB二、填空题 (共6题;共6分)13. (1分)(2017·西华模拟) 化简:的结果是________.14. (1分)如图,一个零件的横截面是六边形,这个六边形的内角和为________15. (1分) (2020七下·郑州期末) 有一种数字游戏,操作步骤为:第一步,任意写一个自然数(以下简称为原数,原数中至少有一个偶数数字),且位数小于10;第二步,再写一个新三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数。
江苏省扬州市2018届九年级数学第二次模拟考试试题

2018年中考模拟考试数学试题(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1. 下列运算中不正确的是A.325a a a +=B. 523a a a =⋅ C 。
32a a a ÷= D 。
326()a a = 2.如图,数轴的单位长度为1,若点A ,B 表示的数的绝对值相等,则点A 表示的数是 A 。
4 B. 0C. -2 D 。
—4 3.下列根式中,能与8合并的二次根式是A .12B .18C .20D .27 4.如图是某几何体的三视图,该几何体是A .三棱柱B 。
长方体 C. 圆锥 D. 圆柱 5.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35︒,则∠OAB 的度数是 ( ▲ )A .70︒B .65︒C .55︒D .35︒.6.如图,在△ABC 中,∠CAB =55°,将△ABC 在平面内绕点A 逆时针旋转到△AB ′C′的位置,使CC ′∥AB ,则旋转角的度数至少为 A .15°B .55°C .60°D .70°7.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中正确的是研发组 管理组 操作组(第6题)C ′ B ′ACB(第4题)D O CBA(第5题)xA(第2题)日工资(元/人) 300 280 260 人数(人)345A .团队平均日工资增大B. 日工资的方差不变C. 日工资的中位数变小 D 。
日工资的众数变大 8.如图,在平面直角坐标系xOy 中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,4), 反比例函数ky x =的图象与菱形对角线AO 交于D 点,连接BD , 当BD ⊥x 轴时,k 的值是 A .350- B .225-C .12-D .425-二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.据统计,2018年扬州春节黄金周共接待游客约806 000人次,数据“806 000"用科学记数法可表示为 ▲ 。
江苏省扬州市江都区邵凡片2018届中考数学第二次模拟试题

江苏省扬州市江都区邵凡片2018届中考数学第二次模拟试题(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.) 1.计算52-+的结果是( ▲ )A .3B .2C .-3D .-2 2.下列各式计算正确的是( ▲ )A. 632a a a =⋅ B. a a a =÷44C.()235aa = D.2222a a a -=3.如图是某个几何体的三视图,该几何体是( ▲ )A .三棱柱B .圆柱C .六棱柱D .圆锥 4.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ▲ ) A .45︒B .60︒C .72︒D .90︒5.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变化可以是( ▲ ) A .关于x 轴对称 B .关于y 轴对称C .绕原点逆时针旋转90° D .绕原点顺时针旋转90° (第3题)6.如图,在Rt △ABC 中,∠ACB = 90°,BC = 2.将△ABC 绕顶点C 逆时针旋转得到△A BC '',使点B '落在AC 边上.设M 是A B ''的中点,连接BM ,CM ,则△BCM 的面积为( ▲ ) A .1 B .2 C .3D .47.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ⊕B=(x 1+x 2)+(y 1+y 2).例如,A (﹣5,4),B (2,﹣3),A ⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C ,D ,E ,F ,满足C ⊕D=D ⊕E=E ⊕F=F ⊕D ,则C ,D ,E ,F 四点( ▲ )A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点8.8.如图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若AC =6,BC =8,则ADDE的最大值为 ( ) A .21 B . 31C .43 D .22俯视图左视图主视图BACA 'B 'M(第6题)(第8题图)二、填空题(本大题共有10小题,每小题3分,共30分.)9.据统计,2018年扬州五一黄金周共接待游客约3500000人次,数据“3500000”用科学记数法可表示为 ▲ . 10x 的取值范围是 ▲ . 11.已知:42=+a a ,则代数式)2)(2()12(-+-+a a a a 的值是 ▲ .12.如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D = 72°,则∠BAE = ▲ °.(第12题)13.已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的方差是 ▲ . 14.点A (a ,b )是一次函数y=x ﹣2与反比例函数y= 的交点,则a 2b ﹣ab 2= ▲ . 15.圆锥的母线长为11cm ,侧面积为33πcm 2,圆锥的底面圆的半径为 ▲ .16.如图,G 为△ABC 的重心,DE 过点G ,且DE ∥BC ,交AB 、AC ,分别于D 、E 两点,若△ADE 的面积为5,则四边形BDEC 的面积为 ▲ .(0x > )的图像过17.如图,矩形ABCD 中,E 是AC 的中点,点A 、B 在x 轴上.若函数D 、E 两点,则矩形ABCD 的面积为 ▲ .18.如图,已知点A 是第一象限内横坐标为 3 的一个定点,AC ⊥x 轴于点M ,交直线y =﹣x 于点N .若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是 ▲ .三、解答题(本大题共有10小题,共96分.)19.(本题满分8分)(1)计算:(2)解不等式组:第18题图21)()2sin 3022o π-+--(第17题)yC8y x=20.(8分)先化简,再求值:12)113(2+-÷+-+x x x x x ,其中-2≤x ≤2,请从x 的范围中选入一个你喜欢的值代入,求此分式的值.21.(本题满分8分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下 (1)样本中D 级的学生人数占全班学生人数的百分比是 ▲ ; (2)扇形统计图中A 级所在的扇形的圆心角度数是 ▲ ; (3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和.22.(本题满分8分)聪聪参加我市电视台组织的“阳光杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题聪聪都不会,不过聪聪还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项). (1)如果聪聪两次“求助”都在第一道题中使用,那么聪聪通关的概率是 ▲ . (2)如果聪聪将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.23. (本题满分8分)如图:在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线交BC 于点E(尺规作图的痕迹保留在图中了), 连接EF . (1)求证:四边形ABEF 为菱形;(2)AE ,BF 相交于点O ,若BF =6,AB =5,求AE 的长.B 46%C 24%D A 20%等级524.(本题满分10分)几个小伙伴打算去音乐厅观看演出,他们准备用350元购买门票.下面是两个小伙伴的对话:小芳:今天看演出,如果我们每人一张票,会差两张票的钱.小明:过两天就是“儿童节”了,到时票价会打七折,我们每人一张票,还能剩35元钱呢!根据对话的内容,请你求出小伙伴们的人数.25. (本题满分10分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长50AB =cm ,拉杆BC 的伸长距离最大时可达35cm ,点A ,B ,C 在同一条直线上.在箱体底端装有圆形的滚轮⊙A ,⊙A 与水平地面MN 相切于点D .在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平地面的距离CE 为59cm . 设AF ∥MN .(1)求⊙A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,CAF ∠=64°.求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos 640.39︒≈,tan 64 2.1︒≈)26.(本题满分10分)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,4AB =.(1)求PEPB的值; (2)当PCE ∆是以PC 为底的等腰三角形时.请求出AP 的值;(第25题图1)(第25题图2)A BCDE F NG M第26题27.(本题满分12分)对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的“等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A2),顶点C 、D 在x 轴上,且OC =OD.(1)当⊙P 的半径为4时,①在P 1(0,3-),P 2(3),P 3(-,1)中可以成为矩形ABCD 的“等距圆”的圆心的是 ▲ ; ②如果点P在直线1y x =+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标; (2)已知点P 在y 轴上,且⊙P 是矩形ABCD 的“等距圆”,如果⊙P 与直线AD 没有公共点,直接28.(本题满分12分)如图,在平面直角坐标系xoy 中,抛物线23y ax bx =++与x 轴交于点A (-3,0),C (1,0),与y 轴交于点B. (1)求此抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A,B 重合),过点P 作x 轴的垂线,垂足交点为F ,交直线AB 于点E ,作AB PD ⊥于点D.①点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;②连接PA ,以PA 为边作正方形APMN ,当顶点M 或N 恰好落在抛物线对称轴上时,求出对应的P 点的坐标.九年级数学参考答案及评分 一、选择题:(每题3分,共24分)二、填空题:(每题3分,共30分)9、6105.3⨯ 10、 31-≥x 11、 8 12、36 13、 24514、8 15、3 16、25417、16 18三、解答题:(本大题有10题,共96分) 19.(本题满分8分)(1)原式= 2…………4分 (2)51<≤x …………8分 20. (本题满分8分) 原式=xx -+2…………6分 当x =1时,原式=-3;或当x =-2时,原式=0………………8分 21. (本题满分8分)(1)10% (2)72 (3)5(画图) (4)330 (每题2分) 22.(本题满分8分)(1)14…………2分 (2) P=16…………6分23. (本题满分10分)(1)证明:(2)1 23为平行四边形是平行四边形=,由作图可知://3132//21∴=∴==∴∠=∠∴∠=∠∴∴∠∠=ABEF BEAF BE AF AF AB BE AB BE AF ABCD AB AF 分为菱形1084532,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=∴=∴==∴=⊥∴AE AO AB BO BO BF BF AE ABEF24. (本题满分10分)解:(1)设小伙伴人数是x 人, 由题意得,xx 353507.02350-=⨯-,………………5分 解得,x=9。
江苏省扬州市江都区九年级上学期第二次月考模拟数学试题

江苏省扬州市江都区九年级上学期第二次月考模拟数学试题一、选择题1.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定2.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,953.在△ABC 中,若|sinA ﹣12|+2cosB )2=0,则∠C 的度数是( ) A .45° B .75°C .105°D .120°4.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1 B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠05.若25x y =,则x yy+的值为( ) A .25B .72 C .57D .756.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π7.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10B .10,9C .8,9D .9,108.已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为( ) A .相交 B .相切 C .相离 D .无法确定 9.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣202110.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--11.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-12.一个扇形的半径为4,弧长为2π,其圆心角度数是( ) A .45B .60C .90D .18013.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断 14.抛物线y =(x ﹣2)2+3的顶点坐标是( ) A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)15.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣2二、填空题16.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2. 17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.二次函数y=x 2−4x+5的图象的顶点坐标为 .19.二次函数y =x 2﹣bx +c 的图象上有两点A (3,﹣2),B (﹣9,﹣2),则此抛物线的对称轴是直线x =________.20.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.22.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是__________________________. 23.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.24.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.25.关于x 的方程220kx x --=的一个根为2,则k =______. 26.方程290x 的解为________.27.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.28.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.29.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.30.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.三、解答题31.如图,在矩形纸片ABCD 中,已知2AB =6=BC E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.32.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为x 元(30x >)时,每周的销售量y (件)满足关系式:10600y x =-+.(1)若每周的利润W 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当3552x ≤≤时,求每周获得利润W 的取值范围.33.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.34.一只不透明的袋子中装有标号分别为1、2、3、4、5的5个小球,这些球除标号外都相同.(1)从袋中任意摸出一个球,摸到标号为偶数的概率是 ;(2)先从袋中任意摸出一个球后不放回,将球上的标号作为十位上的数字,再从袋中任意摸出一个球,将球上的标号作为个位上的数字,请用画树状图或列表的方法求组成的两位数是奇数的概率.35.如图①,在矩形ABCD 中,BC =60cm .动点P 以6cm /s 的速度在矩形ABCD 的边上沿A →D 的方向匀速运动,动点Q 在矩形ABCD 的边上沿A →B →C 的方向匀速运动.P 、Q 两点同时出发,当点P 到达终点D 时,点Q 立即停止运动.设运动的时间为t (s ),△PDQ 的面积为S (cm 2),S 与t 的函数图象如图②所示. (1)AB = cm ,点Q 的运动速度为 cm /s ;(2)在点P 、Q 出发的同时,点O 也从CD 的中点出发,以4cm /s 的速度沿CD 的垂直平分线向左匀速运动,以点O 为圆心的⊙O 始终与边AD 、BC 相切,当点P 到达终点D 时,运动同时停止.①当点O 在QD 上时,求t 的值;②当PQ 与⊙O 有公共点时,求t 的取值范围.四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.38.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13 ,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x ,…. 【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M ,N ,P 为⊙O 上的三点,且∠P=β,sinβ=35 ,求sin2β的值.39.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .3.C解析:C 【解析】 【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A 、∠B 的度数,根据三角形内角和定理计算即可. 【详解】由题意得,sinA-12=0,2-cosB=0,即sinA=12,2=cosB , 解得,∠A=30°,∠B=45°, ∴∠C=180°-∠A-∠B=105°, 故选C . 【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.4.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.5.D解析:D 【解析】 【分析】由已知可得x 与y 的关系,然后代入所求式子计算即可. 【详解】 解:∵25x y ,∴25x y =, ∴2755y yx y y y ++==.故选:D. 【点睛】本题考查了比例的性质,属于基础题型,熟练掌握比例的性质是解题关键.6.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.7.D解析:D 【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10, 最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10; 故选D .考点:众数;中位数.8.B解析:B 【解析】 【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切. 【详解】∵圆心到直线的距离5cm=5cm , ∴直线和圆相切, 故选B . 【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.9.A解析:A 【解析】 【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可. 【详解】 解:根据题意,得 a 2+3a ﹣1=0, 解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020. 故选:A. 【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键10.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).11.C解析:C 【解析】 【分析】利用两个根和的关系式解答即可. 【详解】 两个根的和=1122b a , 故选:C. 【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 12.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.13.B解析:B【解析】【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦- ()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦ ()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦ ∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】 此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.14.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.15.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题16.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 19.-3【解析】【分析】观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.【详解】解:∵ A(3,﹣解析:-3【解析】【分析】观察A (3,﹣2),B (﹣9,﹣2)两点坐标特征,纵坐标相等,可知A,B 两点关于抛物线对称轴对称,对称轴为经过线段AB 中点且平行于y 轴的直线.【详解】解:∵ A (3,﹣2),B (﹣9,﹣2)两点纵坐标相等,∴A,B 两点关于对称轴对称,根据中点坐标公式可得线段AB 的中点坐标为(-3,-2),∴抛物线的对称轴是直线x= -3.【点睛】本题考查二次函数图象的对称性及对称轴的求法,常见确定对称轴的方法有,已知解析式则利用公式法确定对称轴,已知对称点利用对称性确定对称轴,根据条件确定合适的方法求对称轴是解答此题的关键.20.【解析】【分析】作AB 的中点E,连接EM,CE,AD 根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM 和CE 长,再根据三角形的三边关系确定CM 长度的范围,从而确定CM 的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=2222435AC BC+=+=∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点. 21.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.22.50(1﹣x)2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.解析:50(1﹣x )2=32.【解析】由题意可得,50(1−x)²=32,故答案为50(1−x)²=32.23..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.24.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:5 8【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.25.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.26.【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.故答案为.【点睛】本题考查了解一元二次方程-直接开平方法,解这x=±解析:3【解析】【分析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根.【详解】解:移项得x2=9,解得x=±3.x=±.故答案为3【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.27.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.28.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.29.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.30.0【解析】把x=1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==. 此方程为一元二次方程,10k ∴-≠,即1k ≠,0.k ∴=故答案为0.三、解答题31.(1)22,30;(2)2322CE =-;(3)CC '的长223π=【解析】 【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC +=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒(2)由已知条件得出,A 2B '=,D 2B '=,D 62C '= 易证AB D DC E ''∆∆∽∴C E DC BD AB ''='' ∴622CE =∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长602222π⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.32.(1)售价应定为每件40元;(2)每周获得的利润的取值范围是1250元W ≤≤2250元.【解析】【分析】(1)根据题意列出方程即可求解;(2)根据题意列出二次函数,根据3552x ≤≤求出W 的取值.【详解】解:(1)根据题意得()()30106002000x x --+=,解得140x =,250x =.∵让消费者得到最大的实惠,∴140x =.答:售价应定为每件40元.(2)()()230106001090018000W x x x x =--+=-+- ()210452250x =--+.∵100-<,∴当45x =时,W 有最大值2250.当35x =时,1250W =;当52x =时,1760W =.∴每周获得的利润的取值范围是1250元W ≤≤2250元.【点睛】此题主要考查二次函数的应用,解题的关键是根据题意找到等量关系列出方程或二次函数进行求解.33.(1)见解析;(2)8 833π-【解析】【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=3OC=43,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠BCO=90°,∵CA=CD,BC=BD,∴∠A=∠D=∠BCD,又∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCD,∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,∴CD⊥OC,∵OC是⊙O的半径,∴CD与⊙O相切;(2)解:∵AB=8,∴OC=OB=4,由(1)得:∠A=∠D=∠BCD,∴∠OBC=∠BCD+∠D=2∠D,∵∠BOC=2∠A,∴∠BOC=∠OBC,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴∠BOC=60°,∵∠OCD=90°,∴∠D=90°-60°=30°,∴CD=3OC=43,∴图中阴影部分的面积=△OCD的面积-扇形OBC的面积=12×4×43-2604360⨯π=83-83π.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.34.(1)25;(2)组成的两位数是奇数的概率为35.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有20种等可能的结果数,找出组成的两位数是奇数的结果数,然后根据概率公式计算.【详解】解:(1)从袋中任意摸出一个球,摸到标号为偶数的概率25 =;故答案为:25;(2)画树状图为:共有20种等可能的结果数,其中组成的两位数是奇数的结果数为12,所以组成的两位数是奇数的概率123 205 ==.【点睛】本题主要考查了列表法与树状图法求概率,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.35.(1)30,6;(2)①457;②15322-≤t≤15322+.【解析】【分析】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB 的长;(2)①如图1,设AB ,CD 的中点分别为E ,F ,当点O 在QD 上时,用含t 的代数式分别表示出OF ,QC 的长,由OF =12QC 可求出t 的值; ②设AB ,CD 的中点分别为E ,F ,⊙O 与AD ,BC 的切点分别为N ,G ,过点Q 作QH ⊥AD 于H ,如图2﹣1,当⊙O 第一次与PQ 相切于点M 时,证△QHP 是等腰直角三角形,分别用含t 的代数式表示CG ,QM ,PM ,再表示出QP ,由QP QH 可求出t 的值;同理,如图2﹣2,当⊙O 第二次与PQ 相切于点M 时,可求出t 的值,即可写出t 的取值范围.【详解】(1)设点Q 的运动速度为a ,则由图②可看出,当运动时间为5s 时,△PDQ 有最大面积450,即此时点Q 到达点B 处, ∵AP =6t ,∴S △PDQ =12(60﹣6×5)×5a =450, ∴a =6,∴AB =5a =30,故答案为:30,6; (2)①如图1,设AB ,CD 的中点分别为E ,F ,当点O 在QD 上时,QC =AB +BC ﹣6t =90﹣6t ,OF =4t ,∵OF ∥QC 且点F 是DC 的中点,∴OF =12QC , 即4t =12(90﹣6t ), 解得,t =457; ②设AB ,CD 的中点分别为E ,F ,⊙O 与AD ,BC 的切点分别为N ,G ,过点Q 作QH ⊥AD 于H ,如图2﹣1,当⊙O 第一次与PQ 相切于点M 时,∵AH +AP =6t ,AB +BQ =6t ,且BQ =AH ,∴HP =QH =AB =30,∴△QHP 是等腰直角三角形,∵CG =DN =OF =4t ,∴QM =QG =90﹣4t ﹣6t =90﹣10t ,PM =PN =60﹣4t ﹣6t =60﹣10t ,∴QP =QM +MP =150﹣20t ,∵QP QH ,∴150﹣20t =,∴t =152;。
2024年江苏省扬州市江都区邵樊片九年级数学中考第二次模拟试卷

2024年江苏省扬州市江都区邵樊片九年级数学中考第二次模拟试卷一、单选题(★) 1. 的值等于()A.3B.C.D.(★★) 2. 下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4D.x5÷x=x5(★★) 3. 下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.4(★★) 4. 一组数据1,2,3,3,4,5若添加一个数据3,则下列统计量中,发生变化的是( )A.平均数B.众数C.中位数D.方差(★) 5. 若关于x的不等式组有且仅有两个整数解,则a取值范围为()A.B.C.D.(★★) 6. 如图,已知D、E分别是△ABC的AB、AC边上的一点,DE∥BC,△ADE与四边形DBCE的面积之比为1:3,则AD:AB为()A.1:4B.1:3C.1:2D.1:5(★★) 7. 如图,是的直径,切于点,交于点,连接,若,则∠ABC为()A.B.C.D.(★★★) 8. 如图,直线分别交坐标轴于点C、D,x轴上一点A关于直线的对称点坐标为,则k的值为()A.B.C.D.二、填空题(★) 9. 太阳半径约为696 000 000 m,用科学记数法表示为___________________ m.(★★) 10. 在实数范围内分解因式:2 x2﹣32= _____ .(★) 11. 若二次根式有意义,则x的取值范围是 ______ .(★★) 12. 某公司今年一月盈利30万元,三月盈利36.3万元,从一月到三月,每月盈利的增长率都相同,设月平均增长率为x,根据题意可列方程为_______________ .(★★★) 13. 一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为 _____ cm 2.(★★★) 14. 如图,在正十边形中,连接、,则 ______ °(★★) 15. 如图,在平面直角坐标系中,O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数的图像上,若菱形OABC的面积为24,则k= ______ .(★★) 16. 如图,在平行四边形ABCD中,已知点E在边BC上,∠BAE=∠DAC,AB=7,AD=10 ,则CE= _____ .(★★★) 17. 若关于的分式方程无解,则的值为 _______ .(★★★★) 18. 在平面直角坐标系中,已知点,若抛物线与线段有两个不同的交点,则a的取值范围是________ .三、解答题(★★) 19. 计算:(1)(2)(★★) 20. 解不等式组,并求出它的所有整数解的和.(★★) 21. 某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴趣小组.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?(★★★) 22. 五一劳动节期间,扬州迎来四面八方的游客,小明从个园、何园、瘦西湖、大运河博物馆这4个景点中随机选择1个景点游玩.(1)小明选择去瘦西湖的概率;(2)小明从景点中任意选择2个游玩,请用列表或画树状图的方法,求出小明选择个园、大运河博物馆这两个景点的概率.(★★★) 23. 为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.(★★★)24. 如图,在正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC =∠DEC ;(2)当CE=CD时,求证:.(★★★) 25. 如图,在中,,以AB为直径的分别交AC、BC于点D、E,BC的延长线与的切线AF交于点F.(1)求证:;(2)若,,求CE,AF的长.(★★★★) 26. 请用无刻度的直尺和圆规作图:(1)如图1,在上求作点D,使;(2)如图2,若点D在边上,在上求作点E,使.(★★★★) 27. 教师节前夕,某花店采购了一批鲜花礼盒,成本价为50元/件,物价局要求,销售该鲜花礼盒获得的利润率不得高于52%.分析教师节同期的鲜花礼盒销售情况,发现每天的销售量y(件)与销售单价x(元/件)(x为整数)近似的满足一次函数关系,数据如表:(注:利润率=利润/成本)(1)求y与x的函数关系式;(2)试确定销售单价取何值时,花店销售该鲜花礼盒每天获得的利润最大?并求出最大利润;(3)花店承诺:每销售一件鲜花礼盒就捐赠n元()给“希望工程”.若扣除捐赠后的日利润随着销售单价x的增大而增大,请直接写出n的取值范围是.(★★★★) 28. 问题提出(1)如图1,在中,点D在BC上,连接AD,,则与的面积之比为______;问题探究(2)如图2,在矩形ABCD中,,,点P为矩形内一动点,在点P运动的过程中始终有,求面积的最大值;(结果保留根号)问题解决(3)如图3,某市欲规划一块形如平行四边形ABCD的休闲旅游观光区,点A为观光区的入口,并满足,要求在边BC上确定一点E为观光区的南门,为了方便市民游览,修建一条观光通道AE(观光通道的宽度不计),且,米,为了容纳尽可能多的游客,要求平行四边形ABCD的面积最大,请问是否存在满足上述条件的面积最大的平行四边形ABCD?若存在,求出平行四边形ABCD的最大面积;若不存在,请说明理由.(结果保留根号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邵樊片九年级数学二模试卷(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共有8小题,每小题3分,共24分.) 1.计算52-+的结果是( ▲ )A .3B .2C .-3D .-2 2.下列各式计算正确的是( ▲ )A. 632a a a =⋅ B. a a a =÷44C.()235aa = D.2222a a a -=3.如图是某个几何体的三视图,该几何体是( ▲ )A .三棱柱B .圆柱C .六棱柱D .圆锥 4.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ▲ ) A .45︒B .60︒C .72︒D .90︒5.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变化可以是( ▲ ) A .关于x 轴对称 B .关于y 轴对称C .绕原点逆时针旋转90° D .绕原点顺时针旋转90° (第3题)6.如图,在Rt △ABC 中,∠ACB = 90°,BC = 2.将△ABC 绕顶点C 逆时针旋转得到△A B C '',使点B '落在AC 边上.设M 是A B ''的中点,连接BM ,CM ,则△BCM 的面积为( ▲ ) A .1 B .2 C .3 D .47.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ⊕B=(x 1+x 2)+(y 1+y 2).例如,A (﹣5,4),B (2,﹣3),A ⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C ,D ,E ,F ,满足C ⊕D=D ⊕E=E ⊕F=F ⊕D ,则C ,D ,E ,F 四点( ▲ )A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点8.8.如图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若俯视图左视图主视图 BACA 'B 'M(第6题)(第8题图)AC =6,BC =8,则ADDE的最大值为 ( ) A .21 B . 31C .43 D .22二、填空题(本大题共有10小题,每小题3分,共30分.)9.据统计,2018年扬州五一黄金周共接待游客约3500000人次,数据“3500000”用科学记数法可表示为 ▲ . 10x 的取值范围是 ▲ . 11.已知:42=+a a ,则代数式)2)(2()12(-+-+a a a a 的值是 ▲ .12.如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D = 72°,则∠BAE = ▲ °.(第12题)13.已知一组数据1,a ,3,6,7,它的平均数是4,这组数据的方差是 ▲ . 14.点A (a ,b )是一次函数y=x ﹣2与反比例函数y= 的交点,则a 2b ﹣ab 2= ▲ . 15.圆锥的母线长为11cm ,侧面积为33πcm 2,圆锥的底面圆的半径为 ▲ . 16.如图,G 为△ABC 的重心,DE 过点G ,且DE ∥BC ,交AB 、AC ,分别于D 、E 两点,若△ADE 的面积为5,则四边形BDEC 的面积为 ▲ . (0x > )的图像过17.如图,矩形ABCD 中,E 是AC 的中点,点A 、B 在x 轴上.若函数D 、E 两点,则矩形ABCD 的面积为 ▲ .18.如图,已知点A 是第一象限内横坐标为 3 的一个定点,AC ⊥x 轴于点M ,交直线y =﹣x 于点N .若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B第18题图C8y x=运动的路径长是 ▲ .三、解答题(本大题共有10小题,共96分.)19.(本题满分8分)(1)计算:(2)解不等式组:20.(8分)先化简,再求值:12)113(2+-÷+-+x xx x x ,其中-2≤x ≤2,请从x 的范围中选入一个你喜欢的值代入,求此分式的值.21.(本题满分8分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下 (1)样本中D 级的学生人数占全班学生人数的百分比是 ▲ ; (2)扇形统计图中A 级所在的扇形的圆心角度数是 ▲ ; (3)请把条形统计图补充完整;(4)若该校九年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数之和.B 46%C 24%D A 20%等级DCB5021)()2sin 3022o π-+--22.(本题满分8分)聪聪参加我市电视台组织的“阳光杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题聪聪都不会,不过聪聪还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果聪聪两次“求助”都在第一道题中使用,那么聪聪通关的概率是▲.(2)如果聪聪将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.23. (本题满分8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.24.(本题满分10分)几个小伙伴打算去音乐厅观看演出,他们准备用350元购买门票.下面是两个小伙伴的对话:小芳:今天看演出,如果我们每人一张票,会差两张票的钱.小明:过两天就是“儿童节”了,到时票价会打七折,我们每人一张票,还能剩35元钱呢!根据对话的内容,请你求出小伙伴们的人数.25.(本题满分10分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端50装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C端拉旅行箱时,CE为80cm,CAF∠=64°.求此时拉杆BC的伸长距离.(精确到1cm ,参考数据:sin 640.90︒≈,cos 640.39︒≈,tan 64 2.1︒≈)26.(本题满分10分)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,4AB =. (1)求PEPB的值; (2)当PCE ∆是以PC 为底的等腰三角形时.请求出AP 的值;27.(本题满分12分)对于⊙P 及一个矩形给出如下定义:如果⊙P 上存在到此矩形四个顶点距离都相等的点,那么称⊙P 是该矩形的“等距圆”.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A2),顶点C 、D 在x 轴上,且OC =OD.(1)当⊙P 的半径为4时,①在P 1(0,3-),P 2(3),P 3(-,1)中可以成为矩形ABCD 的“等距圆”的圆心的是 ▲ ; ②如果点P在直线1y x =+上,且⊙P 是矩形ABCD 的“等距圆”,求点P 的坐标; (2)已知点P 在y 轴上,且⊙P 是矩形ABCD 的“等距圆”,如果⊙P 与直线AD没有公共点,直接(第25题图1)(第25题图2)ABCDE F NG M第26题写出点P 的纵坐标m 的取值范围.28.(本题满分12分)如图,在平面直角坐标系xoy 中,抛物线23y ax bx =++与x 轴交于点A (-3,0),C (1,0),与y 轴交于点B. (1)求此抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A,B 重合),过点P 作x 轴的垂线,垂足交点为F ,交直线AB 于点E ,作AB PD 于点D.①点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;②连接PA ,以PA 为边作正方形APMN ,当顶点M 或N 恰好落在抛物线对称轴上时,求出对应的P 点的坐标.九年级数学参考答案及评分 一、选择题:(每题3分,共24分)二、填空题:(每题3分,共30分)9、6105.3⨯ 10、 31-≥x 11、 8 12、36 13、24514、8 15、3 16、25417、16 18三、解答题:(本大题有10题,共96分) 19.(本题满分8分)(1)原式= 2…………4分 (2)51<≤x …………8分 20. (本题满分8分)原式=xx -+2…………6分 当x =1时,原式=-3;或当x =-2时,原式=0………………8分 21. (本题满分8分)(1)10% (2)72 (3)5(画图) (4)330 (每题2分) 22.(本题满分8分)(1) 14…………2分 (2) P=16…………6分23. (本题满分10分) (1)证明:1 23(2)24. (本题满分10分)解:(1)设小伙伴人数是x 人, 由题意得,xx 353507.02350-=⨯-,………………5分 解得,x=9。
经检验,x=9是原方程的根答:小伙伴人数是9人. …………10分 25.(本题满分10分)(1)作BK ⊥MN 于点K ,交AF 于点H ,设⊙A 的半径长x ; ∵BK ,CE 都垂直于MN ,∴BK ∥CE ,∴△ABH ∽△ACG , ∴BH AB CG AC =,即:38505985x x -=-, 解得:8x = ,即⊙A 的半径等于8cm ; …………5分 (2)∵80CE =cm ,⊙A 的半径等于8 cm , ∴72CG =cm , ∵sin CGCAG AC∠=, ∴7280sin sin64CG AC CAG ==≈∠︒cm ,∴30BC AC AB =-≈cm .即:此时拉杆BC 的伸长距离约为30 cm .…………5分 26.(本题满分10分)(第25题图2)A BCDE F NG M H K分为菱形为平行四边形是平行四边形=,由作图可知:5//3132//21⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅∴=∴=∴==∴∠=∠∴∠=∠∴∴∠∠=ABEF AF AB ABEF BEAF BE AF AF AB BE AB BE AF ABCD AB AF 分为菱形1084532,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=∴=∴==∴=⊥∴AE AO AB BO BOBF BF AE ABEF(1)分的值为又是矩形,四边形,是矩形,四边形。