12.2 三角形全等的判定(3)教案

合集下载

人教版数学八年级上册12.2全等三角形的判定(3)ASA和AAS教案

人教版数学八年级上册12.2全等三角形的判定(3)ASA和AAS教案
三、教学策略与方法
1.引入新课:通过复习全等三角形的定义和SSS、SAS判定定理,自然过渡到本节课的ASA和AAS判定定理。
2.演示与探索:利用多媒体演示ASA和AAS判定定理的动态过程,引导学生观察并思考两个三角形全等的条件。
3.分组讨论:将学生分组,每组讨论一个实际例题,运用ASA和AAS判定定理证明两个三角形全等。
-难点三:在实际问题中的应用。学生需学会将ASA和AAS定理应用于解决实际问题,如计算未知长度或角度。
-举例:在房屋建筑中,如何使用ASA或AAS定理来确定两个墙面的全等关系,从而计算材料需求。
-难点四:证明过程的逻辑性和条理性。学生需要学会清晰、有条理地写出证明过程,避免逻辑错误。
-举例:指导学生如何逐步写出证明步骤,确保每一步都有理有据。
2.练习评价:根据学生完成练习题的正确率和速度,评估学生对ASA和AAS判定定理的理解和掌握程度。
3.课堂问答:通过提问方式,检查学生对ASA和AAS判定定理的记忆和理解情况。
4.课后作业:布置课后作业,要求学生运用所学知识解决实际问题,进一步巩固全等三角形的判定方法。
五、教学建议
1.注重启发式教学,引导学生主动发现问题和解决问题。
4.课堂讲解:针对学生在讨论中遇到的问题,进行讲解和解析,强调ASA和AAS判定定理的关键点。
5.练习巩固:布置一些具有代表性的练习题,让学生独立完成,巩固所学知识。
6.总结提升:对本节课的内容进行总结,强调ASA和AAS判定定理在实际问题中的应用。
四、教学评价
1.过程性评价:观察学生在分组讨论中的参与程度、思考问题的方式和解决问题的策略。
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形判定相关的实际问题。

初中数学 12.2全等三角形判定教学设计3

初中数学 12.2全等三角形判定教学设计3

全等三角形教学设计
D C
B A
E 【知识回顾】(投影显示)
小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH ,ED=FD ,•将上述条件注在图中,小明不用测量就能知道EH=FH 吗?与同伴交流.
【动手动脑】(投影显示)
问题探究:先任意画一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B (即使两角和它们的夹边对应相等),把画出的△A ′B ′C ′剪下,•放到△ABC 上,它们全等吗?
探究规律:两角和它们的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA ”).
【教师提问】在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF (课本图11.2─9),△ABC 与△DEF 全等吗?
【例3】D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C ,求证:AD=AE .
【教师活动】引导学生,分析例3.•关键是寻找到和已知条件有关的△ACD•和△ABE ,再证它们全等,从而得出AD=AE .
证明:在△ACD 与△ABE 中, ()A A AC AB
C B ∠=∠⎧⎪=⎨⎪∠=∠⎩
公共角 ∴△ACD ≌△ABE (ASA )
∴AD=AE
【教师提问】三角对应相等的两个三角形全等吗?
已知∠BAC=∠DAE,∠ABD=∠ACE,BD=CE.求证:AD=AE.。

人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计

人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
(二)讲授新知,500字
在讲授新知的环节,我会按照以下步骤进行:
1.定义讲解:向学生介绍全等三角形的定义,强调在大小和形状上完全相同的两个三角形叫作全等三角形。
2. SAS判定方法:讲解边角边(SAS)判定全等三角形的方法,即两个三角形中有两边和夹角分别相等,则这两个三角形全等。
3.示例演示:通过教具或动态软件,演示SAS判定全等三角形的实际操作过程,让学生更直观地理解判定方法。
1.对SAS判定条件的深入理解,特别是在不同图形和实际问题中的应用。
2.学生在证明过程中,如何运用SAS条件进行严密的逻辑推理。
3.学生在识别全等三角形时,容易忽略隐含的条件,导致判断错误。
(三)教学设想
1.创设情境,引入新课
-通过生活中的实际例子,如拼接图形、建筑设计等,引出全等三角形的概念,激发学生的学习兴趣。
4.性质归纳:引导学生通过观察和思考,总结全等三角形的性质,如全等三角形的对应边、对应角相等。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.分组讨论:将学生分成若干小组,让每个小组共同探讨SAS判定方法的原理和应用。
2.互问互答:小组成员之间相互提问,解答对方关于SAS判定方法的疑问,共同提高。
人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
一、教学目标
(一)知识与技能
1.理解三角形等的定义,掌握边角边(SAS)判定三角形全等的方法。
2.能够运用SAS判定方法,解决实际问题时正确识别和运用全等三角形的性质。
3.能够运用尺规作图,通过SAS条件作出全等三角形,并能够证明所作的三角形与给定三角形全等。
2.提高题:设计一些综合性的题目,让学生在解决实际问题时,运用SAS判定方法。

12.2 第3课时三角形的全等的判定(三)数学人教版八上同步课堂教案

12.2 第3课时三角形的全等的判定(三)数学人教版八上同步课堂教案

第十二章全等三角形12.2 三角形全等的判定第3课时三角形的全等的判定(三)(ASA,AAS)一、教学目标1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.能熟练利用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.二、教学重难点重点:理解三角形全等的判定方法“ASA”和“AAS”.难点:利用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.三、教学过程【新课导入】[复习导入]1.回顾我们已经学习过的判定三角形全等的两个定理.(边边边(SSS):三边分别相等的两个三角形全等.)(边角边(SAS):两边和它们的夹角分别相等的两个三角形全等.)2.两判定定理的几何语言:(在△ABC 和△ A'B'C'中,AB=A'B',BC=B'C',CA=C'A',∴△ABC≌△A'B'C'(SSS).)(在△ABC 和△ A'B'C'中,AB=A'B',∠B=∠B′,BC=B'C',∴△ABC≌△A'B'C'(SAS).)3.(1)我们已经总结过的找相等边的方法.(①公共边.②正多边形的边相等.③等边加同边,其和还是等边.④等边减同边,其差还是等边.)(2)我们已经总结过的找相等角的方法.(①利用平行线可找到相等的角.②对顶角.③等角加同角,其和还是等角.④等角减同角,其差还是等角.⑤等角的补角相等.⑥正多边形的内角相等.)4.当两个三角形满足六个条件中的“三个对应条件相等”时,有以下四种情况:教师带领学生复习全等三角形判定定理SSS和SAS的相关知识,从而引出今天要探讨的内容“两个角和一条边对应相等”时,三角形的全等情况.【新知探究】知识点1 “ASA”证全等[提出问题]如果已知一个三角形的两角及一边,那么这两个角与这一条边的位置上有几种可能性呢?[学生思考]给学生思考的时间,可同桌之间讨论.[课件展示]教师利用多媒体展示如下两种情况,学生对照自己的思考结果,对不同的结果举手发言,教师给予纠正.1.边夹在两个角的中间,形成两角夹一边的情况.2.边不夹在两个角的中间,形成两角及其中一角对边的情况.[提出问题]两者是否都能判定两个三角形全等?我们先来讨论第一种情况:两角夹一边.先任意画出一个△ABC.再画一个△A′B′C′,使得A′B′=AB,∠A′=∠A,∠B′=∠B(即两角和它们的夹边分别相等).把画好的△A′B′C′剪下来,放在△ABC上,它们全等吗?[动手操作]学生根据老师的要求,在准备好的卡纸上作图,试一试做出来的两个三角形是否全等.教师可提醒学生:如果两个三角形能够重合,那么两者就是全等三角形.[学生回答]教师点名学生回答是如何制作△A′B′C′的,对于回答不完整的,请另一名学生补充.[课件展示]教师利用多媒体展示画△A′B′C′的作法,学生检查自己的作法是否正确:作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A '=∠B,A'D,B'E相交于点C'.[提出问题]△A′B′C′与△ABC全等吗?[课件展示]教师利用多媒体展示画△A′B′C′与△ABC的重合过程.很明显两者是全等的.[提出问题]这两个三角形全等满足的是哪三个条件?[课件展示]教师利用多媒体展示满足的三个条件,从而得到答案:两角一夹边.[归纳总结]两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).该判定定理的几何语言:在△ABC 和△ A'B'C'中,B=∠B′,,C=∠C′,∴△ABC≌△A'B'C'(ASA).注意:利用该判定定理时,边必须是两角的夹边.[课件展示]教师利用多媒体展示以下例题:例在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.【分析】如果能证明∠C=∠F,就可以利用“角边角”证明△ABC和△DEF全等,由三角形内角和定理可以证明∠C=∠F.证明:在△ABC中,∠A+∠B+∠C=180°.∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC 和△DEF中,B=∠E,,C=∠F,ABC≌△DEF(ASA).[提出问题]“角角边”也能证明三角形全等?知识点2 “AAS”证全等[提出问题]已知在△ABC中,∠B=60°,∠C=45°,AB=3cm,你能画出△A′B′C′,使△A′B′C′≌△ABC吗?[动手操作]学生根据老师的要求,在准备好的卡纸上作图,试一试做出△A′B′C′,大部分学生无从下手.教师提示学生联想例1和“ASA”的探究过程来作图.[提出问题]说一说你是怎么画的?[学生回答]教师点名学生回答制作过程,教师根据学生的回答,口头总结画法和步骤.此时,AAS可转化为ASA,从而得到△A′B′C′≌△ABC.[归纳总结]两角分别相等且其中一组等角的对边相等的两个三角形全等.(可以简写成“角角边”或“AAS”).该判定定理的几何语言:在△ABC 和△ A'B'C'中,A=∠A′,B=∠B′,,∴△ABC≌△A'B'C'(AAS).[课件展示]跟踪训练如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.解:不全等,因为BC虽然是公共边,但不是对应边.提醒学生:有两角和一边分别相等的两个三角形不一定全等.知识点3 “AAA”不能证全等[提出问题]三角分别相等的两个三角形全等吗?假设三个角分别为30°,60°和90°.[动手操作]学生在准备好的卡纸上做出满足条件的三角形,之后剪下来,和同桌所作的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[归纳总结]判定两个三角形全等的方法有SSS,SAS,ASA,AAS.注意:SSA和AAA不能判定两个三角形全等.【课堂小结】【课堂训练】1.如图,小明不慎将一块三角形模具打碎为三块,他想配一块与原来一样的三角形模具,为了方便,应该带哪块去商店?( A )A.1B.2C.3D.三块都带去2.(2021•重庆)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB 全等的是( B )A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D【解析】已知∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,可用ASA证明;B:当AB=DC时,不能证明两三角形全等;C:当AC=DB时,可用SAS证明;D:当∠A=∠D时,可用AAS证明.故选B.3.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)【解析】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.∵AC=AD,∴当添加∠B=∠E 时,可根据“AAS”判断;当添加∠C=∠D时,可根据“ASA”判断;当添加AB=AE时,可根据“SAS”判断.(任选其中一个条件即可).4.(2021•衡阳)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.证明:∵AC∥DF,∴∠CAB=∠FDE.∵BC∥EF,∴∠CBA=∠FED.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).5.(2021•泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.证明:在△ABE与△ACD中,,∴△ABE≌△ACD(ASA).∴AD=AE.∴AB-AD=AC-CE,即BD=CE.提醒学生:等边减等边,其差还是等边.6.(2021•铜仁市)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC =BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为 、 ,结论为 ;(2)证明你的结论.解:选的条件为①、③,结论为②. 证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.解:选的条件为②、③,结论为①.证明:在△AOC和△BOD中,AOC=∠BOD,A=∠B,AC=BD,∴△AOC≌△BOD(AAS),∴OC=OD.提问:选的条件为①、②,结论为③,可以吗?若选的条件为①、②,再结合∠AOC=∠BOD,得不到结论③,因为“SSA”不能作为判定全等的定理.7.(2021•陕西模拟)如图,在△DAE和△ABC中,D是AC上一点,AD=AB,DE∥AB,∠E=∠C.求证:AE=BC.证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(AAS),∴AE=BC.8.如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:BC=EF.证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠B=∠E.在△ABC和△DEF中,∠B=∠E,AB=DE,∠FDE=∠A,∴△ABC≌△DEF(ASA).∴BC=EF.9.(2021•西安一模)如图,在△ABC中,∠ABC=90°,BD⊥AC于点D,点E在DB的延长线上,DE=BC,∠1=∠2,求证:DF=AB.证明:∵BD⊥AC,∴∠EDF=90°.∴∠EDF=∠ABC.∵∠1=∠2,∠1+∠C=90°,∠2+∠E=90°,∴∠E=∠C.在△DEF和△BCA中,,∴△DEF≌△BCA(ASA),∴DF=AB.对学生强调:等角的余角相等.【教学反思】本节课的教学仍是采用之前两节课的教学方法,让学生通过实验,自己发现ASA和AAS的识别方法,鉴于前两节课的经验,这节课在实验的过程中,给予了学生足够的观察思考的时间,拓展了学生研究全等三角形的空间,使学生在探索、发现知识的过程中体验到成功的乐趣,学生乐于学,这样有效地激发了学生的学习主动性.但仍然存在问题,比如,学生书写仍有不规范的点,不能找到证明全等所需的条件等等,在今后的教学中,仍要加强学生对图形的敏感度的训练.。

12.2三角形全等的判定SAS(教案)

12.2三角形全等的判定SAS(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS是指两个三角形中有两边和它们之间的夹角分别相等,那么这两个三角形全等。它是解决几何问题的重要工具,帮助我们确定两个三角形的完全一致性。
2.案例分析:接下来,我们来看一个具体的案例。假设在两个三角形中,我们已知两边长度相等,以及它们之间的夹角也相等,通过SAS判定,我们可以确定这两个三角形是全等的。
2.掌握运用SAS判定两个三角形全等的具体步骤。
3.能够运用直尺和圆规作出符合条件的全等三角形。
4.解决实际问题,如运用SAS判定方法判断两个三角形是否全等,并解释其在现实生活中的应用。
5.通过例题和练习,加深对SAS判定全等三角形方法的理解,培养几何逻辑思维和解决问题的能力。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
-掌握SAS全等判定的步骤:学生应学会如何通过以下步骤应用SAS判定全等:a)确认两个三角形中有两边相等;b)确认这两边的夹角相等;c)确认第三边也相等。
-应用SAS全等判定解决具体问题:学生应能够将SAS全等判定应用于解决实际几何问题,如计算未知长度或角度等。
-举例解释:如在三角形ABC和三角形DEF中,若AB=DE,AC=DF,且∠BAC=∠EDF,则根据SAS全等判定,三角形ABC和三角形DEF全等。
3.重点难点解析:在讲授过程中,我会特别强调SAS判定中“边角边”的顺序和角的定位。对于难点部分,我会通过举例和比较来帮助大家理解,例如,讲解为何SSA不能判定全等,而SAS可以。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生们用直尺和圆规尝试作出符合SAS全等条件的两个三角形。

12.2三角形全等的判定(三)教学设计

12.2三角形全等的判定(三)教学设计

“12.2三角形全等的判定(第3课时)”教学设计一、教材内容分析全等三角形是初中数学空间与图形中的重要内容,是后续研究轴对称、旋转等全等变换的基础。

全等三角形在日常生活中也有着广泛的应用,因此,研究全等三角形具有重要的意义.本课学习内容是《义务教育教科书·数学》八年级上册“12.2三角形全等的判定”第三课时.主要探究“角边角”和“角角边”两种判定方法及其简单应用,是“全等三角形”知识体系的重要组成部分。

学生将通过画图、实验、推理论证等方法完成对定理的探究,在此过程中引导学生注重分析、学会思考、学会清楚的表达思维过程。

探究过程中用到的类比、转化等数学思想注意让学生体会并提炼出来对于学生的后续学习起着非常重要的作用。

二、教学问题诊断分析本节课是学生在已经掌握了“边边边”和“边角边”判定之后,继续探索三角形全等的条件.他们已经了解了一些探究的思路,也经历过一些探究的过程,如动手实践、观察猜想、归纳总结、巩固应用等.因此,本节课的学习,可以引导学生类比前面的研究方法.但是由于学生学习几何的时间较短,所以在研究几何图形的方法和合情推理方面还存在欠缺。

另外,由于本节课所探究的两种方法,其图形中的位置关系不易辨别,所以学生如何分析图形之间的内在联系,如何清晰地表达数学思考的过程,是本课教学中教师要特别关注的问题。

三、教法特点及预期效果分析根据本节课内容的特点和学生的学习实际,主要采用启发诱导、实例探究、小组合作等教学方法。

为了更直观、形象的突出重点、突破难点,提高课堂效率,采用以观察发现为主,多媒体演示为辅的教学组织方式,在教学过程中,通过设置一系列例题变式,创设问题情境,启发学生思考,利用计算机和《几何画板》软件,结合操作测量,让学生亲身体验知识的产生、发展和形成的过程。

在学生推理能力培养方面,本节课首先通过几个证明线段长度相等的例习题,体会转化的思想方法,让学生学会思考问题. 通过问题的解决,体会合情推理的作用. 接着通过图形的轴对称和旋转变换,让学生理解各图形之间的联系,从而在遇到问题时能快速找出有效的解法,提高解决问题的能力,并为今后的学习奠定基础. 最后通过开放题的练习,培养学生思维的灵活性和发散性,提高其分析问题和解决问题的能力.四、教学目标分析知识与技能:理解并掌握三角形全等的条件:“角边角”“角角边”。

《12.2三角形全等的判定(3)》教学设计

《12.2三角形全等的判定(3)》教学设计

《12.2三角形全等的判定(3)》教学设计使用巩固新知______∠AOC=∠BOD(已知)∴△AOC≌△BODOACDB3、例3:已知,如图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE4、例3变式:已知,如上图,D在AB上,E在AC上,AB=AC,∠B=∠C,求证:BD=CE5、如图,已知:AB∥CD,AB=CD,点B、E、F、D在同一直线上,∠A=∠C,求证:AE=CF6、三角对应相等的两个三角形全等吗?师把解题过程板书黑板。

强调书写格式。

2、教师再依次出示问题(2)、(3)、(4)学生独立思考后,师生共同分析,由学生书写证明过程,教师强调书写证明格式。

【学生活动】观学生独立完成后与同伴交流,并评价同伴表现。

部分学生板演解题过程。

【教师活动】出示问题(4)教师巡视,并指导学生观察手上的三角板,大、小两个三角板的三个角都相等,但这两个三角板不全等,说明问题。

[学生活动]学生分小组讨论,得出结论:证明两个三角形全等的2、例题后的变式题和练习,检测学生对“角边角”和“角角边”的使用情况。

3、问题(4)通过动手操作,使学生对三角对应相等的两个三角形不一定全等有更深刻的印象。

4、问题(5)既训练学生概括归纳水平,又把所学的三角形的判定方法条理化、系统化。

【媒体使用】表现问题及答案,。

12.2三角形全等的判定-一线三等角全等模型(教案)

12.2三角形全等的判定-一线三等角全等模型(教案)
3.重点难点解析:在讲授过程中,我会特别强调“一线三等角”全等模型的识别和应用,以及SSA判定方法的正确使用。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与“一线三等角”全等模型相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来构造满足“一线三等角”条件的三角形,并验证它们的全等关系。
3.能够运用“一线三等角”全等模型解决实际问题,如几何图形的拼接、角度的求解等。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.增强空间观念:通过“一线三等角”全等模型的探究,使学生能够把握图形的空间特征,提高空间想象力和直观感知能力。
2.提升逻辑推理能力:在学习SSA判定方法的过程中,培养学生严谨的逻辑思维,让学生学会从特殊到一般、从具体到抽象的分析和解决问题。
- SSA判定方法的应用:重点讲解在已知一边和两个角(其中一个为非夹角)的情况下,如何判定两个三角形全等,并强调在应用时需要注意角的对应关系。
-实际问题的解决:将全等知识应用于解决实际问题,如测量、建筑、艺术等领域的问题。
举例:在讲解“一线三等角”全等模型时,可以给出以下例题进行强调:
问题:在直线MN上,有∠AMN=∠BPN=∠CQO=90°,AB=BC,证明△ABC全等于△PQN。
其次,实践活动中的分组讨论环节,我发现有些学生参与度不高,可能是由于主题难度较大或者他们对讨论的主题不够感兴趣。针对这个问题,我计划在下次的活动中,提供更多元化的讨论主题,或者引入一些竞争机制,以提高学生的参与度和积极性。
在学生小组讨论环节,我发现很多学生能够提出有见地的观点,但他们的表达和逻辑推理能力还有待提高。在接下来的教学中,我将更加注重培养学生的表达能力和逻辑思维,通过提问和引导,帮助他们更好地组织语言和思考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时计划
课题
12.2三角形全等的判定(3)
课时
第15课时
班别
授课人
时间
教具
多媒体




1.知识技能:通过探究理解“边角边”条件的内容,会用“边角边”证明两个三角形全等
2.过程方法:经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程,同时培养良好的学习习惯
3.情感态度与价值:培养学生合作探究的学习习惯,创新求精的精神
教学方法
学习方法
时间
二次备课
二.自主学习,合作探究
1.三角形全等的判定方法:
两边和他们的夹角分别相等的两个三角形全等(“边角边”或“SAS”)
2.几何语言:
在△ABC和△A’B’C’中
AB=A’B’
∠A=∠A’
AC=A’C’
∴△ABC≌△A’B’C’
三.大组汇报,教师点拨
出示问题:
1.探究
先任意画出一个△ABC。再画一个△A’B’C’,使A’B’=AB,C’A’=CA.∠A’=∠A(即两边和他们的夹角分别相等)。把画好的△A’B’C’剪下来,放到△ABC上,他们全等吗?
















1.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使AC=CD.连接BC并延长到点E,是CE=CB。连接DE,那么量出DE的长就是A,B的距离,为什么?
A B
C
E D
2.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D
A D
B E F C
五、课堂小节,归纳整理
我的收获是……
我的困惑是……
教师出示问题
教师关注学生的汇报,点评学生的完成情况。
教师补充,点评
学生先尝试独立完成,有难的问题可在小组内交流。
学生汇报。提出疑惑。
学生总结。
20分
5分




见前


同步解析




12.2三角形全等的判定(3)
1.边角边
2.例题
重点
“边角边”证明两个三角形全等
难点
“边角边”证明两个三角形全等
教学过程
教学内容及流程
教学方法
学习方法
时间
二次备课
1、有效导入,明确目标
复习导入:
1.三角形全等的判定方法
2.用“SSS”经常出现的相等线段有哪些情况?
出示学习目标:
“边角边”判定两个三角形全等
出示问题
出示学习目标
思考,回答
5分
教学内容及流程
2.三角形的两边及其中一边的对角相等的两个三角形全等吗?
教师组织学生活动,巡视,了解学生的活动情况,帮助有困难的学习小组分析问题。
教师关注学生的汇报情况。
学生先独立思考问题,后小组交流,提出疑惑,尝试小组解决。来自学生以组为单位汇报。7分
8分
教学内容及流程
教学方法
学习方法
时间
二次备课
四.变式练习,拓展提高
相关文档
最新文档