浙教版数学八下《第2章 一元二次方程》word复习学案
【最新浙教版精选】浙教初中数学八下《2.0第2章 一元二次方程》word教案 (3).doc

第二章 一元二次方程复习学习目标:1、经历抽象一元二次方程的概念的过程,进一步体会方程是刻画现实世界的一个有效数学模型。
2、经历方程解的探索过程,增进对方程解的认识,发展估算意识和能力。
重点:认识产生一元二次方程知识的必要性难点:列方程的探索过程教学过程:一、简要回顾,方程思想简要回顾方程知识,方程在生活中的应用,以及用方程思想解决实际问题时的大致思路:1、 把待求的量用字母表示出来;2、 把已知量与未知量放在同等地位进行运算;3、 寻求建立等量关系4、 解方程(组)体会感悟:往往解决一个未知数的问题,就需要建立一个等量关系;解决两个未知数的问题,则需要建立两个等量关系。
……二、展示素材,创设情境在处理下面的每一个素材时,都带领学生经历探求思路、建立方程、分析特点三个过程,并从中激发学生的学习兴趣。
1、艺术设计一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m ,宽为5m 。
如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?这是俄罗斯画家别尔斯基的一幅题为《难题》的名画中写在教室黑板上的一道题,此画上面还画了拉钦斯基和他的作口算的学生们。
拉钦斯基(1836~1902)一度曾在大学中任自然科学教授,后来辞去大学的职务,成为一名普通的乡村教师,在这期间,对非标准习题的解法以及口算给予很大注意。
从惊奇与趣味中激发学生思考:这样的数组还有吗?如何求解?设未知数的技巧。
联想勾股定理中:222543=+,……3、梯子移动如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m 。
如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米?及时教育学生,要学会用数学的眼光观察生活中的现象,培养自己发现问题与解决问题的能力。
此诗出自十二世纪印度数学家婆什迦罗(Bhaskara; 1114~1185)之手。
诗文简洁,数学內容也不太难。
同时,也可介绍《九章算术》第九章第六题“葭生中央”问题:三、观察归纳,抽象命名从上面的几个素材中可以看出,这类方程在生活中大量出现,回忆前面在学习“黄金分割”时,我们曾经得到方程012=-+x x ,其中215-=x ,这x 是如何解出的,当时我们不得而知,但数学应该而且必定能为生活服务,因此我们很有必要对这类方程作一个系统的研究。
浙教版数学八年级下册2.1《一元二次方程》教学设计2

浙教版数学八年级下册2.1《一元二次方程》教学设计2一. 教材分析《一元二次方程》是浙教版数学八年级下册第二章的第一节内容。
本节内容是在学生已经掌握了方程的解法、一元一次方程的基础上,引入一元二次方程的概念、性质以及解法。
通过本节课的学习,使学生能够掌握一元二次方程的一般形式、判别式的意义,了解一元二次方程的解法,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的解法,对于方程的概念有一定的理解。
但是,对于一元二次方程的概念、判别式的意义以及解法还比较陌生。
因此,在教学过程中,需要引导学生从一元一次方程过渡到一元二次方程,逐步理解并掌握一元二次方程的相关知识。
三. 教学目标1.知识与技能:使学生掌握一元二次方程的一般形式、判别式的意义,了解一元二次方程的解法。
2.过程与方法:通过观察、分析、归纳等方法,使学生能够自主探究一元二次方程的性质和解法。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的学习精神。
四. 教学重难点1.重点:一元二次方程的一般形式、判别式的意义,一元二次方程的解法。
2.难点:一元二次方程的解法,特别是因式分解法和求根公式的应用。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生自主探究一元二次方程的性质和解法。
2.启发式教学法:通过提问、讨论等方式,激发学生的思维,引导学生主动参与学习。
3.小组合作学习:学生进行小组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.课件:制作课件,展示一元二次方程的一般形式、判别式的意义以及解法。
2.练习题:准备一些一元二次方程的题目,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。
通过分析,引入一元二次方程的概念。
2.呈现(10分钟)呈现一元二次方程的一般形式、判别式的意义,以及一元二次方程的解法。
引导学生观察、分析,总结出一元二次方程的性质。
浙教版八年级下册第2章 一元二次方程复习(1课时)教案设计

《一元二次方程复习》教学设计【内容出处】浙江教育出版社八年级数学下册第2章。
【素养指向】“数学运算”之“方程的综合能力提升”。
【教学目标】1.掌握一元二次方程的概念,一元二次方程的一般形式。
2.会解一元二次方程。
3.能用一元二次方程解决实际问题。
【时间预设】课内1课时加课前10分钟。
【教学过程】一、先行学习完成课本中单元知识小结。
二、交互学习段落一知识梳理典例分析〖师生共学〗1.一元二次方程的概念要满足哪三个条件。
2.一元二次方程的一般形式是什么,要注意什么。
3.解一元二次方程的几种方法?(1)因式分解法(2)直接开平方法(3)配方法(4)公式法4.列方程解应用题的基本步骤:①审(审题);②设(设元,包括设直接未知数或间接未知数);③列(列方程);④解(解方程);⑤检验(注意根的准确性及是否符合实际意义); ⑥答.段落二 检测反馈 巩固应用〖检测评价〗独立完成下面题目,然后在小组内交流,进行互动评析。
1.下列方程01x 2=++x ,012x 2=++x ,032x 2=++x , 011-x 2=+-x )(最适合用因式分解法求解的有( )A.1个B.2个C. 3个D. 4个2. 若21,x x 是方程42=x 的两根,则21x x +的值是3.已知关于x 的一元二次方程01x 122=-++-k x k )(的一个根是0,则k= 4.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?5.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,•商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.6.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?三、后续学习完成课本中复习题第3、4、6题。
浙教版数学八年级下册 第二章一元二次方程单元综合复习

浙教版数学(八下) 第二单元综合复习一、 一元二次方程的求解1.因式分解法:若A ·B=0,则A=0或B=0.2.开平方法:形如x 2=a(a ≥0),(mx +n)2=b(m ≠0,b ≥0),可用开平方法直接求解.3.配方法:口诀——除移配开求答.(系数化为1)┘ 4.公式法:求根公式x=﹣b ±b 2-4ac2a (a ≠0).【习题一】(2)已知(a 2+b 2-1)(a 2+b 2+3)-12=0,求a 2+b 2的值.【习题二】解方程:x 2-b 2=a(3x -2a +b).【习题三】解方程:(1)(3x +1)2=9(2x +3)2; (2)(3x -11)(x -2)=2;(3) x(x +1)3 -1=(x -1)(x +2)4; (4)(3x -2)(3x +2)=x.【习题四】设a ,b 是一个直角三角形两条直角边的长,且(a 2+b 2)(a 2+b 2+1)=12,则这个直角三角形的斜边长为___________.【习题五】如果x-3是多项式2x 2-5x+m 的一个因式,则m 等于( ) A .6 B .-6 C .3 D .-3 【习题六】用配方法解下列方程时,配方有错误..的是( ) A .x 2-2x -99=0化为(x -1)2=100 B .x 2+8x +9=0化为(x +4)2=25 C .4t 2-4t -5=0化为(2t -1)2=6 D .9y 2+6y -2=0化为(3y +1) 2=3二、根系关系1.求根关系:x =﹣b ±b 2-4ac2a (a ≠0)2.判别式:△=b 2-4ac3.韦达定理:x 1+x 2=﹣b a ,x 1·x 2=ca4.常见题型:(1)已知方程的一根,求另一根.(2)已知两数的和与积,构造一元二次方程解题. (3)求待定系数的值或取值范围. (4)求对称式和非对称式的值.【习题一】已知方程x 2-5x+15=k 2的一个根是2,则k 的值是_________,方程的另一个根为___________.【习题二】若m 为实数,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,则x 2-3x+m=0的根是___________.【习题三】现定义运算“☆”,对于任意实数a 、b ,都有a ☆b=a 2-3a+b ,若x ☆2=6,则实数x 的值是_________.【习题四】若正数a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,则a 的值是___________.【习题五】已知关于x 的一元二次方程ax 2+bx+1=0(a ≠0)有两个相等的实数根,求ab 2(a −2)2+b 2−4的值.【习题六】已知关于x 的方程x 2-(k+2)x+2k=0,若一个等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求这个等腰三角形的周长与面积.【习题七】已知关于x的方程x2-(m+2)x+(2m-1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.【习题八】若k是自然数,且关于x的二次方程(k-1)x2-px+k=0有两个正整数根,求k kp•(p p+k k)+k k-p+2 +kp+1的值.【习题九】已知α,β是方程x2+2x-7=0的两个实数根,求α2+3β2+4β的值.【习题十】设x1、x2是一元二次方程x2+x-3=0的两个根,求x13-4x22+19的值.三、生活类应用1. 增长(降低)率问题若基数为a ,平均增长(降低)率为x ,则连续增长n 次后为a(1±x)n . 2. 数字问题① 有关三个连续整数(或连续奇数、连续偶数)的问题,设中间一个数为x ,再根据题 目中的条件用含x 的代数式表示其余两个数. ② 多位数的表示方法:a. 两位数=(十位数字)×10+(个位数字);b. 三位数=(百位数字)×100+(十位数字)×10+(个位数字);… 3. 利润问题① 毛利润=售出价-进货价 ② 纯利润=售出价-进货价-其他费用 ③ 利润率=利润成本×100%4. 储蓄问题① 利息=本金×年(月)利润×年(月)数 ② 利息税=利息×税率③ 本息和=[1+年(月)利率×年(月)数]×本金(不计利息税)④ 不计利息税后,且到期后又连本带利一起再存相同时间,且年利率不变时,本息和=本金×(1+年利率)年数【习题一】某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .100(1+x)2=81B .100(1-x)2=81C .100(1-x%)2=81D .100x 2=81【习题二】三个连续自然数的平方和为50,求这三个数.在这个问题中,设中间的自然数为x ,则其余两个自然数为_________、_________,根据题意,可列出方程:________________________________.【习题三】某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( ) A .(3+x)(4-0.5x)=15 B .(x+3)(4+0.5x)=15 C .(x+4)(3-0.5x )=15 D .(x+1)(4-0.5x)=15【习题四】近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.【习题五】某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【习题六】某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?【习题七】明在2013年暑假帮某服装店买卖体恤衫时发现,在一段时间内,体恤衫每件80元销售时,每天销售量是20件,单价每降低4元,每天就可以多售出8件,已知该体恤衫进价是每件40元,请问服装店一天能赢利1200元吗?如果设每件降低x元,那么所列方程正确的是()A.(80-x)(20+x)=1200 B.(80-x)(20+2x)=1200C.(40-x)(20+x)=1200 D.(40-x)(20+2x)=1200【习题八】某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【习题九】某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?四、几何应用1.常用勾股定理,面积公式,图形特点,平移,数形结合,三边关系等解题.【习题一】要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A.5个 B.6个 C.7个 D.8个【习题二】某初三一班学生上军训课,把全班人数的18排成一列,这样排成一个正方形的方队后还有7人站在一旁观看,此班有学生________人.【习题三】如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80-100x-80x=7644 B.(100-x)(80-x)+x2=7644C.(100-x)(80-x)=7644 D.100x+80x=356习题三图习题四图【习题四】如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A.0.5cm B.1cm C.1.5cm D.2cm【习题五】一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,当AE=_____米时,有DC2=AE2+BC2.【习题六】百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价_________元,那么平均每天就可多售出_________件,现在一天可售出_________件,每件盈利_________元.【习题七】配方法不仅可以用来解一元二次方程,还可以用来解决很多问题.例如:因为3a2≥0,所以3a2-1≥-1,即:3a2-1就有最小值-1.只有当a=0时,才能得到这个式子的最小值-1.同样,因为-3a2≤0.所以-3a2+1≤1,即:-3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=________时,代数式-2(x+1)2-1有最________值(填“大”或“小”值为______. (2)当x=________时,代数式 2x 2+4x+1有最________值(填“大”或“小”)值为______. (3)矩形自行车场地ABCD 一边靠墙(墙长10m ),在AB 和BC 边各开一个1米宽的小门(不用木板),现有能围成14m 长的木板,当AD 长为多少时,自行车场地的面积最大?最大面积是多少?【习题八】在长方形ABCD 中,AB=16cm ,BC=6cm ,点P 从A 点开始沿AB 边向点B 以3cm/s 的速度移动,点Q 从点C 开始沿CD 边向点D 以2cm/s 的速度移动,点P 、Q 从出发开始,经过几秒时,点P 、Q 、D 组成的三角形是等腰三角形?浙教版数学(八下) 第二单元综合复习参考答案一、一元二次方程的求解习题一.(1)m=﹣1;x 1=﹣1+72 ,x 2=﹣1-72.(2) a 2+b 2=3【解答】设a 2+b 2=n(n ≥0),则原方程变形为(n-1)(n-3)-12=0.整理,得n 2+2n-15=0,即(n+5)(n-3)=0,,∴n 1=﹣5(不合题意,舍去),n 2=3,∴a 2+b 2=3. 习题二.x 1=2a+b ,x 2=a-b 【解答】x 2-b 2=a(3x-2a +b) x 2-b 2=3ax-2a 2+ab x 2-3ax+ 94-a 2=14-a 2+b 2+ab(x-32a)2=(12a+b)2∴x-32a=12a+b 或x-32a=-(12a+b)∴x 1=2a+b ,x 2=a-b.习题三.(1)x 1=﹣83 ,x 2=﹣109;(2)x 1=53 ,x 2=4;(3)x 1=2,x 2=﹣3;(4)x 1=1,x 2=﹣23 .习题四. 3【解答】∵a ,b 是一个直角三角形两条直角边的长, 设斜边为c ,∴(a 2+b 2)(a 2+b 2+1)=12,根据勾股定理得:c 2(c 2+1)-12=0,即(c 2-3)(c 2+4)=0, ∵c 2+4≠0, ∴c 2-3=0,解得c= 3 或c=﹣ 3 (舍去). 则直角三角形的斜边长为 3 . 习题五. D【分析】x-3是多项式2x 2-5x+m 的一个因式,即方程2x 2-5x+m=0的一个解是3,代入方程求出m 的值. 习题六. B二、根系关系习题一. ±3,3【解答】已知方程x 2-5x+15=k 2的一个根为x l =2,设另一根是x 2, 则x 1+x 22,则另一个根x 2=3,k=±3.习题二【解答】解方程x 2+3x-3=0的根是,方程x 2-3x+m=0的一个根的相反数是方程x 2+3x-3=0的一个根,因而方程x 2+3x-3=0的一个根的相反数是方程x 2-3x+m=0的一个根,则x 2-3x+m=0的根是﹣(﹣3±21 2 )即3±212.习题三. 4或-1【解答】x ☆2=6,∴x 2-3x+2=6, ∴x 2-3x-4=0,∴(x-4)(x+1)=0, ∴x-4=0,x+1=0,∴x 1=4,x 2=-1. 习题四. 5 【解答】∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②, ①+②,得2(a 2-5a)=0, ∵a >0,∴a=5. 习题五.4【解答】∵ax 2+bx+1=0(a ≠0)有两个相等的实数根, ∴△=b 2-4ac=0,即b 2-4a=0,∴b 2=4a ,∵ab 2(a −2)2+b 2−4 =ab 2a 2−4a+4+b 2−4 =ab 2a 2−4a+b 2 =ab 2a 2 , ∵a ≠0,∴ab 2a 2 = b 2a =4aa =4.习题六. 周长=5,面积=154. 【解答】∵x 2-(k+2)x+2k=0,∴(x-k)(x-2)=0,解得:x 1=2,x 2=k , ∵三角形是等腰三角形,当k=1时,不能围成三角形;当k=2时,周长为5. 如图:设AB=AC=2,BC=1, 过点A 作AD ⊥BC 于D , ∴BD=CD=12BC=12 ,∴AD=AB 2−BD 2 =152∴S △ABC =12×1×15 2 =154.习题七. (1)证明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,∴在实数范围内,m 无论取何值,(m-2)2+4>0,即△>0,∴关于x 的方程x 2-(m+2)x+(2m-1)=0恒有两个不相等的实数根. (2) 另一根=3,周长=4+10 或4+2 2 【解答】根据题意,得12-1×(m+2)+(2m-1)=0,解得,m=2, 则方程的另一根为:m+2-1=2+1=3.①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为10 , 该直角三角形的周长为1+3+10 =4+10 ;②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为2 2 ,则该直角三角形的周长为1+3+2 2 = 4+2 2 .k是自然数,∴kk-p+2 +kp+1三、生活类应用习题一 .B习题二 .x-1 x+1 (x-1)2+x2+(x+1) 2=50习题三. A习题四.(1)20% (2)能实现【解答】(1)设每年平均增长的百分率为x.6000(1+x)2=8640,(1+x)2=1.44,∵1+x>0,∴1+x=1.2,x=20%.(2)2012年该县教育经费为8640×(1+20%)=10368(万元)>9500万元.故能实现目标.习题五.0.3或0.2【解答】设应将每千克小型西瓜的售价降低x元.习题六. 定价60元,进货100个 【解答】设每个商品的定价是x 元,由题意,得(x-40)[180-10(x-52)]=2000,整理,得x 2-110x+3000=0,解得x 1=50,x 2=60.当x=50时,进货180-10(50-52)=200个>180个,不符合题意,舍去; 当x=60时,进货180-10(60-52)=100个<180个,符合题意.∴当该商品每个定价为60元时,进货100个.习题七. D习题八. C习题九.(1)25只 (2) 35只,1950元【解答】(1)∵生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R ,P 与x 的关系式分别为R=500+30x ,P=170-2x ,∴(170-2x )x-(500+30x )=1750,解得 x 1=25,x 2=45(大于每日最高产量为40只,舍去). ∴当日产量为25只时,每日获得利润为1750元.(2)设每天所获利润为W ,由题意得,W=(170-2x )x-(500+30x )=﹣2x 2+140x-500=﹣2(x 2-70x )-500=﹣2(x 2-70x+352-352)-500=﹣2(x 2-70x+352)+2×352-500=﹣2(x-35)2+1950.当x=35时,W 有最大值1950元.四、 几何应用习题一. C【解答】设有x 个队,每个队都要赛(x-1)场,但两队之间只有一场比赛, x (x-1)÷2=21,解得x=7或-6(舍去),∴应邀请7个球队参加比赛. 习题二. 56【解答】设班级学生x 人,依题意,得(18)2+7=x , 整理,得x 2-64x+448=0,解得x 1=56,x 2=8,当x=8时,18x=1,1人不能成为方阵,舍去. ∴此班有学生56人.习题三. C【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.习题四. B【解答】设AC 交A ′B ′于H ,∵∠A=45°,∠D=90°,∴△A ′HA 是等腰直角三角形,设AA ′=x ,则阴影部分的底长为x ,高A ′D=2-x ,∴x •(2-x )=1,∴x=1,即AA ′=1cm .习题五. 143 【解答】如图,连接CD ,设AE=x 米, ∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12-x )米,∵正方形DEFH 的边长为2米,即DE=2米,∴DC 2=DE 2+EC 2=4+(12-x)2,AE 2+BC 2=x 2+36,∵DC 2=AE 2+BC 2,∴4+(12-x)2=x 2+36,解得:x=143米. 习题六. x 2x 20+2x 40-x每件应降20元【解答】设每件童装降价x 元,则(40-x)(20+2x)=1200即:x 2-30x+200=0,解得:x 1=10,x 2=20,∵要扩大销售量,减少库存,∴舍去x 1=10∴每件童装应降价20元.习题七.(1)-1,大,-1 (2) -1,小,-1(3)设AD=x ,S=x(16-2x)=-2(x-4)2+32,当AD=4m 时,面积最大值为32m 2.习题八. 2秒 或 16−243 7 秒 或 16+247 7 秒 或 ﹣32+659 5秒. 【解答】如图1,设时间为ts ,过P 作PM ⊥CD 于M ,过Q 作QN ⊥AB 于N ,∵四边形ABCD 是矩形,∴DC=AB=16cm ,AD=BC=PM=QN=6cm ,∠A=∠C=∠B=∠ADC=90°, 则DM=AP=3t cm ,CQ=BN=2t cm ,分为三种情况:①当DP=PQ 时,则DM=MQ=3t cm ,∵3t+3t+2t=16,解得:t=2.②当∠PQD 为锐角时,DQ=PQ 时,在Rt △PNQ 中,由勾股定理得:(16-2t)2=62+(16-3t-2t)2,7t 2-32t+12=0,解得:t=32±443 14 =16±243 7, ∵t=16+243 7 >163 (舍去),∴t=16-243 7.当∠PQD 为钝角时,如图2,QD=PQ ,则AP-DQ ≥0,即3t-(16-2t )≥0,∴165 ≤t ≤163. ∵DQ=16-2t ,PH=6,QH=AP-DQ=5t-16,∴(16-2t)2=36+(5t-16)2,解得t=16±247 7 , ∵t ≥165 ,∴t=16+247 7. ③当DP=DQ 时,在Rt △DAP 中,由勾股定理得:(16-2t)2=62+(3t)2,即5t 2+64t-220=0,解得t=−64±1259 10 =﹣32±659 5, ∵﹣32-659 5 <0,∴t=﹣32+659 5. 综上,经过2秒、16−243 7 、16+247 7 、﹣32+659 5秒时,点P 、Q 、D 组成的三角形是等腰三角形.。
浙教版数学八年级下册2.1《一元二次方程》教案

浙教版数学八年级下册2.1《一元二次方程》教案一. 教材分析《一元二次方程》是初中数学的重要内容,也是八年级下册的重点和难点。
本节课通过引入一元二次方程,让学生了解一元二次方程的定义、解法及其应用,培养学生解决实际问题的能力。
教材从生活实例出发,引导学生认识一元二次方程,并通过探究、合作、交流的方式,让学生掌握一元二次方程的解法,为后续学习函数、不等式等知识打下基础。
二. 学情分析学生在七年级已经学习了方程和不等式的基本知识,对解方程有一定的了解。
但一元二次方程相对复杂,需要学生具有较强的逻辑思维能力和抽象概括能力。
此外,学生对于数学问题的探究和合作能力也有待提高。
三. 教学目标1.了解一元二次方程的定义、解法及其应用。
2.掌握一元二次方程的解法,提高解决实际问题的能力。
3.培养学生的合作、探究、交流能力,提高学生的逻辑思维和抽象概括能力。
四. 教学重难点1.重难点:一元二次方程的定义、解法及其应用。
2.重点:一元二次方程的解法。
3.难点:一元二次方程的应用。
五. 教学方法1.采用问题驱动法,引导学生探究一元二次方程的定义和解法。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.利用案例分析法,让学生从实际问题中认识一元二次方程的应用。
4.采用板书演示法,直观展示一元二次方程的解法过程。
六. 教学准备1.准备相关的生活实例和案例,用于导入和巩固环节。
2.准备一元二次方程的习题,用于操练和家庭作业环节。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过生活实例引入一元二次方程,让学生感受一元二次方程在实际生活中的应用。
例如,讲解一个关于面积和高度的问题,引导学生发现方程x^2 - 6x + 9 = 0。
2.呈现(15分钟)讲解一元二次方程的定义,明确方程的一般形式:ax^2 + bx + c = 0。
解释方程中的a、b、c分别代表什么含义,并引导学生理解一元二次方程的解法。
八年级数学下册 第2章 一元二次方程 2.3 一元二次方程的应用(1)教案 (新版)浙教版-(新版)

2.3 一元二次方程的应用(1)一、教材分析1、教材地位和作用本节课是浙教版八年级数学下册第2章《一元二次方程》的内容,这是一个理论联系实际的好教材,充分体现了数学的应用价值.之前,学生已学习了一元二次方程的概念、解法,已初步具有了应用波利亚解题表列一元一次方程、二元一次方程组、分式方程等解应用题的能力,本节课将进一步学习问题解决的方法与步骤,它是前一部分知识的应用与巩固,也为今后学习二次函数等知识奠定基础.学好本节知识,可以培养学生分析问题、解决问题的能力,逻辑思维能力、信息迁移能力以及数学方法的应用能力等.2、教学目标数学教学应以学生的发展为本,培养能力为重,综上分析及教学大纲要求,本课时教学目标制定如下:知识目标:会分析实际应用问题中的数量关系,找出等量关系,并列一元二次方程解应用题;能力目标:联系实际,经历“问题情境-----建立模型------求解-------解释与应用”的过程,培养学生化实际问题为数学问题的能力及分析问题、解决问题的能力;情感目标:结合实践与探索,培养学生合作互助的精神,体验探索成果的喜悦.3、教学重点和难点由于本节内容涉及的实际应用问题都是通过列一元二次方程解决的,所以确定教学重点是列一元二次方程解应用题.要列出一元二次方程的关键是找出等量关系,从实际问题中挖掘出相等关系需要较强的联系实际能力、分析能力,因此本节的教学难点是寻找等量关系列方程,例2涉及的是现实生活中的增长率问题,数量关系复杂,学生不容易理解,它是教学的又一难点.二、教学方法与手段:本节课利用多媒体辅助教学,扩大课堂容量,提高课堂效率.根据教材内容和学生的认知特点,采用边分析、边讨论,层层设疑、讲练结合的启发式教学方法,例题选择由浅入深,从学生熟悉的实际问题开始,将实际问题“数学化”,建立方程模型,引导学生自主探索、发现、归纳,充分调动学生的积极性和主动性.三、学法指导:“素质教育”要求学生由“学会”转为“会学”,正确的学法指导是实现这一转化的重要手段,根据本节课的内容特点及学生的心理特征,在学法上,极力倡导新课程的自主探究、合作交流的学习方法.通过创设丰富的实际背景,使数学回到生活,鼓励学生积极思考,勇于钻研,敢于创新,产生强烈的求知欲.四、教学程序:1、创设情境,提出问题创设学生感兴趣的问题情境,使学生能够置身于问题情境中,在生动活泼的环境下积极思考,解决问题:古时候,一个农夫拿者一根竹竿进城,可是竖着拿,竹竿比城门高3尺,横着拿,竹竿比城门宽6尺,进不去,结果沿着城门的两个对角斜着拿,刚好进去,聪明的同学,你知道竹竿有多长吗?为了让学生能更清楚地理解题意,创设了以下几个阶梯性小问题:设竹竿为x尺,则(1)城门高________尺;(2)城门宽________尺;(3)城门的高、宽、两个对角之间的长度满足什么关系?通过引例,引导学生回顾总结列方程解应用题的基本步骤,在新旧知识之间构建桥梁,让学生明确应用方程、不等式或函数解决实际应用问题时关键是以下三个步骤:①设元;②用字母表示相关的量;③列关系式2、例练应用,解决问题列一元二次方程解应用题在现实生活中有着广泛的应用,学生普遍认为列方程解应用题难,其原因之一是题目阅读量大,数量多,关系比较复杂且隐蔽,所以在教学时首先应让学生消除畏难情绪,说明题目的一部分是背景材料,最后的一部分往往和设元有关,核心部分就是数量之间的关系.接着出示例1:某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?为了让学生能比较清楚地理解题目中的数量关系,设置以下问题:(1)若每盆增加1株,此时每盆花苗有(3+____)株,平均单株盈利为(3-0.5×____)元(2)若每盆增加2株,此时每盆花苗有(3+____)株,平均单株盈利为(3-0.5×____)元(3)若每盆增加x株,此时每盆花苗有(3+____)株,平均单株盈利为(3-0.5×____)元(4)每盆盈利=____________×________________然后引导学生完成例1为了开阔学生的思路,遇到问题能举一反三、触类旁通,又将例1进行适当改编,组织学生以学习小组为单位,分组合作、交流讨论:某花圃用花盆培育某种花苗,经过试验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加2株,平均单株盈利就减少0.5元.要使每盆的盈利达到11元,每盆应该植多少株?设置以下问题:(1)若每盆增加2株,此时每盆花苗有(3+___)株,平均单株盈利为(3-0.5×___)元(2)若每盆增加4株,此时每盆花苗有(3+___)株,平均单株盈利为(3-0.5×___)元(3)若每盆增加x株,此时每盆花苗有(3+___)株,平均单株盈利为(3-0.5×___)元为了及时巩固知识,促使学生对知识的理解,在例1的基础上改变问题的实际背景,出示如下练习:春节期间,某某某旅行社为吸引市民组团去风景区旅游,推出如下收费标准:如果人数不超过25人,人均旅游费用为1000元;如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.某单位组织员工去某某湾风景区旅游,共支付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去旅游?通过例1、练习几个不同背景却同一模型的问题学习,使学生掌握了怎样列一元二次方程解决生活中这一类问题,知识结构的形成不是依赖于教师的概括、抽象、灌输,不是“回忆”教师的解题套路,而是依靠学生感性认识的积累,让学生自己去分析,从而变“学会”为“会学”,使学生真正成为学习的主人,而不是知识的奴隶.通过对比,学生对于列方程解应用题的一般步骤中的“检验”也有了更深刻的理解,同时让学生感受到知识源于实践又作用于实践,体验到了数学的价值,同时也突出了课题的重点.沿着数学知识结构的逐步攀升,引导学生搜索现实生活中与增长率有关的问题,并设置了下列问题,引起学生的积极思维:(1)春节过后,许多服装都降价处理,一件皮衣原售价2000元,第一次下降10%,下降后售价__________________元,由于天气逐渐转暖,为了减少库存,第二次又下降了20%,此时售价_________________________ 元.(只需写出算式)(2)近几年,某某的社会经济发展迅速,据抽样调查统计显示,2000年城镇居民可支配收入为a元,以后逐年上升,每年增长的百分率约为8%,那么2001年城镇居民可支配收入为 _________________元;2002年城镇居民可支配收入为__________________元;2003年城镇居民可支配收入为__________________元;……2010年城镇居民可支配收入为__________________元;经过n年后城镇居民可支配收入为__________________元;(给出原始量、增长率(降低率)、变化次数、后来量之间的关系,让学生自己归纳并给出公式,只有他们自己发现的才是最有用的,也让学生体验成功的喜悦,进一步激发学习兴趣)(3)某药品原售价10元/盒,经两次降价后为5元/盒,已知两次降低的百分率一样都为x,则可列方程得___________(学生的错误可能会是:10(1-2x)=5 )上述三个问题分别从数、式、方程三个不同的方面对增长率(降低率)进行了理解,也使学生明确了要解决增长率(降低率)问题,必须弄清楚基准,第二个问题中得出的一般式为高中的后继学习作好准备.有了上述三个问题作铺垫,接着讲解引例,截止到2000年12月31日,我国的上网计算机总数为892万台;截止到2002年12月31日,我国的上网计算机总数以达2083万台.(1)求2000年12月31日至2002年12月31日我国的上网计算机台数的年平均增长率(精确到0.1%).(2)上网计算机总台数2001年12月31日至2003年12月31日的年平均增长率与2000年12月31日至2002年12月31日的年平均增长率相比,哪段时间年平均增长率较大?确定引例是本节的一个教学难点,是因为(1)对题意理解的困难.需将实际问题数学化,这是数学建模思想的体现;(2)信息转化的困难.要将统计图的信息转化为数量,这是数形结合的思想;(3)关系式确定的困难.要正确理解年平均增长率的含义.(4)解方程的困难.本例的方程用直接开平方法解才是最简便易行的.基于上述原因,本例采用低起点、小步子的办法分散难点,问题设计由易到难,循序渐进,学生就比较容易理解,引例(1)设置以下问题:(1)若设年平均增长率为x,你能用含x的代数式表示2001年的台数吗?2002年呢?(2)已知2002年的台数是多少?(3)据此,你能列出方程吗?引例(2)让学生思考:(1)已知哪段时间的年平均增长率?(2)需要求哪个时间段的年平均增长率?根据引例的讲解,师生共同完成例2,进一步突出课题重点,深层次激发学生的学习积极性.五、设计说明:列方程解应用题是初中数学的一大难点,关键是通过问题情境建立模型,然后在问题的广度、深度上下工夫.本节课我首先创设学生感兴趣的问题情境,激发学生学习积极性,引出用方程解决问题的基本思想和方法.例1是典型的市场营销问题,我通过三个不同背景却同一模型的例子(即多题一解)让学生学会如何分析、解决这一类问题;对于引例的处理,我首先设置相对简单的、学生能解决的问题,然后由浅入深,逐步深入,从数、式、方程三个不同层面让学生理解了增长率(降低率)问题,达到教学目的.。
浙教版八下第二章一元二次方程及解法复习

解一元二次方程时,我们先考虑用开平方法和
因式分解法,然后再考虑用公式法和配方法
☆对于(ax+m)2=n(n≥0) 的形式,我们通常选择开平方法。
☆对于右边化成零后左边可以因式分解的一元二次方程,我们
通常选择因式分解法。 ☆对于ax2+bx+c=0(a≠0)一般形式 ,a,b,c≠0时的方程以及 用上面两种方法解方程比较困难时选择公式法。 ☆配方法通常只用于x2+px+q=0形式的方程。
一元二次方程及 解法复习
准备好了吗?
明辨是非
判断下列方程是不是一元二次方程,若不是一元二 次方程,请说明理由? 1、(x-1)2=4 √ × √ 2、x2-2x=8 4、x2=y+1 6、x3-2x2=1 √ × ×
1 3、x2+ =1 x
5、x2=x
7、3x2-5x=2 √
8、x(x-2)=1+x2 ×
火眼金睛
选择适当的方法解下列方程:
1、(x+1)2=4 2、4x2-9=x(2x-3) 3、(x+1)(2x-1)=5 4、(y+1)2+2(y+1)+1=0
勇攀高峰
如图,在 ABCD中,对角线AC⊥BC,AC=BC=2,动 点P从点A出发沿AC向终点C移动,过点P分别作 PM∥AB交BC于M。PN∥AD交DC于N,连接AM,设 AP=x。 (1)四边形PMCN的形状有可能是菱形吗?请说明理由。 (2)当x为何值时,四边形PMCN的面积与⊿ABM的面 积相等? A
D P NBຫໍສະໝຸດ MC课堂小结:
通过今天的学习你 有什么收获?
已知:如图, ABCD中,AB=4,AD=6,BC边上的高 AE=2,动点P从点A出发,在线段AD上以每秒1个单位 的速度向点D运动,同时动点Q也从点C出发,在线段 BC上以每秒2个单位长度的速度向点B运动,当点Q运动 到点B时,点P随之停止运动。连接AQ、PQ、PC。设 运动时间为t(秒)。 (1)当运动时间为1.5秒时,求出⊿ABM的面积。 (2)用含t的代数式来表示⊿PCQ的面积。 (3)当t为何值时,P、Q两点间的距离为 13 ?
浙教版数学八年级下册《一元二次方程的解法》word导学案

一元二次方程的解法学习目标1.理解因式分解法解一元二次方程的原理。
2.会用因式分解法解一元二次方程。
重点难点教学重点:因式分解法解一元二次方程教学难点:例3不容易理解.【课前自学课堂交流】一、知识链接:1、把下列各式因式分解并指出所用的方法(1)ma+mb+mc= ( )(2)x2-16= ( )(3)a2+6a+9= ( )(4)a2-4a+4= ( )(5)x2-3x+2= ( )二、探究新知:1、若A×B=0,下面两个结论正确吗?(1)A和B都为0,即A=0,且B=0(2) A和B中至少有一个为0,即A=0,或B=0。
2、你能用上述结论解方程(X-5)(X-1)=0 吗?解为3、仿例1(课本P29)解下列方程:(1)(3X-5)(2X+1)=0 (2)a2-4a=0(3)4x2=25 (4)x2+9= -6x【归纳】解一元二次方程的一般步骤:(1)写成一般式,使方程右边等于;(2)对方程左边进行因式分解,使方程化为A×B=0的形式;(3)转化成一元一次方程,即;(4)解这两个,从而求出原方程的解。
4、利用解一元二次方程的方法叫做【课中交流】(课前不用做)三、仿例2解下列方程:(1)x2-5x+6=0 (2)(2X-1)2= -8X+4 (3)4x2 =(x-1) 2 (4)(X-2)(2X-3)=6四、拓展提高:1、构造一个一元二次方程,要求符合以下条件:常数项不为零;有一个根为-2.2、仿例3解方程3322-=+x x3、(挑战题)已知a 2-2ab-3b 2=0,且a >0,b >0,求 的值。
4、(挑战题)a 2+ab+b=7, b 2+ab+a=13,求a+b 的值。
课后作业 作业本,课时特训反思 b a b a -+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级(下)数学导学稿(讨论稿)
第2章一元二次方程的复习
执笔:杭根泉审核:吴培华学生姓名:
一、学习目标:
1.进一步掌握解一元二次方程的四种方法;并能灵活选择方法;
2.通过典型例子感受到选择适当方法的重要性。
3.进一步探索实际问题中的数量关系及其变化规律,体会数学建模思想,体会数学在应用中的价值
4.会根据具体问题中数量关系列出一元二次方程并求解,能根据问题的实际意义检验所得结果是否合理。
二、课前热身
1.一元二次方程的概念
已知关于x的方程(m²-1)x²+(m-1)x-2m+1=0,当m 时是一元二次方程,当m= 时是一元一次方程,当m= 时,x=0。
2.一元二次方程的解法你还记得吗?请你选择最恰当的方法解下列一元二次方程
①3x² -1=0 ② x(2x +3)=5(2x +3)
③x² - 3 x +2=0 ④2 x ² -5x+1=0
【方法提炼】
A.形如(x-k)²=h的方程可以用求解。
B.千万记住:方程的两边有相同的含有未知数的因式的时候不能两边都除以这个因式,因为这样能把方程的一个根丢失了,要利用法求解。
C.当我们不能利用上边的方法求解的时候就就可以用法求解,法是万能的。
3.一元二次方程的应用
①已知一个数的平方等于这个数的3倍,则这个数是.
②自由下落物体的高度h(米)与下落的时间t(秒)的关系为h=4.9t2. 现有一铁球从
离地面19.6米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.
③某城市2006年底绿地面积有225万平方米,计划经过两年达到256万平方米,设平均
每年的增长率为x,则可列方程.
④ 有一块长32cm ,宽24cm 的长方形钢片,在四个角截去相同的正方形小钢片,再折起来做一个无盖的盒子,已知盒子的底面积是原钢片面积的一半,那么盒子的高
是…………( )
A. 3cm
B. 2cm
C. 5cm
D. 4cm
三、课中学习
【典例讲解】
例1.方程(m+1)x 122--m m +7x-m=0是一元二次方程,则m=
思路分析:首先根据一元二次方程的定义得, =2;再由一元二次方程
ax 2+bx+c=0(a ≠0)的定义中a ≠0这一条件得 ≠0来求m 的值
例2.用适当的方法解一元二次方程
(1) x
2=3x (2) (x-1)2=3 (3)x 2-2x-99=0 (4)2x 2+5x-3=0
思路分析: 方程(1)选用 法; 方程(2)选用 法;
方程(3)选用 法; 方程(4)选用 法。
例3.某人将2000元人民币按一年定期储蓄存入银行,到期后支取1000元用作购物,剩下
的1000元及利息又全部按一年定期储蓄存入银行,若银行存款的利率不变,到期后得本利
和共1320元(不计利息税),求一年定期存款的年利率
例4. 某商场将销售成本为30元的台灯以40元的价格售出,平均每月销售600个.市场调
查表明:这种台灯的售价每上涨1元,每月平均销售数量将减少10个.若销售利润率不得
高于100%,那么销售这种台灯每月要获利10 000元,台灯的售价应定为多少元?
思路分析:如果这种台灯售价上涨x 元,那么每个台灯获利 元,每月平均
销售数量为 ,销售利润为 和 的积.
【效果检测】
1.关于x 的方程
是一元二次方程,则m 的取值范围是 ____.
2.方程2x -3 x 2 = 5化成一般形式后,a 、b 、c 的值分别为( )
(A)2,-3,-5 (B)-3,2,-5 (C)2,-3, 5 (D)-3,2,5
3.若关于x 的一元二次方程ax 2+bx+c=0 (a ≠0),且a+b+c=0,则方程必有一根为_______.
4. 方程0)4(=-x x 的根是( )
(A )4=x (B ) 0=x (C) 4,0==x x (D) 4,0-==x x
5. 方程
的解是( )
A.
B. C. D.
无实数根
6.用配方法解方程0982=-+x x 时,此方程可变为( ) (A) 7)4(2=+x (B) 25)4(2=+x (C) 9)4(2=+x (D) 7)4(2
-=+x
7. 解下列方程:
(1)(x -1)2=4 (2)x 2-2x -3=0 (公式法) (3)2t
2-7t -4=0(用配方法)
8.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元。
为了扩大销售,增
加利润,商场决定采取适当降价措施。
经调查发现,如果每件衬衫每降价1元,商场平均每
天可多售出2件。
若商场平均每天要赢利1200元,则每件衬衫应降价多少元?为尽快减少
库存,以便资金周转,则降价多少元?
四、布置作业:作业本复习题A组题和B组题为必做题,C组题为选做题。
五、课后反思:。