高盐废水处理十年经验浅谈
高盐废水的形成及其处理技术分析

高盐废水的形成及其处理技术分析1. 引言1.1 高盐废水的定义高盐废水是指含有高浓度盐类物质的废水,通常是工业生产过程中产生的废水。
这种废水中盐类的含量高于环境中正常水平,可能对生态环境和人类健康造成一定的影响。
高盐废水的主要成分包括氯化钠、硫酸盐、硝酸盐等,其浓度超过了环境中自然水体的盐分含量。
高盐废水的产生主要源于化工、电镀、矿业、冶金等工业领域,这些行业在生产过程中会产生大量含有盐分的废水。
在盐湖、盐矿等地区也会有高盐废水的排放。
由于高盐废水具有腐蚀性强、溶解能力强等特点,如果随意排放或未经处理直接进入水体,可能会污染地下水、河流和土壤,对生态系统造成破坏。
对高盐废水的处理至关重要。
要有效处理高盐废水,需要运用各种处理技术,包括物理处理、化学处理、生物处理和综合处理等方法,以将废水中的盐类物质去除或降低到安全标准以下,再进行排放或回收利用。
对高盐废水的处理是环保和资源循环利用的重要举措,也是保护生态环境和人类健康的必然选择。
1.2 高盐废水的形成原因高盐废水的形成原因主要包括以下几个方面。
工业生产过程中的废水排放是高盐废水的主要来源之一。
许多行业如化工、制药、造纸等在生产过程中会产生含盐废水,而这些废水中的盐类通常来自于生产原料或者生产过程中使用的化学物质。
城市生活污水中的高盐废水也是一个重要的形成原因。
随着城市化进程的加快,城市居民的生活用水量不断增加,从而带来了更多含盐废水的产生。
农业生产中的化肥和农药使用也会导致土壤中的盐分逐渐积累,并最终进入水体成为高盐废水的来源。
气候变化等因素也可能对水体中盐分浓度产生影响,从而间接导致高盐废水的形成。
高盐废水的形成是一个复杂的过程,需要综合考虑工业、城市生活和农业等多方面因素的影响。
1.3 高盐废水对环境的影响高盐废水会导致土壤盐碱化,影响土壤的肥力和作物生长。
当高盐废水直接排放到土壤中时,会导致土壤中盐分积累,从而影响土壤的渗透性和透气性,造成土壤盐碱化现象。
化工高盐度废水治理技术的探讨

第18卷第2期应用技术学报V〇1.18N〇.22018 年6 月JOURNALOFTECHNOLOGY Jun. 2018文章编号:2096-34:2*(2018)02-0114:-0* D O I:10. 3969/j.iss n.2096-3424. 2018. 02. 004化工高盐度废水治理技术的探讨朱勇强12,张战军2,张鸿雁2(1.上海应用技术大学化学与环境工程,上海201418;2.上海埃格环保科技有限公司,上海200435)摘要:针对化工生产废水特性,开发了能够适用于“含酚型多环结构且废水盐度高可生化性差”的生产废水的特殊耐盐菌种。
研究结果表明,该特殊菌种能够适用盐度高达30g/L的废水,生化处理后废水的C O D可降到0.3 g/L以下(达到纳管排放的标准)*埃格多相催化反应器、埃格菌种和埃格生化床等构成的废水处理工艺流程,较好地解决了香精香料等化工生产过程废水生化处理的技术“瓶颈”,提高微生物降解效率,同时降低了成本。
关键词:含盐废水;多相催化反应器;生物流化床;治理技术中图分类号:Q 939. 97 文献标志码:ADiscussion on High Salinity of Wastewater Treatment TechnologyZHUYongqiang1,2,ZHANGZhanjun2,ZHANGHongyan2(1. School of C hem istry and E nvironm ental E n gin ee rin g,Shanghai In s titu te of T ech no log y,Shanghai 201418, C hin a; 2.Shanghai Sustainable Accele-tech Co.,L t d.,Shanghai 200435 ?China)Abstract:The special sa lt-to lerant bacteria dvveloped fo r the chemical engineering could be used as "fla vo r-type polycyclic structure and the s a lin ity of w astew ater".The results showed th at the special bacteriacould be used fo r wastewater w ith s a lin ity up to 30 g/L,and the COD of w astew ater treatm ent could be reduced to0. 3 g/L to meet the standard of nanotube discharge.The wastewatertreatm ent process containing the Accele-tech m ultiphase catalytic re a c to r,Accele-tech bacteria and Accele-tech biological fluidized bed solved the"b o ttle n e c k"of the biochemical treatm ent of wastewater in theprocess of fla vo r and fragrance p ro d u ctio n,w hich greatly im proved the degradation efficiency of microbesand reduced the cost.Key words:satt w a stew ater;m ultiphase catalytic re a cto r;biological fluidized bed;treatm ent technology随着我国工业规模的不断扩大,工业用水量激 增,水资源紧缺问题和水污染问题更为凸显,逐渐成 为影响我国可持续发展战略的主要因素之一。
高盐废水处理方法

高盐废水处理方法高盐废水是指含有大量盐类物质的废水,通常来自于化工、矿业、冶金等行业的生产过程中。
高盐废水的处理对环境保护和资源利用具有重要意义。
目前,针对高盐废水的处理方法主要包括物理方法、化学方法和生物方法。
物理方法是指利用物理原理对高盐废水进行处理,如蒸馏、结晶、膜分离等。
蒸馏是通过加热高盐废水,使其蒸发成水蒸气,然后再将水蒸气冷凝成液体的方法,从而实现盐类物质的分离和回收。
结晶则是通过降低高盐废水的温度,使其中的盐类物质结晶沉淀出来。
膜分离则是利用特殊的膜材料,通过渗透、过滤等方式将高盐废水中的盐类物质分离出来。
物理方法处理高盐废水的优点是操作简单、成本低,但也存在能耗高、处理效率低的缺点。
化学方法是指利用化学反应对高盐废水进行处理,如盐析法、电渗析法等。
盐析法是通过向高盐废水中加入适当的化学药剂,使其中的盐类物质发生沉淀,从而实现盐类物质的分离和回收。
电渗析法则是利用电场作用下,将高盐废水中的离子通过半透膜分离出来。
化学方法处理高盐废水的优点是处理效率高、能耗低,但也存在药剂消耗大、处理后产生二次污染的问题。
生物方法是指利用微生物对高盐废水进行处理,如厌氧发酵、好氧生物处理等。
厌氧发酵是指在缺氧条件下,利用厌氧菌将高盐废水中的有机物质降解成沼气和有机肥料。
好氧生物处理则是利用好氧菌将高盐废水中的有机物质氧化降解成水和二氧化碳。
生物方法处理高盐废水的优点是无需添加化学药剂、处理后产生的废物易于处理,但也存在受温度、PH值等因素影响大、处理周期长的缺点。
综合来看,针对高盐废水的处理方法各有优缺点,可以根据具体情况选择合适的处理方法。
同时,为了提高处理效率和降低处理成本,也可以将物理、化学和生物方法相结合,采用多种方法联合处理高盐废水,以达到更好的处理效果。
希望通过不断的技术创新和工艺改进,能够更好地解决高盐废水处理这一环境和资源难题。
高盐废水处理技术

高盐废水处理技术近年来,随着工业化进程的不断加快,废水排放量不断增加,各种污染物也随之增加。
其中,高盐废水的排放也越来越多。
高盐废水对环境污染的程度十分严重,严重影响了生态环境,因此,应当采取有效措施进行治理。
高盐废水处理技术有多种,包括化学法、水化反应法、生物法等多种技术。
其中,化学法是指采用化学反应去除废水中的有害物质。
水化反应法是指通过化学水化反应,使废水中的有害物质发生水化反应而被去除,如催化水解、氧化还原法等。
生物法就是通过放养微生物,利用微生物的活性催化,来实现有害物质的降解。
当前,高盐废水处理技术在高效、低成本、低能耗、高处理效率和环保效果方面都有很大的提升。
一种常见的高盐废水处理技术是膜分离法。
该技术通过利用浓溶液膜的渗透性特性,在膜分离器的渗透过程中,可以有效的分离出各种有害物质,从而达到净化高盐废水的目的。
此外,现已发展成熟的有机废水回用技术,包括湿法研磨法、混凝法、渗滤法等,是处理高盐废水的一大技术手段。
未来,随着科技的不断进步,对高盐废水处理技术的研发空间也越来越大,可以期待更多高效环保、低成本、低能耗、高处理效率的高盐废水处理技术出现。
虽然,目前高盐废水处理技术已取得较为成熟的发展,但仍存在一些缺陷,如膜分离技术仍低效且昂贵,操作复杂,需要大量人力和物力投入;再生技术则有较高的投资成本,并且需要更多的投入以提高处理效果等。
因此,建设企业应加强对高盐废水处理技术的掌握,合理规划处理工艺,采用恰当的配套技术,力求实现高效、低成本、低能耗、高处理效率和环保效果。
此外,应大力发展新型高盐废水处理技术,研发出更高效的、更绿色的废水处理技术,以保护我们的环境。
总之,应加强对高盐废水处理技术的研究,提高处理效果,从而有效减少环境污染,最终实现绿色环境保护的目标。
工业高盐废水的处理方法

工业高盐废水的处理方法高盐废水是指总含盐质量分数至少1%的废水,其主要来自化工厂及石油和天然气的采集加工等,这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
一、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
二、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
三、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:1、调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
2、曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L 以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
高盐废水处理方法

高盐废水处理方法高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
2、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。
高盐废水的形成及其处理技术分析

高盐废水的形成及其处理技术分析高盐废水是指盐分浓度高于排水标准的一种废水。
它的形成有多种原因,比如:化工厂生产过程中的副产废水、钢厂冷却水等。
这些废水中含有大量的有害物质和重金属离子,具有较高的难度进行处理,需要采用先进的处理技术。
高盐废水处理技术包括:生物处理、物理化学处理、膜处理等,以下将对这些技术进行详细介绍。
一、生物处理生物处理是将有机质转化成较低污染度的无机物质的过程。
高盐废水生物处理的难点在于盐浓度过高,会抑制微生物的生长和代谢,导致处理效果降低。
因此需要采用耐盐菌进行生物处理。
现有的耐盐菌有“半乳糖醛酸球菌”、“盐耐受菌”、“嗜盐单胞菌”等。
这些菌株能适应高盐环境,并通过代谢将废水中的有机物质转化为能量和CO2等无机物质。
但该方法的处理效率较低,一般只适用于低浓度的高盐废水。
二、物理化学处理物理化学处理采用化学反应和物理过程将废水中的有害物质分离出来。
该方法具有高效、灵活、可靠的优点,是目前工业用废水处理的主要手段之一。
物理化学处理技术包括:1. 沉淀法:通过加入沉淀剂使得废水中的杂质沉淀于污泥中,然后进行过滤和脱水,最终得到可回收的清水和固态污泥。
2. 离子交换法:离子交换树脂能够将高盐废水中的离子与树脂上的离子交换,从而达到分离和净化的效果。
3. 膜过滤技术:通过膜滤分离技术,可以分离出废水中的杂质和盐分,达到净化目的。
这种方法具有处理效率高、能耗低等优点。
常见的膜材质有:超滤膜、反渗透膜等。
三、膜处理膜处理技术也可以作为高盐废水处理的一个重要手段。
膜分离技术可以将废水中的有害物质和盐分分离出来,得到清水,同时可以高效地回收废水中的资源。
目前,膜分离技术主要采用超滤膜、纳滤膜、反渗透膜等。
反渗透膜是目前最为常用的膜材质之一,它通过高压作用,使得废水中的离子、有机物等被截留在膜外,同时回收清水。
总之,对于高盐废水的治理可以采用不同的手段。
常用的方法包括生物处理、物理化学处理、膜处理等。
高盐废水的综合处置与利用

高盐废水的综合处置与利用摘要:随着工业化进程的进行和国民经济的发展,在化工、制药等工业生产过程中产生了大量的高盐废水,对环境和人体健康造成了严重的危害,其治理刻不容缓。本文首先简要介绍了高盐废水的来源和特点,然后详细介绍了生物法、电化学法、萃取法、离子交换法、焚烧法、膜分离法、蒸发法和高级氧化法等高盐废水处理技术的研究进展,并对其优缺点和发展趋势进行了总结。关键词:高盐废水;蒸发法;膜分离法随着国家对水环境管理与保护的不断加强,对工业高盐废水的处理往往要求达到“零排放”。目前,工业高盐废水“零排放”处理工艺的基本思路是使盐和水分离,得到回用水和结晶盐,但分离出的结晶盐是含有多种无机盐的杂盐,属于危险废弃物的范畴,其处理成本较高,且处置不当会造成环境的污染。因此,如何将高盐废水中的盐以单质盐的形式回收并进行资源化利用,成为工业高盐废水处理研究中的重点与难点。1高盐废水的来源及特点目前,关于高盐废水的定义尚无统一标准,部分学者认为“以氯化钠含量计总含盐量不低于1%的废水”为高盐废水;也有部分研究人员认为“有机物和总溶解性固体物质量分数不小于3.5%的废水”为高盐废水。高盐废水来源广泛,一是在化工、制药等多种工业生产中,会排放大量含有高浓度有机污染物和Ca2+、Na+、Cl-、SO2-4等离子的废水;二是为节约水资源,很多沿海城市直接利用海水作为工业生产用水,甚至用于消防及冲洗厕所和道路,所产生废水不仅水量大,而且含盐量高,比较难处理;三是某些特殊地区地下水异常,如华北平原、内蒙古等地,出现浅层地下水为苦咸水、咸水或微咸水的现象,另有海水渗透进入污水管道所产生的高盐废水,如天津等沿海地区。根据定义,高盐废水中都含有高浓度有机污染物和溶解性盐类物质,但由于生产工艺的不同,有机污染物的种类及理化性质也有较大差异,而盐类物质则基本相同,多为Na+、Cl-、Ca2+、SO2-4等物质。这些离子盐分为微生物生长所必需的物质,不仅促进微生物生长,还可以调节细胞渗透压和维持膜平衡,但若浓度过高,则会对微生物产生毒害和胁迫作用。高盐废水的高盐浓度和高渗透压,会引起微生物细胞脱水,降低细胞活性。另外高浓度氯离子对细菌具有一定的毒害作用,不利于微生物生长,会导致生物系统的处理效果不佳。当高盐废水未经处理进入地下水体后,会导致地下水的硬度增加,并且长期饮用高盐度的水,会损坏牙齿,甚至会导致肾结石等疾病。因此,随着环保法规的日趋严格,高盐废水的处理愈加迫在眉睫。2高盐废水处理方法2.1膜蒸馏法采用疏水微孔膜以膜两侧蒸汽压力差为传质驱动力的膜分离过程,当不同温度的水溶液被疏水微孔膜分隔开时,由于膜的疏水性,两侧的水溶液均不能透过膜孔进入另一侧,但由于暖侧水溶液与膜界面的水蒸汽压高于冷侧,水蒸汽就会透过膜孔从暖侧进入冷侧而冷凝。优点:①设备简单、操作方便;②蒸馏出来的液体十分干净,很少有其他杂质;③无需将溶液加热至沸点,节约能源。2.2自然蒸发法通过阳光暴晒蒸发水分,浓缩水中盐分及其他有害物质,进而减少废水排放规模。缺点:①只适合在阳光充足,气候干燥降雨量较少的地区。②需要较大的占地面积。③处理周期较长。优点:减少设备投资,节约资源的使用,降低企业处理成本。2.3机械蒸汽再压缩蒸发法机械压缩机将蒸发器产生的二次蒸气强制压缩,提高二次蒸汽的压力和温度,增加二次蒸汽的热焓,然后全部回送到蒸发器的加热室作为加热料液的热源,使料液始终维持在一个高温状态,并不断蒸发浓缩。加热蒸汽本身经换热后冷凝成水排出。料液蒸发的蒸汽再次作为二次蒸汽进入机械压缩机,提高热焓品质,再次作为蒸发器的热源,如此循环往复,周而复始。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高盐废水处理十年经验浅谈本人自99年接触高盐废水处理至今,摸爬滚打了这些年,对于高盐废水的处理有一点粗浅的认识,说出来供大家特别是入行不久的水友们参考。
初识高盐废水----生化:不行;耐盐菌生化:感觉被骗了;稀释生化:水费高,排量大,效果差(如果稀释到足以顺利生化的程度那要很多的清水,除非你的原水量很小),行不通;蒸发高盐废水初探------没有合适的设备、运行费用高,搁浅;高盐废水处理技术考察------膜技术除盐:设备昂贵,易堵,易污染,且浓液无法处理,不适合(如果你对膜技术的原理和应用做了认真了解,并且明白什么是“废水”,就会知道不适合的含义);再考察------电解除盐:含氯化钠的废水电解,无论是离子膜法还是隔膜法,都因为含有有机物的问题而无法满足电解要求;退一步说,即使可行你能解决极板的问题、安全的问题(你污水站总不能建成个氯碱厂吧)、后续处理的问题等?含其他盐类的废水电解更不行。
高盐废水终探-------只有蒸发了,只要有合适的设备可以将盐以固体的形式分离出来,运行费用高点毕竟是个可以解决问题的办法。
水友们,高盐废水别再对耐盐菌(耐盐有限度、受废水中有机物成分的影响大)、膜法除盐(废水成分太复杂且那只是浓缩过程而不是分离过程,对废水根本不适合)、电解除盐(之所以是废水,那废水中就不是只含盐类,所含的其他物质会造成你根本电解不下去,同时电解是不能脱盐的,物质是守恒的,阳离子是电解不掉的,那是怎么去脱盐呢?)等技术报希望了,那些不适合用到“废水”上!提醒大家少走弯路,仅供参考。
最后说一句,我们需要处理的是“废水”,那里面不单单涉及到盐的问题!15楼:对高盐废水有些许研究,我想请教楼主就十年经验来讲,所谓高盐到底是多少含量适合生化,多少适合蒸发?谢谢分享。
回复15#楼15#楼所提的问题乍一看是新手才提的问题,实际上是高手之问题,这个问题也是很多人迷茫的问题;偶也曾经为该问题请教过不少高人,做过不少试验。
粗浅的心得与大家分享:其实这个问题无论让谁回答都是片面之见,因为不同的废水进行生化对含盐量、含盐种类的适应度具有很大的差异性,而我们谁都不可能对各种废水进行含盐量的生化试验或运行过各种废水的生化处理系统;所以生化对含盐量的适合性很难有个定论。
一般对于工业废水来讲,无机盐类的含量超过1%(不用电导率法测含盐量,而是用焚烧法测含盐量)对生化会有影响,影响程度跟废水中有机物的成分有关;超过 1.5%,不是生化进行不下去而是你的生化效果将大打折扣;超过2%(B/C值很高的水除外)进行生化就要小心了。
微生物是生物,渗透压是需要平衡的。
有的同志问了,海水的含盐量一般3-4%,为啥有那么多的生物,那是亿万年进化的结果!以上仅供参考。
可能有的工程适应的盐度高一些,注意偶说的是规模化、稳定、长时间运行的工程;如果你还认为确实有盐度很高的工程在运行,那麽先想一下:使用啥办法测盐度的,准确否?你是听说的盐度和运行效果的结果,还是自己亲身运行过的,运行了多长时间?运行费用多少?避免道听途说。
至于盐含量多少适合蒸发(只从盐含量的角度谈适不适合,不谈费用),从我们目前的设备来看,超过3%就可以(不是适合)蒸发,最适合的是盐含量下限5%,上限与不同盐类在水中的溶解度有关。
抛开盐含量,适不适合蒸发最大的关键是水量,另外还有水质。
参考,多交流高盐污水产生途径广泛,水量也逐年增加。
最小化高盐废水排放对环境产生的影响要求去除含盐污水中的污染物。
但是由于高盐的毒害和抑制作用,生物处理技术实施遇到极大阻碍。
1 高盐废水产生途径1.1海水代用排放的废水所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。
在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。
发达国家年海水冷却水用量已经超过了1000亿m3。
目前我国海水的年利用量为60多亿m3。
青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。
目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。
天津年利用海水达到18亿m3。
此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。
对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。
城市生活用水。
在城市生活中,海水可以替代淡水作为冲厕水。
目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。
而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。
1.2工业生产废水一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。
1.3 其他高盐废水船舶压舱水废水最小化生产中产生的污水大型船舰上产生的生活污水2 无机盐对微生物的抑制原理 2.1 抑制原理含盐废水主要毒物是无机毒物,即高浓度的无机盐。
有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。
高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。
①微生物在等渗透压下生长良好。
微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(ρ(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。
2.2 淡水微生物在不同盐度下的存活率不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。
这是盐度对微生物的一种选择。
将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。
因此,当盐度超过20g/:L,一般认为用不同淡水微生物无法进行处理。
3 适盐微生物的分类与利用耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。
嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。
按照最佳生长盐度范围可以分为三类。
海洋菌:最佳生长盐度1~3%中度嗜盐菌:最佳生长盐度3~15%极度嗜盐菌:最佳生长盐度15~30%4 生物处理高盐污水遇到的问题盐度适应差传统活性污泥法驯化处理盐度低于2%含盐废水。
当盐度环境变为淡水环境时,污泥的适应性会很快消失。
盐度变化影响大盐度在0.5~2%变化通常会对处理系统产生严重的干扰。
突然变化盐度比逐渐变化盐度对系统的干扰更大从高盐变为无盐产生影响比低盐环境变为高盐环境产生的影响要大降解速率缓慢随着盐度的升高有机物降解速率下降,因此低F/M更适合含盐废水的处理。
图3.5为SBR法处理在各盐度下的处理效果。
污泥流失严重盐度改变污泥中微生物的组成,改变了污泥的沉淀性和出水SS,污泥流失严重. 5 高盐污水生物处理工程对策 5.1 驯化淡水微生物适应于生活在淡水生物处理设施中的微生物在进入一定浓度的含盐环境内,会通过自身的渗透压调节机制来平衡细胞内的渗透压或保护细胞内的原生质,这些调节机制包括聚集低分子量物质来形成新的胞外保护层,调节自身的代谢途径,改变基因组成等,因此,正常活性污泥可以在一定盐度范围内通过一定时间的驯化处理含盐废水。
虽然污泥通过驯化可以提高系统耐盐范围,提高系统的处理效率,但是,驯化污泥中的微生物对盐度的耐受范围有限,而且对环境的变化敏感。
当盐度环境变化时,微生物的适应性会立刻消失。
驯化只是微生物适应环境的暂时生理调整,不具有遗传特性。
这种适应性的敏感对污水处理工程的实施很不利。
研究认为,在盐度小于20g/L条件下,可以通过盐度驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
5.2 稀释进水盐度既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
5.3 利用适盐微生物接种或者基因固定化适盐微生物处理高盐污水是一种有效的处理方法。
此种方法可以处理超过3%的高盐污水,这是不同驯化法无法实现的。
其筛选出的某些具有特定污染物去除的适盐菌可以具有高的专性降解能力,大大提高处理效果。
筛选接种物来源于海洋或者河口底泥、晒盐场底物和其他高盐环境下的活性物质。
筛选往往有一定的程序和基因化措施。
这种方法的缺点是启动时间长,前期启动费用高。
但是对于高盐污水生物处理而言,是可行的方法。
5.4 添加拮抗剂拮抗作用是指一种毒物的毒害作用因另一种物质的存在或者增加而降低的情况。
目前研究,发现K会对Na产生拮抗作用,减少Na盐对微生物的毒害作用。
吸钾排钠作用,主要原理可能是Na+/K+反向转运功能。
细菌的生长虽然需要高钠的环境,细胞内的Na浓度并不高,如盐杆菌光介导的H+质子泵具有Na+/K+反向转运功能,即具有吸收和浓缩K+和向胞外排放Na+的能力. K+作为一种相容性溶质,可以调节渗透压达到细胞内外平衡,其浓度高达7mol/L,以维持内外同样的水活度.例如嗜盐厌氧菌、嗜盐硫还原菌及嗜盐古菌是采用细胞内积累高浓度K+来对抗胞外的高渗环境.例酵母中的Na+/K+反向载体可以将多余的盐分排出体外,提高酵母的耐盐性. 5.5 选择合适处理工艺不同的处理工艺影响微生物的耐盐范围。
污泥处理活性污泥工艺生物滤池自净化两段接触氧化法NaCI(mg/L)5000~10000 8000~9000 10000~40000 10000 25000~35000 研究普遍认为生物膜法的耐盐能力大于悬浮活性污泥法。
另外, 加设厌养段可以大大提高后继好氧段的耐盐范围。
6 高盐污水生物处理的设计要求 6.1 增设盐度调节池盐度变化对稳定的系统产生极大的影响,表现为处理效率的急剧下降和污泥的大量流失。
设计时应设立调节池保证盐度的相对稳定。
可以在调节池进出口设立电导监测装置,加强盐度的在线的控制于反馈,防止盐度冲击造成处理系统处理的失败。
6.2 减少污泥负荷盐度降低生物降解的速率,因此设计负荷要相对减少。
很多研究已经证明,在高盐环境下污泥指数降低,因此,不必担心过低负荷造成的污泥膨胀。
6.3 增加污泥浓度高盐处理污泥的蓄凝性差,污泥流失严重。
因此,在设计中应保证高的污泥浓度。
这也是提高处理效率的一种手段。
还可以在设计污泥浓缩池时,保证额外的污泥储量,当污泥流失时,迅速补给。