(完整版)中考专项复习整式及其运算
专题02整式及其运算(原卷版)

专题02 整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 3.(2023·江西·统考中考真题)计算()322m 的结果为( )A .68mB .66mC .62mD .52m4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a = 5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是( )A .235a a a ⋅=B .()325a a =C .33()ab ab =D .23a a a ÷= 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=( )A .5B .1C .1-D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 625.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=- 28.(2023·广西·统考中考真题)下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a = 29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b -=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a = 35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a ⋅=36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( )A .()23aB .102a a ÷C .4a a ⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( ) A .6 B .5- C .3- D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______. 49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题。
中考重点整式的基本运算与应用

中考重点整式的基本运算与应用整式是代数式的一种,由字母、数、和代数运算符号(加、减、乘、除)构成。
在数学学习中,整式的基本运算是非常重要的核心内容之一。
本文将详细讨论整式的四种基本运算,即加法、减法、乘法和除法,并结合中考题目,介绍了一些典型的应用。
一、加法运算加法是整式的基本运算之一,其运算规则相对简单,只需按照同类项相加的原则进行操作。
例题1:已知整式A=2a^2-3ab+4b^2+5a,B=3ab-5a^2+b^2-2b,求A+B的值。
解析:根据加法运算的规则,将同类项进行合并相加即可。
A+B=(2a^2-3ab+4b^2+5a)+(3ab-5a^2+b^2-2b)=2a^2+(-3ab+3ab)+4b^2+(5a+(-5a^2))+b^2+(-2b)=2a^2+4b^2-5a^2+5a+b^2-2b=(-3a^2+5a)+5b^2+(-2b)=-3a^2+5a+5b^2-2b因此,A+B的值为-3a^2+5a+5b^2-2b。
二、减法运算减法是整式的基本运算之一,其运算规则同样较为简单,只需将减法转化为加法进行操作。
例题2:已知整式C=3x^2-5xy+2y^2-4,D=4xy+2x^2-y^2+3y-3,求C-D的值。
解析:根据减法运算的规则,将减法转化为加法运算。
C-D=(3x^2-5xy+2y^2-4)-(4xy+2x^2-y^2+3y-3)=3x^2+(-2x^2)+2y^2+(-y^2)+(-5xy-4xy)+(3y-(-3))=(3x^2-2x^2)+2y^2-y^2-9xy+3y+3=x^2+2y^2-9xy+3y+3因此,C-D的值为x^2+2y^2-9xy+3y+3。
三、乘法运算乘法是整式的基本运算之一,其运算规则较为复杂,需要运用“分配律”和“合并同类项”的原则。
例题3:已知整式E=(2x^2-3y)(x+4),求E的值。
解析:根据乘法运算的规则,将两个多项式按照分配律进行展开和合并同类项。
初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)

初中数学总复习整式
多项式的项数与次数
例3 下列多项式次数为3的是( C)
A. 5x 2 6x 1
B.x 2 x 1
C .a 2b ab b2
D.x2 y2 2x3 1
注意(1)多项式的次数不是所有项的次数的和,而是它的最高 次项次数;
(2)多项式的每一项都包含它前面的符号; (3)再强调一次, “π”当作数字,而不是字母
—
~~~——
~~~
一找
=(4x2-3x2)+ (-8x+6x)+ (5-4) 二移
= x2 -2x +1
三并
初中数学总复习整式
合并同类项的步骤:
1、找出同类项 用不同的线标记出各组同类项,注意每一项的符号。 2、把同类项移在一起
用括号将同类项结合,括号间用加号连接。
3、合并同类项 系数相加,字母及字母的指数不变 。
项式,最高次项是____x__23_y_2_,常数项是____13_____;
初中数学总复习整式
易错题
例5 下列各个式子中,书写格式正确的是( F)
A.a b D.a3
B. 1 1 ab 2
C.a 3
E. 1ab
F. a2b 3
初中数学总复习整式
小结:
1、代数式中用到乘法时,若是数字与数字乘,要用“×” 若是数字与字母乘,乘号通常写成”.”或省略不写,如 3×y应写成3·y或3y,且数字与字母相乘时,字母与 字母相乘,乘号通常写成“·”或省略不写。
初中数学总复习整式
多项式的项数与次数
例4 、请说出下列各多项式是几次几项式,并写出多项式的最高次
项和常数项;
(1)25 x2 y xy3是 __四___次 __三___ 项式,最高次项是_____x_y__3_,常数项是___2__5____;
(完整版)中考专项复习整式及其运算

第一章数与式第二课时整式及其运算塔城市第四中学付玉芝复习目标:1. 了解代数式和整式的有关概念2. 掌握整式的相关运算法则,并正确进行计算.复习重点:整式的相关运算法则复习难点:运算法则进行正确计算.复习过程:(一)考点知识精讲:考点一:代数式和整式的有关概念1.单项式:由数或字母的____ 组成的代数式叫做单项式.单项式中的___________ 叫做这个单项式的系数;单项式中的所有字2母的_______ ,叫做这个单项式的次数.如:-7xy 的系数是__ ,次数是__ .2.多项式:几个单项式的__ 叫做多项式.在多项式中,每个单项式叫做多项式的___ ,其中次数最高的项的_____ 叫做这个多项式的次数,不含字母的项叫做_______ .如:多项式3x2-2x+5有项,它们分别是________________ ,其中_ 是常数项,这个多项式是___ 次 ___ 项3.整式:_____ 与________ 统称整式.4.同类项:在一个多项式中,所含 ____ 相同,并且相同字母的_____ 也分别相同的项叫做同类项.6.幂的运算性质有理数的乘方 : a ·a ·a ·⋯a ·= __ .( 1)性质:正数的任何次幂都是_________________________________负数的偶次幂是 _____奇次幂是 ___ ___;0的任何次幂 (0 次幂除外 ) 都是 ;任何数的 偶次幂为___mn(2) a a =__________ ___ (m ,n 为整数, a ≠ 0).mn(3) (a ) =______ (m ,n 为整数, a ≠0).n(4) (ab) =___ ___ (n 为整数, ab ≠ 0).mn(5) a ÷ a =_____ (m ,n 为整数, a ≠0). 7.整式的乘 (除):(1) 单项式相乘 (除),把它们的 、相同字母分别相乘 (除), 对于只在一个单项式 (被除式 ) 里含有的字母, 则连同它的 作为积 (商)的一个因式.如: 2x2y3·3xyz= ______ . 8x2y3 ÷2xy= ______ . (2) 多项式乘(除 ) 单项式: (a+b )m= _____________________(am+bm)÷m=(3) 多项式乘多项式: (a+b )(m+n )= __________________________8.乘法公式( 1)平方差公式: (a+b )(a-b )= _ .(2)完全平方公式: (a ± b )2= ____二)中考典例精讲:32例1】计算(-x y) 的结果是( )5 6 3 2 6 2 A.-x y B.x y C.-x y D.x y分析:根据积的乘方法则,可得3 2 3 2 2 6 2 (-x y) =(-x ) y =x y .答案:D点评:本题考查积的乘方,熟记计算法则是关键.【例2】已知a+b=- 2 , 求代数式( a-1 )2+b(2a+b)+2a 的值解:原式= a2-2a+1+2ab+b2+2a = (a+b)2+1.将a+b= - 2代入得,原式= (- 2 )2+1=3. 点评:本题考查了完全平方公式及单项式乘多项式等法则.三)课堂训练21.(- 4x) 的值为( )22A.-8x B.8x2C.-16x D.16x2. 下列运算正确的是( )2 3 5 2 2 2A.x +x =x B.(x+y) =x +y2 3 6 2 3 6C.x ·x =x D .(x ) =x3. 因式分解:ab- a= _______ .24. 化简:(a+b)(a-b)+2b .5. 先化简,再求值:2(1)(a+b)(a-b)+b(a+2b)-b ,其中a=1,b=- 2.2 2 2 2 2 2 解:(a+b)(a-b)+b(a+2b)-b = a -b +ab+2b -b = a +ab.当a=1,b=-2 时,2原式= 1 +1×(- 2) = 1-2 = -1.5 3 2 2(2)(2+a)(2-a)+a(a-5b)+3ab ÷(-a b),其中ab=- 2.22解:原式=4-a +a -5ab+3ab=4-2ab.当ab=- 2 时,原式=4-2×(-2)=4+4=8考点点拨:本考点是中考的高频考点,题型一般为选择题,难度较低.解答本考点的有关题目,关键在于掌握整式的相关运算法则,包括整式的加减乘除运算法则、合并同类项法则、去括号法则等,并正确进行计算.(四)课堂小结:谈谈你在这节课中,有什么收获?(五)当堂训练:整式及其运算1.计算(a4)2的结果是()A. a8B. a6C. 2a6D. 2a82.下列运算正确的是( )A. a3+a3=a6B. 2(a+1)=2a+ 1C. (ab)2=a2b2D. a6÷a3=a2 3.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,A. 7 C. 5 )B. 6 D. 44.若x2+6x+k是完全平方式,则k=()A. 9B. -9C. ±9D. ± 35.如图,图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()A. (m+n)2-(m-n)2=4mnB. (m+n)2-(m2+n2)=2mnC. (m-n)2+2mn=m2+n2D. (m+n)(m-n)=m2-n2 6.化简:(a-b)2+a(2b-a)=.7.已知a,b满足a+b=3,ab=2,则a2+b2=.8.观察一列单项式:x,3x2,5x2,7x,9x2,11x2,13x,⋯,则第2016 个单项式是.9.先化简,再求值:(a+b)(a-b)+b(b-2),其中a=,b=1.10.已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.11.若a-b=1,则代数式a2-b2-2b的值为多少?.12.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=- 2.(六)当堂训练点评,有错题的小组互讲。
中考重点整式的加减乘除

中考重点整式的加减乘除整式是代数中常见的一种形式,由一些代数式通过加减乘除运算符连接而成。
整式的加减乘除是中考数学中的重点内容之一,本文将重点探讨整式的加减乘除运算。
一、整式的加法整式的加法指的是同类项的加法。
所谓同类项,是指指数相同的项。
例如,3x和2x就是同类项,而3x和2y就不是同类项。
整式的加法运算步骤如下:1. 将相同类型的项按照相同变量的幂次从高到低排列。
2. 对相同类型的项,将它们的系数相加,并保持变量的幂次不变。
例如,将3x² + 5x + 2 和 6x² + 3x - 1相加,步骤如下:排列:6x² + 3x - 1 + 3x² + 5x + 2合并同类项:(6x² + 3x²) + (3x + 5x) + (-1 + 2)计算:9x² + 8x + 1二、整式的减法整式的减法也是同类项的减法。
整式的减法可以通过将减数中的每一项取相反数,然后与被减数相加的方式实现。
例如,将3x² + 5x + 2 减去 6x² + 3x - 1,步骤如下:将减数的每一项取相反数:-6x² - 3x + 1相加:(3x² + 5x + 2) + (-6x² - 3x + 1)合并同类项:(3x² - 6x²) + (5x - 3x) + (2 + 1)计算:-3x² + 2x + 3三、整式的乘法整式的乘法指的是多项式之间的乘法,乘法的结果是一个新的整式。
整式的乘法可以通过分配律和同类项相加的方式实现。
例如,将(2x + 3)乘以(4x - 5),步骤如下:分配律:2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)计算:8x² - 10x + 12x - 15合并同类项:8x² + 2x - 15四、整式的除法整式的除法是指将一个整式除以另一个整式,得到商式和余式的过程。
中考数学专题2整式及其运算

九年级数学中考复习第二课时:整式及其运算考点一:知识梳理:1、整式: 和 统称为整式。
2、幂的运算法则:(1) a m.a n =a m+n 同底数幂相乘,底数 ,指数 .(2) (a m )n =a mn 幂的乘方, , ;(3) (ab)n =a n b n 积的乘方,(4)a m ÷a n =a m-n 同底数幂相除,底数 ,指数 。
3、整式的乘法:(1)单项式与单项式相乘: ;(2)单项式与多项式相乘: ;(3)多项式与多项式相乘: ;4、乘法公式:(1)平方差公式: ;(2)完全平方公式: ;5、单项式除以单项式: ;6、多项式除以单项式: 。
一、选择题1、下列运算正确的是( )A 532a a a =+B ()63262-a a -= C ()()1212122-=-+a a a D ()122223-=÷-a a a a2、下列运算正确的是( )A. x 2·x 3=x 6B.(ab)3=a 3b 3C.3a+2a=5a 2D.(a-1)2=a 2-13、下列运算正确的是( )A.a 2+a 2=a 4B.(-a)3a 2= -a 6C.(-a)2 ÷(-a 2)= -1D.2a -1=a21 4、下列运算正确的是( ) A 、326a a a ⋅= B 、()03.141π-= C 、1122-⎛⎫=- ⎪⎝⎭ D 、93=±5、下列计算中正确的是( )A a 3a 2=a 6B b 4b 4=2 b 4C y 7y=y 7D (–a)2(-a)3=-a 56、下列计算中正确的是( )A 2a 2+a=3a 2B 3x 2(-2x 3)=-6x 6C 4a 3b ÷(-2a 2b)=-2aD a 8÷a 2=a 47.下列运算正确的是( )A. 3a -1 =a 31B. a a a 2322+=C. ()-⋅=-a a a 326D. ()()-÷-=a a a 32 二、填空题1、若3×9m ×27m =311,则m 的值为( )A 、2B 、3C 、4D 、52、已知102103m n ==,,则3210m n +=____________。
(word完整版)初中数学总复习:整式

初中数学总复习:整式知识网络及考点(一) 1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
1 2注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如4丄a2b,313这种表示就是错误的,应写成a2b。
一个单项式中,所有字母的指数的和叫做这个单项式3的次数。
女口5a3b2c是6次单项式。
3、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算岀结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不岀其字母的值,需要利用技巧,“整体”代入。
4、同类项所有字母相同,并且相同字母的指数也分别相同的单项式叫做同类项。
几个常数项也是同类项。
5、去括号法则(1) 括号前是“ +”,把括号和它前面的“ +”号一起去掉,括号里各项都不变号。
(2 )括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都变号。
6、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
整式的乘法:a m ?a n a m n(m, n都是正整数)(a m)n a mn(m,n都是正整数)注意:(1)单项式乘单项式的结果仍然是单项式。
(2) 单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。
(3) 计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4) 多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5) 公式中的字母可以表示数,也可以表示单项式或多项式。
1⑹ a01(a 0); a p p (a 0, p为正整数)a(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。
整式及其运算(50题)2023年中考数学真题分项汇编(全国通用)(解析版)

整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a −=( )A .aB .a −C .3aD .1 【答案】A【分析】根据合并同类项法则进行计算即可.【详解】解:2a a a −=,故A 正确.故选:A .【点睛】本题主要考查了合并同类项,解题的关键是熟练掌握合并同类项法则,准确计算.2.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a −=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 【答案】D【分析】根据合并同类项可判断A ,根据完全平方公式可判断B ,根据单项式除以单项式可判断C ,根据积的乘方与幂的乘方运算可判断D ,从而可得答案.【详解】解:33a ,2a 不是同类项,不能合并,故A 不符合题意; ()2222a b a ab b +=++,故B 不符合题意;3222a b a ab ÷=,故C 不符合题意;()2242a b a b =,故D 符合题意;故选:D.【点睛】本题考查的是合并同类项,完全平方公式的应用,单项式除以单项式,积的乘方与幂的乘方运算的含义,熟记基础运算法则是解本题的关键. 3.(2023·江西·统考中考真题)计算()322m 的结果为( ) A .68mB .66mC .62mD .52m【答案】A 【分析】根据积的乘方计算法则求解即可.【详解】解:()32628m m =,故选:A . 【点睛】本题主要考查了积的乘方计算,熟知相关计算法则是解题的关键. 4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a −=B .325a a a ⋅=C .321a a ÷=D .()23a a = 【答案】B【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、幂的乘方法则分别计算即可.【详解】解:3a 与2a 不是同类项,不能合并,故A 选项错误;33522a a a a +⋅==,故B 选项正确;32a a a ÷=,故C 选项错误; ()236a a =,故D 选项错误;故选:B .【点睛】本题考查合并同类项、同底数幂的乘法、同底数幂的除法、幂的乘方,熟练掌握各项运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法可判断A ,根据幂的乘方可判断B ,根据积的乘方可判断C ,根据整数指数幂的运算可判断D ,从而可得答案.【详解】解:235a a a ⋅=,运算正确,故A 符合题意; ()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a ÷=,原运算错误,故D 不符合题意;故选:A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键. 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a 【答案】D【分析】根据积的乘方法则计算即可. 【详解】解:()2239a a =.故选:D. 【点睛】此题考查了积的乘方,积的乘方等于各因数乘方的积,熟练掌握积的乘方法则是解题的关键. 7.(2023·湖南常德·统考中考真题)若2340a a +−=,则2263a a +−=( )A .5B .1C .1−D .0【答案】A【分析】把2340a a +−=变形后整体代入求值即可. 【详解】∵2340a a +−=,∴234+=a a∴()222632332435a a a a +−=+−=⨯−=,故选:A .【点睛】本题考查代数式求值,利用整体思想是解题的关键.8.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 【答案】B【分析】根据同底数幂的运算法则即可求解.【详解】解:A 选项,不是同类项,不能进行加减乘除,不符合题意;B 选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是235a a +=,符合题意;C 选项,根据幂的乘方可知,底数不变,指数相乘,结果是236a a ⨯=,不符合题意;D 选项,根据同底数幂的除法可知,底数不变,指数相减,结果是1028a a −=,不符合题意;故选:B .【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键. 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅=【答案】D【分析】根据同底数幂的乘法、除法,幂的乘方,合并同类项进行运算,然后判断即可.【详解】解:A 、23x x x +≠,错误,故不符合要求; B 、6332x x x x ÷=≠,错误,故不符合要求;C 、()43127x x x =≠,错误,故不符合要求;D 、347x x x ⋅=,正确,故符合要求;故选:D .【点睛】本题考查了同底数幂的乘法、除法,幂的乘方,合并同类项.解题的关键在于正确的运算. 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a −=【答案】D【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==A 错误; 2222(3)39a a a ==,故B 错误;63633a a a a −÷==,故C 错误;()22223312a a a a −=−=,故D 正确.故选:D . 【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键. 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b【答案】C【分析】先计算单项式乘以单项式,然后根据单项式除以单项式进行计算即可求解.【详解】解:2432a a b ab ⋅÷3122a b ab =÷26a =,故选:C .【点睛】本题考查了单项式除以单项式,熟练掌握单项式除以单项式的运算法则是解题的关键. 12.(2023·湖南怀化·统考中考真题)下列计算正确的是( )A .235a a a ⋅=B .623a a a ÷=C .()2329ab a b =D .523a a −=【答案】A【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ⋅=,故选项正确,符合题意; B .624a a a ÷=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a −=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.【答案】B【分析】先计算单项式乘以多项式,再合并同类项即可.【详解】解:()222222a a a a a a a +−=+−=,故选:B.【点睛】此题考查了整式的四则混合运算,熟练掌握单项式乘以多项式的运算法则是解题的关键. 14.(2023·浙江温州·统考中考真题)化简43()a a ⋅−的结果是( )A .12aB .12a −C .7aD .7a − 【答案】D【分析】根据积的乘方以及同底数幂的乘法进行计算即可求解.【详解】解:43()a a ⋅−()437a a a =⨯−=−,故选:D .【点睛】本题考查了积的乘方以及同底数幂的乘法,熟练掌握积的乘方以及同底数幂的乘法的运算法则是解题的关键. 15.(2023·山东烟台·统考中考真题)下列计算正确的是( )A .2242a a a +=B .()32626a a =C .235a a a ⋅=D .824a a a ÷=【答案】C【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答.【详解】解:A.2222a a a +=,故该选项不正确,不符合题意; B.()32628a a =,故该选项不正确,不符合题意;C.235a a a ⋅=,故该选项正确,符合题意;D.826a a a ÷=,故该选项不正确,不符合题意.故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键.【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,进行计算即可求解.【详解】解:A 、 23a a a ⋅=,故该选项正确,符合题意; B 、 624a a a ÷=,故该选项不正确,不符合题意;C 、 32a a a −=,故该选项不正确,不符合题意;D 、222()2a b a ab b −=−+,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,合并同类项,完全平方公式,熟练掌握同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式是解题的关键.17.(2023·江苏扬州·统考中考真题)若23( )22a b a b ⋅=,则括号内应填的单项式是( )A .aB .2aC .abD .2ab【答案】A【分析】将已知条件中的乘法运算可以转化为单项式除以单项式进行计算即可解答.【详解】解:∵23( )22a b a b ⋅=, ∴()3222a b a b a =÷=.故选:A .【点睛】本题主要考查了整式除法的应用,弄清被除式、除式和商之间的关系是解题的关键.【答案】A【分析】根据同底数幂的除法,合并同类项,幂的乘方,二次根式的化简等计算即可.【详解】解:A 、523a a a ÷=,故正确,符合题意; B 、3332a a a +=,故错误,不符合题意;C 、()236a a =,故错误,不符合题意;D a =,故错误,不符合题意;故选:A .【点睛】本题考查了同底数幂的除法,合并同类项,幂的乘方,二次根式的化简,熟练掌握幂的运算法则是解题的关键.19.(2023·浙江绍兴·统考中考真题)下列计算正确的是( )A .623a a a ÷=B .()52a a −=−C .()()2111a a a +−=−D .22(1)1a a +=+【答案】C【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A . 6243a a a a ÷=≠,原计算错误,不符合题意; B . ()5210a a a −=−≠−,原计算错误,不符合题意;C . ()()2111a a a +−=−,原计算正确,符合题意;D .222(1)211a a a a +=++≠+,原计算错误,不符合题意; 故选:C .【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键. 20.(2023·浙江台州·统考中考真题)下列运算正确的是( ).A .()2122a a −=−B .()222a b a b +=+C .2325a a a +=D .()22ab ab = 【答案】A【分析】根据去括号法则判断A ;根据完全平方公式判断B ;根据合并同类项法则判断C ;根据积的乘方法则判断D 即可.【详解】解:A .()2122a a −=−,计算正确,符合题意;B .()222222a b a ab b a b +=++≠+,计算错误,不符合题意; C .23255a a a a +=≠,,计算错误,不符合题意;D . ()2222ab a b ab =≠,计算错误,不符合题意;故选:A .【点睛】本题考查了去括号法则,合并同类项法则,积的乘方法则,完全平方公式等知识,熟练掌握各运算法则是解题的关键.【答案】B 【分析】运用积的乘方法则、幂的乘方法则即可得出结果.【详解】解:()236322112124x xx ⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故选:B .【点睛】本题考查了积的乘方法则、幂的乘方法则,熟练运用积的乘方法则、幂的乘方法则是解题的关键. 22.(2023·山东临沂·统考中考真题)下列运算正确的是( )A .321a a −=B .222()a b a b −=−C .()257a a =D .325326a a a ⋅=.【答案】D【分析】根据合并同类项,完全平方公式,幂的乘方,单项式乘单项式法则,进行计算后判断即可.【详解】解:A 、32a a a −=,故选项错误,不符合题意;B 、222()2a b a ab b −=−+,故选项错误,不符合题意;C 、()2510a a =,故选项错误,不符合题意;D 、325326a a a ⋅=,故选项正确,符合题意;故选:D .【点睛】本题考查整式的运算,熟练掌握相关运算法则,是解题的关键.23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x −=−C .633x x x ÷=D .236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.【详解】解:A 、4442x x x +=,选项计算错误,不符合题意; B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ×=,选项计算错误,不符合题意;故选:C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 6【答案】B【分析】根据同类项的定义、同底数幂的除法性质、完全平方公式、积的乘方公式进行判断.【详解】解:A 、3a 和4b 不是同类项,不能合并,所以此选项不正确;B 、x12÷x6=x6,所以此选项正确;C 、(a+2)2=a2+4a+4,所以此选项不正确;D 、(ab3)3=a3b9,所以此选项不正确;故选:B .【点睛】本题主要考查了合并同类项、同底数幂的除法、完全平方公式、积的乘方,熟练掌握运算法则是解题的关键. 25.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b −=−C .632a a a ÷=D .()326a a = 【答案】D【分析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.【详解】A .235a a a ⋅=,故该选项计算错误,不符合题意, B .()2362a b a b −=,故该选项计算错误,不符合题意,C .633a a a ÷=,故该选项计算错误,不符合题意,D .()326a a =,故该选项计算正确,符合题意,故选:D .【点睛】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键. 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=【答案】A【分析】根据单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法法则计算后再判断即可.【详解】解:A. 4322x x x ÷=,计算正确,故选项A 符合题意; B. ()4312x x =,原选项计算错误,故选项B 不符合题意;C. 4x 与3x 不是同类项不能合并,原选项计算错误,故选项C 不符合题意;D. 347x x x ⋅=,原选项计算错误,故选项D 不符合题意.故选:A .【点睛】本题主要考查单项式除以单项式,幂的乘方、合并同类项以及同底数幂的乘法,解答的关键是对相应的运算法则的掌握. 27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a −=D .()222a b a b −=− 【答案】A【分析】根据同底数幂的乘法,幂的乘方,合并同类项,完全平方公式进行计算,即可得出结论.【详解】解:A 、437a a a ⋅=,选项计算正确,符合题意; B 、()326a a =,选项计算错误,不符合题意;C 、22232a a a −=选项计算错误,不符合题意;D 、()2222a b a ab b −=−+,选项计算错误,不符合题意;故选:A .【点睛】本题考查整式的运算.熟练掌握相关运算法则,是解题的关键.【答案】B【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方进行计算即可.【详解】A. 347a a a +≠,故该选项不符合题意; B. 347a a a ⋅=,故该选项符合题意;C. 437a a a a ÷=≠,故该选项不符合题意;D. ()43127a a a =≠,故该选项不符合题意;故选:B .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握以上运算法则是解题的关键.29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b −=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +−=−【答案】D【分析】根据合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式进行计算即可求解.【详解】A. 22ab a b −≠ ,故该选项不正确,不符合题意;B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 233a b a ab ÷=,故该选项不正确,不符合题意;D. 222()()4a a a +−=−,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,平方差公式,熟练掌握以上知识是解题的关键. 30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b −=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 【答案】A【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 23232332a b a b a b −=,故该选项正确,符合题意; B. 235a a a ⋅=,故该选项不正确,不符合题意;C. 624a a a ÷=,故该选项不正确,不符合题意;D. ()326a a =,故该选项不正确,不符合题意;故选:A .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =【答案】D【分析】根据同底数幂的乘除、完全平方公式、积的乘方逐个计算即可.【详解】A .235x x x ×=,所以A 选项不符合题意;B .12210x x x ÷=,所以B 选项不符合题意;C .222()2x y x y xy +=++,所以C 选项不符合题意;D .()3263x y x y =,所以D 选项符合题意.故选:D .【点睛】此题主要考查了同底数幂的乘除、完全平方公式、积的乘方,熟记运算法则是解题关键. 32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 【答案】B【分析】利用同底数幂的乘除法、积的乘方与幂的乘方以及完全平方公式分别判断即可.【详解】解:A 、633a a a ÷=,故选项错误; B 、235a a a ⋅=,故选项正确;C 、()23624a a =,故选项错误;D 、()2222a b a ab b +=++,故选项错误; 故选:B .【点睛】此题主要考查了整式的混合运算,同底数幂的乘除法、积的乘方、幂的乘方以及完全平方公式,正确掌握相关乘法公式是解题关键. 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=【答案】C【分析】根据完全平方公式及合并同类项、积的乘方运算依次判断即可.【详解】解:A 、22(2)44x x x +=++,选项计算错误,不符合题意; B 、246a a a ⋅=,选项计算错误,不符合题意;C 、()23624x x =,计算正确,符合题意;D 、222235x x x +=,选项计算错误,不符合题意;故选:C .【点睛】题目主要考查完全平方公式及合并同类项、积的乘方运算,熟练掌握运算法则是解题关键. 34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a −=−B .222()a b a b −=−C .()()2224m m m −+−−=−D .()257a a = 【答案】C【分析】分别根据积的乘方,完全平方公式,平方差公式和幂的乘方法则进行判断即可.【详解】解:A.()2224a a −=,原式计算错误;B.()2222a b a ab b −=−+,原式计算错误; C.()()2224m m m −+−−=−,计算正确; D. ()2510a a =,原式计算错误.故选:C .式是解题的关键.35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x −=D .326a a a ⋅=【答案】C【分析】根据单项式乘以单项式,幂的乘方,积的乘方,合并同类项,进行计算即可求解.【详解】解:A. 22234b b b +=,故该选项不正确,不符合题意; B. ()248a a =,故该选项不正确,不符合题意;C. ()224x x −=,故该选项正确,符合题意; D. 2326a a a ⋅=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了单项式乘以单项式,幂的乘方,积的乘方,合并同类项,熟练掌握以上运算法则是解题的关键. 36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=【答案】D【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 826a a a ÷=,故该选项不正确,不符合题意; B. 23a a a +≠,故该选项不正确,不符合题意;C. ()326a a =,故该选项不正确,不符合题意;D. 235a a a ⋅=,故该选项正确,符合题意;故选:D .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握以上运算法则是解题的关键.【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断. 【详解】解:A 、()236a a =,不符合题意;B 、1028a a a ÷=,不符合题意;C 、45a a a ⋅=,符合题意;D 、515(1)a a −−=−,不符合题意;故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键. 38.(2023·内蒙古赤峰·统考中考真题)已知2230a a −−=,则2(23)(23)(21)a a a +−+−的值是( ) A .6B .5−C .3−D .4【答案】D【分析】2230a a −−=变形为223a a −=,将2(23)(23)(21)a a a +−+−变形为()2428a a −−,然后整体代入求值即可.【详解】解:由2230a a −−=得:223a a −=,∴2(23)(23)(21)a a a +−+−2249441a a a =−+−+2848a a =−−()2428a a =−−438=⨯−4=, 故选:D .【点睛】本题主要考查了代数式求值,解题的关键是熟练掌握整式混合运算法则,将2(23)(23)(21)a a a +−+−变形为()2428a a −−. 39.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab −=C .34()a a a −⋅=D .222()a b a b +=+【答案】A【分析】根据幂的运算法则,乘法公式处理.【详解】A. ()22346a b a b =,正确,符合题意;B. 32ab ab ab −=,原计算错误,本选项不合题意;C. 34()a a a −⋅=−,原计算错误,本选项不合题意;D.222()2a b a b ab +=++ 【点睛】本题考查幂的运算法则,整式的运算,完全平方公式,掌握相关法则是解题的关键. 40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a −=【答案】A【分析】根据幂的乘方法、同底数幂的除法法则、同底数幂的乘法以及合并同类项逐项判断即可.【详解】解:A .()23236a a a ⨯==,故A 选项计算正确,符合题意;B .62624a a a a −÷==,故B 选项计算错误,不合题意;C .34347a a a a +==⋅,故C 选项计算错误,不合题意;D .2a 与a −不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .【点睛】本题主要考查同底数幂的乘除运算、幂的乘方运算以及整式的加减运算等知识点,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘. 41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab −=C .()2211a a +=+D .()236a a −= 【答案】D【分析】根据同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则进行计算即可.【详解】解:∵325a a a ⋅=,故A 不符合题意; ∵4=3ab ab ab −,故B 不符合题意;∵()22211a a a ++=+,故C 不符合题意;∵()236a a −=,故D 符合题意; 故选:D .【点睛】本题考查同底数幂的乘法法则、合并同类项法则、完全平方公式和幂的乘方的运算法则,熟练掌握相关法则是解题的关键.二、填空题【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 【答案】24x y【分析】直接利用积的乘方运算法则计算即可求得答案.【详解】解:()2224xy x y =故答案为:24x y .【点睛】本题考查了积的乘方运算,解题的关键是熟练掌握运算法则. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.【答案】3n【分析】根据总共配发的数量=年级数量⨯每个年级配发的套数,列代数式.【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式. 45.(2023·全国·统考中考真题)计算:(3)a b +=_________.【答案】3ab a +【分析】根据单项式乘多项式的运算法则求解.【详解】解:(3)3a b ab a +=+.故答案为:3ab a +.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键. 46.(2022秋·上海·七年级专题练习)计算:2232a a −=________.【答案】2a【分析】直接根据合并同类项法则进行计算即可得到答案.【详解】解:222232(32)a a a a −=−= 故答案为:2a .【点睛】本题主要考查了合并同类项,掌握合并同类项运算法则是解答本题的关键.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.【答案】6【分析】先提公因式分解原式,再整体代值求解即可.【详解】解:22x y xy +()xy x y =+, ∵3x y +=,2y =,∴1x =,∴原式123=⨯⨯6=,故答案为:6.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法,利用整体思想方法是解答的关键. 48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab+()ab a b =+76=⨯42=. 故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.【答案】a6b3【详解】试题分析:根据积的乘方运算法则可得 (a2b )3= a6b 3.故答案为:a6b3.三、解答题【答案】226a ab −,24 【分析】先展开,合并同类项,后代入计算即可.【详解】()()233(3)a b a b a b −++−2222969a b a ab b =−+−+226a ab =−当13,3a b =−=时,原式()()2123633=⨯−−⨯−⨯24=.【点睛】本题考查了平方差公式,完全平方公式的计算,熟练掌握两个公式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章数与式
第二课时 整式及其运算
塔城市第四中学 付玉芝
复习目标:
1.了解代数式和整式的有关概念
2.掌握整式的相关运算法则,并正确进行计算.
复习重点:整式的相关运算法则
复习难点:运算法则进行正确计算.
复习过程:
(一)考点知识精讲:
考点一:代数式和整式的有关概念
1.单项式:由数或字母的______组成的代数式叫做单项式.单项式中的_____________叫做这个单项式的系数;单项式中的所有字母的________,叫做这个单项式的次数.如:-7xy 2
的系数是____,次数是____.
2.多项式:几个单项式的_____叫做多项式.在多项式中,每个单项式叫做多项式的_____,其中次数最高的项的_______叫做这个多项式的次数,不含字母的项叫做_________.如:多项式 3x2-2x+5 有____项,它们分别是______________,其中____是常数项,这个多项式是_____次_____项
3.整式:________与________统称整式.
4.同类项:在一个多项式中,所含______相同,并且相同字母的______也分别相同的项叫做同类项.
6.幂的运算性质
有理数的乘方:a·a·a·…·a=_____.
(1)性质:正数的任何次幂都是______;负数的偶次幂是______,奇次幂是______;0的任何次幂(0次幂除外) 都是____;任何数的偶次幂为_________.
(2) a m
a
n
=_______ (m,n为整数,a≠0).
(3) (a m
)
n
=_______ (m,n为整数,a≠0).
(4) (ab)n
=_______ (n为整数,ab≠0).
(5) a m
÷a
n
=______ (m,n为整数,a≠0).
7.整式的乘(除):
(1) 单项式相乘(除),把它们的_______、相同字母分别相乘(除),对于只在一个单项式(被除式) 里含有的字母,则连同它的_______作为积(商) 的一个因式.
如:2x2y3·3xyz=_________.8x2y3÷2xy=_______.
(2) 多项式乘(除) 单项式:(a+b)m=_________,
(am+bm)÷m=_______.
(3) 多项式乘多项式:(a+b)(m+n)=________________.
8.乘法公式
(1)平方差公式:(a+b)(a-b)=_________.
(2)完全平方公式:(a±b)2=____________.
(二)中考典例精讲:
【例 1】计算 (-x 3
y )2 的结果是( )
A .-x 5y
B .x 6y
C .-x 3y 2
D .x 6y 2 分析:根据积的乘方法则,可得
(-x 3y )2=(-x 3)2y 2=x 6y 2
.
答案:D
点评:本题考查积的乘方,熟记计算法则是关键.
【例2】已知a+b=- ,求代数式(a-1)2+b(2a+b)+2a 的值
解:原式 = a 2-2a+1+2ab+b 2+2a = (a+b)2+1.
将 a+b= -
代入得,原式 = (-)2+1=3. 点评:本题考查了完全平方公式及单项式乘多项式等法则.
(三)课堂训练:
1.(-4x )2
的值为( )
A .-8x 2
B .8x 2
C .-16x 2
D .16x 2
2. 下列运算正确的是( )
A .x 2+x 3=x 5
B .(x +y )2=x 2+y 2
C .x 2·x 3=x 6
D .(x 2)3=x 6
3. 因式分解:ab -a =_________.
4. 化简:(a +b )(a -b )+2b 2 .
5. 先化简,再求值:
(1)(a +b )(a -b )+b (a +2b )-b 2,其中 a =1,b =-2.
解:(a +b )(a -b )+b (a +2b )-b 2 = a 2-b 2+ab +2b 2-b 2 = a 2+ab .
当 a =1,b =-2 时,
原式 = 12
+1×(-2) = 1-2 = -1.
(2)(2+a)(2-a)+a(a -5b)+3a 5b 3÷(-a 2b)2,其中ab =-2. 解:原式=4-a 2+a 2-5ab +3ab =4-2ab.
当ab =-2时,原式=4-2×(-2)=4+4=8
考点点拨: 本考点是中考的高频考点,题型一般为选择题,难度较低.解答本考点的有关题目,关键在于掌握整式的相关运算法则,包括整式的加减乘除运算法则、合并同类项法则、去括号法则等,并正确进行计算. (四)课堂小结:谈谈你在这节课中,有什么收获?
(五)当堂训练: 整式及其运算
1.计算(a 4)2的结果是( )
A. a 8
B. a 6
C. 2a 6
D. 2a 8
2.下列运算正确的是( )
A. a 3+a 3=a 6
B. 2(a +1)=2a +1
C. (ab )2=a 2b 2
D. a 6÷a 3=a 2
3.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a >b ),则a -b 等于( )
(第3题图) (第5题图) A. 7 B. 6 C. 5 D. 4
4.若x2+6x+k是完全平方式,则k=( )
A. 9
B. -9
C. ±9
D. ±3
5.如图,图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )
A. (m+n)2-(m-n)2=4mn
B. (m+n)2-(m2+n2)=2mn
C. (m-n)2+2mn=m2+n2
D. (m+n)(m-n)=m2-n2 6.化简:(a-b)2+a(2b-a)=____.
7.已知a,b满足a+b=3,ab=2,则a2+b2=____.
8.观察一列单项式:x,3x2,5x2,7x,9x2,11x2,13x,…,则第2016个单项式是-----------.
9.先化简,再求值:
(a+b)(a-b)+b(b-2),其中a=,b=1.
10.已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.11.若a-b=1,则代数式a2-b2-2b的值为多少?.
12.先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,
其中ab=-2.
(六)当堂训练点评,有错题的小组互讲。
(七)布置作业:
必做题:榜上有名p5-6 中考再现
选做题:榜上有名p5基础达标第6-12题
(八)板书设计:(略)。