七年级数学教案Microsoft Word 文档 (2)
(最新)人教版七年级数学上册《有理数的乘法》(第2课时) 教案

有理数的乘法(第二课时) 教案[教学目标]知识目标:有理数乘法运算能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:体会用计算器给有理数运算带来的方便[教学重点与难点]重点: 有理数乘法运算有理数的乘法运算 你还记得有理数的乘法法则吗?(同号得正,异号得负,并把绝对值相乘)[知识讲解]活动一: 从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题. 确定下列积的符号,你能从中发现什么?①()5432⨯⨯⨯- ②()()5432⨯⨯-⨯-③()()()()5432-⨯-⨯-⨯- ④()()()50432-⨯⨯⨯-⨯-学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正. 巩固练习:判断下列积的符号(口答)①()()1432-⨯⨯⨯- ②()()()6532-⨯-⨯⨯-③()()()222-⨯-⨯- ④()()()()3333-⨯-⨯-⨯-活动二:例3 计算:41)54(6)5()2();41()59(65)3()1(⨯-⨯⨯--⨯-⨯⨯- 几个数相乘,如果其中有因数0,积等于0 课堂练习计算:(1)(-85)×(-25)×(-4);(2)(-87)×15×(-171); (3)(151109-)×30;(4)2524×7. (5)-9×(-11)-12×(-8);课后作业教科书第38页 习题1.4第7题(1)(2)(3)课后选作题1.计算:).8(161571)6(;04.0311843)5(;36187436597)4(;534.265)3();1.0()24.8()10)(2();8(25.12014)1(-⨯⎪⎭⎫ ⎝⎛--⨯-⨯⎪⎭⎫ ⎝⎛-+-⨯⨯--⨯-⨯--⨯⨯⎪⎭⎫ ⎝⎛- 2.2003减去它的21,再减去余下的31,再减去余下的41,依次类推,一直到减去余下的20031,求最后剩下的数。
七年级数学上册 第2章 有理数 2.6 有理数的乘法与除法(课时2)教案 (新版)苏科版-(新版)苏

2.6 有理数的乘法与除法(课时2)【教学目标】知识与技能:(1)掌握有理数的除法法则,并熟练运用除法法则.(2)体会乘法与除法的辨证关系及化归思想.过程与方法:经历除法法则的归纳过程,培养学生的观察、归纳、概括和运算能力.情感态度与价值观:让学生感知数学知识具有普遍联系性、相互转化性.【重难点】重点:(1)理解有理数除法法则,能正确熟练的进行有理数的除法运算.(2)能熟练的进行有理数的乘除混合运算.难点:理解商的符号及其绝对值与被除数和除数的关系.【教学过程】活动一:复习回顾,导入新课1.前面我们学习了有理数的乘法,那么有理数有除法吗?如何进行有理数的除法运算呢?开门见山,直接引出本节知识的核心.投影显示:(-12)÷(-3)=?2.回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间的关系:学生回答:被除数=除数×商所以我们只需找到-12=(-3)×?就能找到商是多少.学生很容易知道-12=(-3)×4. 在学习过程中,一定要抓住被除数=除数×商,从而得到(-12)÷(-3)=4.活动二:实践探究,交流新知【探究1】有理数的除法法则教师提问:怎样计算(-70)÷7呢?学生小组讨论,教师提示:根据除法是乘法的逆运算,即求一个数,与7相乘得-70,因为(-10)×7=-70,所以(-70)÷7=-10.另一方面,()170=107⨯--,所以有()()1707=7010⎛⎫÷⨯ ⎪⎝⎭--- 教师提问:观察上面的式子,你能发现什么?学生思考,讨论交流,师生共同归纳:有理数的除法法则:除以一个数不等于0的数,等于乘这个数的倒数.例1 计算:(1)(-15)÷(-3);(2)12÷(-14);(3)(-0.75)÷(0.25).解:(1)(-15)÷(-3)=+(15÷3)=5;(2)12÷(-14)=-(12÷14)=-48; (3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.处理方式:学生自主完成,老师巡视.请3位学生板书.教师提问:有理数的除法运算中,怎样确定商的符号?学生思考,师生共同总结:注意先确定运算的符号.两数相除,同号得正,异号得负并把绝对值相除.0除以任何不等于0的数,都得0.【探究2】有理数的乘除混合运算例2 计算:(1)-2.5÷58×(-14);(2)(-47)÷(-314)×(-112). 解:(1)原式=-52×85×(-14)=52×85×14=1; (2)原式=(-47)×(-143)×(- 32)=-(47×143×32)=-4. 处理方式:教师板演,并总结:有理数的乘除混合运算,先把除法转化为乘法,再统一计算.【当堂反馈】1.如果,那么a 是().A.正数B.负数 C .非负数 D .非正数2.如果两个非零数互为相反数,那么下列说法中错误的是().A.它们的和一定为零B.它们的差一定是正数C.它们的积一定是负数 D .它们的商一定等于一l3.若0≠mn ,则 nn m m+的值不可能是( ). A.0 B.l C. 2 D .-24.计算:(1)(-12)÷(-3); (2)312 ÷(611-); (3))53(8543-÷÷-; (4)[()()(12787431-+--)] ÷(87-); (5)1(48)8(25)()5-÷÷-⨯-;(6)355(2)514÷-⨯.【课后小结】 本节课我们要注意在运用运算律进行简化计算时,要仔细审题,看看能否用运算律简便而准确地化简式子,可以将式子进行适当变形,也可用逆向分配律,学会运用技巧解决复杂的计算问题.【教学反思】。
北师大版初中数学七年级上册全册教案(word版137页)

第一章丰富的图形世界第一课时(介绍)第二课时一、课题§1.1 生活中的立体图形(1)二、教学目标1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
现代课堂教学手段教学准备教师准备录音机、投影仪、剪刀、长方形纸片。
学生准备预习、剪刀、长方形纸片五、教学方法启发式教学六、教学过程设计三、导学课堂基础练习1答案:A 与B ; C 与DAB18 19答案:7个,边长从大到 小依次为11、8、7、5、3 2、三个连续奇数的和是21,它们的积为 答案:3153、计算:7+27+377+4777 答案:5188课后延伸练习1、猜谜语(各打数学中常用字)千人分在北上下;②1人立在口上边 答案:①乘;②倍2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24? 答案:[5-(1÷5)]³53、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:1 2 3 4 5 6 7 8 9 =100 答案:123-(45+67-89)=1004、把长方形剪去一个角,它可能是几边形? 答案:三边形,四边形,五边形.5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?答案:1、一个长方形,长19cm ,宽18cm ,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的41,再加上班上学生的41,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?答案:36 八、板书设计九、教学后记第三课时一、课题 §1.1 生活中的立体图形(2) 二、教学目标1、通过观察生活中的大量物体,认识基本的几何体。
数学七上《第3章 一元一次方程》word教案(高效课堂)2022年人教版数学精品(2)

通渭县七年级数学下册导学案通渭县七年级数学下册导学案通渭县七年级数学下册导学案组长查阅教学反思15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到D CA BD CABDCA B∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习(1)如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.D CAB我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.CE DC A B P3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+(2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
北师大七年级数学教案

北师大七年级数学教案北师大七年级数学教案(6篇)作为一名老师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
教案应该怎么写呢?以下是小编精心整理的北师大七年级数学教案,希望对大家有所帮助。
北师大七年级数学教案1学生很容易解决,相互交流,自我评价,增强学生的主人翁意识。
3、电脑演示:如下图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连。
由平面图形动成立体图形,由静态到动态,让学生感受到几何图形的奇妙无穷,更加激发他们的好奇心和探索欲望。
四、做一做(实践)1、用牙签和橡皮泥制作球体和一些柱体和锥体,看哪些同学做得比较标准。
2、使出事先准备好的等边三角形纸片,试将它折成一个正四面体。
五、试一试(探索)课前,发给学生阅读材料《晶体--自然界的多面体》,让学生通过阅读了解什么是正多面体,正多面体是柏拉图约在公元400年独立发现的,在这之前,埃及人已经用于建筑(埃及金字塔),以此激励学生探索的欲望。
教师出示实物模型:正四面体、正方体、正八面体、正十二面体、正二十面体1、以正四面体为例,说出它的顶点数、棱数和面数。
2、再让学生观察、讨论其它正多面体的顶点数、棱数和面数。
将结果记入书上的P128的表格。
引导学生发现结论。
3、(延伸):若随意做一个多面体,看看是否还是那个结果。
学生在探索过程中,可能会遇到困难,师生可以共同参与,适当点拨,归纳出欧拉公式,并介绍欧拉这个人,进行科学探索精神教育,充分挖掘学生的潜能,让学生积极参与集体探讨,建立良好的相互了解的师生关系。
六、小结,布置课后作业:1、用六根火柴:①最多可以拼出几个边长相等的三角形?②最多可以拼出如图所示的三角形几个?2、针对我校电脑室对全体学生开放的优势,教师告诉学生网址,让学生从网上学习正多面体的制作。
让学生去动手操作,根据自身的能力,充分发挥创造性思维,培养学生的创新精神,使每个学生都能得到充分发展。
北师大七年级数学教案2【知识讲解】一、本讲主要学习内容1、代数式的意义2、列代数式的注意点3、代数式值的意义其中列代数式是重点,也是难点。
七年级数学上册 第2章 有理数2.6 有理数的加法(有理数加法的运算律)教案 (新版)华东师大版-(

【基本目标】【知识与能力】经历探索有理数加法运算律过程,理解有理数加法运算律,能熟练运用运算律简化运算,提倡算法的多样化.【过程与方法】在具体情境中探索运算律,并提倡算法的多样化,对复杂问题能探索解决问题的有效方法,并试图寻找其它途径,并解释其合理性.【情感、态度、价值观】重视过程对中学生的归纳,概括,描述,交流等能力的考察.【教学重点】合理运用运算律简化运算.【教学难点】理解运算律在实际问题中的应用.一、情境导入,激发兴趣1.有理数加法的法则是什么?在进行有理数加法运算时要注意什么?2.小学我们学过哪些加法的运算律?那么,引入负数后,这些运算律在有理数X围内还成立吗?【教学说明】让学生回顾加法运算法则,为后面的学习奠定基础.通过提问,引起学生的思考,引入本节课的学习内容.二、合作探究,探索新知1.请在下列图案内任意填入一个有理数,要求相同的图案内填相同的数(至少有一个是负数).算出各算式的结果,比较左、右两边算式的结果是否相同.(1)△+□和□+△(2)(△+□)+○和△+(□+○)【教学说明】让学生自主探究,激发学生探究的兴趣,提醒学生注意观察运算的结果,思考其中的规律.2.请同学们说说自己的结果,你发现了什么?【教学说明】让学生自由发言,学生通过探究,很容易就能得出结论:加法运算律在有理数X围内仍然是成立的.3.归纳总结:有理数的加法仍满足加法交换律和结合律.(1)加法交换律:两个数相加,交换加数的位置,______不变,表示为:a+b=______.(2)加法结合律:三个数相加,先把______相加,或者先把______相加,和不变.表示为:(a+b)+c=a+______.【教学说明】教师根据学生的回答及时进行归纳,形成知识点,加深学生的印象. 三、示例讲解,掌握新知例1 计算:(1) (+26)+(-18)+5+(-16);(2)(-1.75)+1.5+(+7.3)+(-2.25)+(-8.5).例2 10筐苹果,以每筐30kg为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:问这10筐苹果总共重多少千克?【教学说明】先让学生进行观察,确定计算的顺序,比较不同方法的难易性,及时进行总结.四、练习反馈,巩固提高1.在横线上填写运算律名称.(-193)+(-215)+(+193)=(-193)+(+193)+(-215)__________________=[(-193)+(+193)]+(-215)__________________=0+(-215)=-2152.算一算:(1)16+(-25)+24+(-35);(2)(-3.48)+5.33+(-9.52)+(-5.33)+(-3.05);(3) (-325)+(-134)+(-235)+(+234)+(-113).【教学说明】让学生先独立思考,然后可以小组内互相交流,比较哪一种方法最简单,及时进行总结,教师及时点拨和强调.解题策略:(1)把正数和负数分别结合在一起相加;(2)把互为相反数的结合,能凑整的结合.【答案】1.加法交换律,加法结合律2.(1)-20(2)-16.05(3)-5 7 6五、师生互动,课堂小结1.加法的运算律有哪些?2.怎样运用加法的运算律进行简便运算?(1)互为相反数的两个数可以先相加;(2)几个数相加得整数的可以先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加.【教学说明】让学生先在小组内进行交流,形成统一意见,然后再全班进行交流得出结论,教师及时进行归纳和总结.完成本课时对应的练习.本节课主要是运用加法的运算律进行简便运算.在教学中要引导学生先进行观察,确定运算的思路,比较运算的难易性,及时进行总结,形成一定的计算方法.。
七年级数学第二章 第10节 科学计数法 Microsoft Word 文档

七年级数学第二章第10节科学计数法课型:新授课教学目标:1.理解科学记数法的意义,并学会用科学记数法表示比10大的数.2.积累数学活动经验,发展数感、空间感,培养学生自主学习的能力.3.感受科学记数法的作用,体会科学记数法表示大数的优越性及必要性.教学重点与难点:重点:科学记数法表示大数.难点:指数的确定,探索归纳出科学记数法中指数与整数位之间的关系.教法与学法指导:教法:情景体验法、引导发现法.学法:小组讨论、自主探究、合作交流.课前准备:多媒体课件.教学过程:一、创设情境,引入新课上节课我们借助于生活中熟悉的事物认识了100万有多大,下面请同学们拿出练习本及书写下面的数据(用阿拉伯数字):师:你想到了什么?(生:这些数太大了,不好记。
比100万都大。
这些数据读和写都比较困难…)师:这节课我们就来研究书写这些较大数据的科学的方法,(引出课题)设计意图:学生感受到问题的产生来源于生活实际问题,有了极大的探究热情.二、自主探究,发现新知问题1、回顾有理数的乘方运算,算一算:102= 104= 106= 108=请学生讨论回答:(1)1015表示什么?(2)指数与运算结果中的0的个数有什么关系?(3)与运算结果的数位有什么关系?问题2、把下列各数写成10的幂的形式:10000=10000000=1000000000=小组讨论交流得出科学记数法的概念:可以借助10的幂的形式来表示大数.(1)(3)组合,体现转化的思想3000=3×1000 1300000000=1.3×1000000000=1.3×10940000=4×10000 696000000=6.96×100000000=6.96×1010 500000=5×100000 300000000=3×100000000=3×108比如:1300000000=1.3×109,69600000000=6.96×1010, 300000000=3×10898000000=9.8×107 , 10100000000=1.01×1010, 61000000=6.1×107(板书)科学记数法:一个大于10的数可以表示成a × 10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.设计意图:通过系列问题帮助学生对幂的意义进行回忆,弄清指数与其结果中零的个数的关系,使学生对科学记数法有初步的理解,并体会用幂的形式表示数的简便性从而导出用科学记数法表示大数.在教师的引导下,通过对问题的探讨,学生能积极思考、交流,学会了从特殊到一般转化问题的方法,提升了概括问题的能力.三、运用新知,解决问题例1、用科学计数法表示下列数据:(1)赤道长约40 000 000米;(2)地球表面积约为510 000 000 千米;师生共同完成.做一做:问题1(1)调查本校图书馆某个书架所存放图书的数量.中国国家图书馆所藏的书需要多少个这的书架?用科学记数法表示结果.(2)调查本校的人数,如果每人借阅10本书,那么中国国家图书馆的藏书大约可以供多少所这样学校的学生借阅?用科学记数法表示结果.问题2(1)天安门广场大约可以容纳多少位受检阅的官兵?(2)如果1亿名群众排成一个方阵,那么所占用的场地相当于几个天安门广场?设计意图:通过练习,加深学生对科学记数法的理解.使学生进一步感受大数,再次认识到可以利用身边熟悉的事物对大数进行描述,同时加深对科学记数法的理解.学生通过小组交流讨论(争辩)进一步明确了如何合理使用调查数据,在感受大数的同时体会科学记数法的优越性.四、探索规律,知识深化(1)请同学们回答问题并总结用科学记数法表示一个大数的步骤.(2)完成下列练习:问题1.强强从图书馆查了一些资料,请你把其中的数据用科学记数法表示出来.人的大脑约有10,000,000,000个细胞;全世界人口约为61亿;中国森林面积约为128,630,000公顷;2002年赴韩国观看世界杯足球赛的中国球迷超过了1.5万人.问题2. 联合国劳工组织预计受2001年“9.11”恐怖事件的影响,全球旅游业可能有9×1 06人失业,美国保险公司安邦集团认为此次恐怖事件对全球经济造成的损失将高达1×1012美元,其中仅美国市场的损失预计超过1×1011美元.设计意图:通过学生的自主探索和合作交流归纳用科学记数法表示大数的步骤,培养学生的逆向思维能力.学生通过讨论交流得出用科学记数法表示一个大数的步骤,先把原数的小数点往左移到最高位数的右下方,确定a的值;再数出小数点的位置向左移动了多少位,n的值就是多少,从而确定n的值。
有理数的加减混合运算 Microsoft Word 文档

有理数的加减混合运算(一)说课稿(一)地位与作用《有理数的加减法》是北师大版《数学》七年级上册《有理数》中内容。
本课是在学生学习了正负数、有理数的概念基础上进一步的深入和拓展,为以后学习有理数的乘除法以及乘方奠定了基础,本节课是第一课时。
(二)教学目标知识技能:掌握有理数的加法算法规则,掌握有理数加法简便运算,提高计算速度与正确率。
过程与方法:观察身边生活中的实例,从中发现,探索,做到学会学习,并将学习到得知识,学以致用,解决实际生活中的问题。
情感、态度与价值观:初步认识数学与人类生活的密切联系,锻炼数学抽象思维能力,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
获得适应未来社会生活和进一步发展所必需的重要数学知识。
(三)重点、难点重点:掌握因为本节课所讲授的知识点较少,本节的教学重点也就是教学难点,也就是有理数的加法法则的掌握,以及加法结合律以及交换律的练习。
难点:利用有理数加法法则去解决实际的中的问题。
二、说学情这是七年级的课程,处在七年级学生在生理上的特点是,学生抽象思维从经验型逐步向理论型成长,观察能力,抽象能力和想象能力也随着迅速度完成长。
在知识经验方面,学生们已经扎实掌握了正整数、小数、分数的计算,以及简便运算。
因此,本节课借助多媒体充分推动学生的积极性,让学生在观察,讨论,交流中获得新知。
2.6 有理数的加减混合运算(一)教学目的1、让学生能进行包括小数或分数的有理数的加减混合运算。
2、让学生进一步体会到“有理数减法可以转化为加法进行计算”,并体会有理数加减法在实际中的应用。
教学重点与难点重点:有理数加法和减法的混合运算。
难点:减法统一成加法再写成代数和的形式。
教学过程一、复习引入课本P56图是一条河流在枯水期的水位图。
此时,桥面距水面的高度为多少米?可用两种方法回答这个问题。
第一个方法:观察画面,从实际问题出发,桥面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),两段高度的和就是桥面距水面的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.2多项式
教学目标:
1.知识与技能:
(1)、能用多项式表示具体问题中的数量关系。
(2)、理解并掌握多项式及多项式的项、次数、常数项、整式等概念。
2.过程与方法:
通过多项式的学习,初步培养学生观察、分析、概括等思维能和应用能力。
3.情感态度与价值观:
(1)、能用多项式表示具体问题中的数量关系。
(2)、理解并掌握多项式及多项式的项、次数、常数项、整式等概念。
(3)、初步体会类比和逆向思维的数学思想。
4.教学方法:
自主探究、讲授、练习相结合
教学重点:
多项式及多项式的项、次数、常数项、整式等概念。
教学难点:
多项式次数的确定
教学过程:
一、复习反馈,导入新课:
1、什么叫单项式?单项式的系数和次数怎么确定?有何区
别?
2、列代数式:
(1).若三角形的三条边分别为a、b、c,则三角形的周长是
(2)、某班有x人,女生21人,这个班的学生一共有人。
(3)、下图中阴影部分的面积为
2r
(4)、b,那么这个两位数可表示为
活动一:讨论所列出的这些代数式有什么共同特点?它们与单项
式有何区别?
(1)a+b+c (2)x+21 (3)2ra-∏r2(4)10a+b
活动二:你能根据这个共同特点举出其它代数式吗?
二、自主探究,形成新知:
1、多项式的概念
(1)、什么是多项式?(根据刚才的例子,引导学生用自己的语言说出
概念)
(2)注意:
①多项式是由组成。
②多项式中各个单项式之间只能用运算符号相连。
2、多项式的项和次数
(1)、在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,例如:多项式2x2+3x-7有三项,它们是2x2、3x、-7,其中-7是常数项。
(2)、一个多项式含有几项,就叫做几项式。
在多项式中,次数最高项的次数,就是这个多项式的次数。
例如,多项式2x2+3x-7的次数是2.
(3)、注意
①多项式的次数不是所有项的次数之和。
②多项式的每一项都包括它前面的符号。
3.多项式的读法
次数与项数相结合,例如,多项式2x2+3x-7读作二次三项式,多项式y3-5y2+3y-5读作三次四项式。
4、例题讲解:
例1、指出下列多项式的项与次数:
(1)a3-ab2+b3+1 (2)2m5-3m4+m2-5
解:(1)多项式a3+a2b-ab2-b3+1的项有a3、-ab2、b3、1,次数是3。
(2)多项式2m5-3m4+m2-5的项有2m5、-3m4、m2、-5,次数是5
例2、指出下列多项式是几次几项式:
(1)4a 2+3a-1 (2)3a 4
-2ab+4b-2
解:(1)4a 2+3a-1是二次三项式。
(2)3a 4-2ab+4b-2是四次四项式。
例3、已知代数式3x n -(m-1)x+1是关于x 的三次二项式,求m 、n 的条件 解、∵3x n -(m-1)x+1是关于x 的三次二项式
∴n=3 m-1≠0即m ≠1
5、整式的概念
单项式和多项式统称为整式
6、课堂练习
(1)课本P98,1、2、3、4
(2)135322-+-xy y x 是 次 项式, 其中三次项系数是 ,二次项为 ,常数项是 。
(3)已知多项式y x xy y x n 635
13212--+-
+是六次四项式, ①求n 的值
②这个多项式是关于字母x 的几次几项?是关于字母y 的几次几项?
三.课堂小结
(1)知道什么是多项式,会指出多项式的项和次数及各项的系数。
(2)能说出一个多项式是几次几项式。
(3)知道什么是整式。
四、布置作业
(1)教材P100:1、2、3
(2)学法大视野:P45--46。