物体平衡问题的解题方法及技巧

合集下载

物体的平衡和平衡条件

物体的平衡和平衡条件

物体的平衡和平衡条件一、平衡状态的概念物体在受到外界作用力时,能够保持静止或匀速直线运动的状态称为平衡状态。

平衡状态分为两种:静止状态和匀速直线运动状态。

二、平衡条件的建立1.实验观察:在实验室中,通过实验观察发现,当物体受到两个力的作用时,若这两个力的大小相等、方向相反、作用在同一直线上,物体就能保持平衡状态。

2.平衡条件的得出:根据实验观察,总结出物体的平衡条件为:物体受到的两个力,大小相等、方向相反、作用在同一直线上。

三、平衡条件的应用1.力的合成:当物体受到两个力的作用时,可以根据平衡条件求出这两个力的合力。

合力的计算方法为:在力的图示中,将两个力的向量首尾相接,由起点到终点的向量即为合力向量。

2.平衡方程的建立:在已知物体受到的力的大小和方向时,可以根据平衡条件建立平衡方程,求解未知力。

平衡方程的一般形式为:ΣF = 0,ΣF表示物体受到的所有力的矢量和。

3.平衡状态的判断:判断物体是否处于平衡状态,可以通过观察物体是否保持静止或匀速直线运动来判断。

同时,也可以通过检验物体受到的力是否满足平衡条件来判断。

四、平衡条件的拓展1.多个力的平衡:当物体受到多个力的作用时,物体能够保持平衡的条件为:所有力的合力为零,即ΣF = 0。

2.非共点力的平衡:当物体受到非共点力的作用时,可以通过力的平行四边形定则求解合力,再根据平衡条件判断物体是否处于平衡状态。

3.动态平衡:物体在受到两个力的作用时,若这两个力的大小相等、方向相反、作用在同一直线上,物体将保持动态平衡状态。

动态平衡状态下的物体,速度大小和方向均不变。

物体的平衡和平衡条件是物理学中的重要知识点,掌握平衡状态的概念、平衡条件的建立、平衡条件的应用以及平衡条件的拓展,有助于我们更好地理解物体在受到力作用时的行为。

同时,平衡知识在实际生活和工作中也有着广泛的应用,如工程结构设计、机械运动分析等。

习题及方法:1.习题:一个物体质量为2kg,受到一个大小为10N的水平力和一个大小为15N的竖直力,求物体的平衡状态。

静力学中的平衡问题与解法

静力学中的平衡问题与解法

静力学中的平衡问题与解法静力学是力学中的一个分支,研究物体在静止或匀速直线运动时的力、力之间的关系以及物体的平衡条件等内容。

在静力学中,平衡问题是一个重要的研究内容。

本文将讨论静力学中的平衡问题以及常见的解法。

静力学中,平衡是指物体所受的合外力合力矩为零的状态。

平衡可以分为两种类型:平衡在点和平衡在体。

1. 平衡在点平衡在点指的是物体受力的合力通过一个点,也就是力矩为零。

这要求物体所受的合外力矢量的代数和为零,并且力矩的代数和也为零。

平衡在点的解法一般包括以下步骤:步骤一:画出物体受力的示意图,并标注出力的大小、方向。

步骤二:通过几何图形或代数方法求出合外力的代数和,判断合外力的大小和方向。

步骤三:通过几何图形或代数方法求出力矩的代数和,判断力矩的大小和方向。

步骤四:根据力矩为零的条件,确定物体的平衡条件。

如果力矩不为零,则说明物体不处于平衡状态。

平衡在点的解法中,可以利用力矩的性质,如力矩的叠加原理、力矩的向量性质等,来简化计算。

此外,还可以运用平衡条件求解未知的力或力矩。

2. 平衡在体平衡在体指的是物体受力的合外力和合力矩都为零的状态。

这要求物体所受的合外力矢量的代数和为零,并且力矩的代数和也为零。

平衡在体的解法一般包括以下步骤:步骤一:画出物体受力的示意图,并标注出力的大小、方向。

步骤二:通过几何图形或代数方法求出合外力的代数和,判断合外力的大小和方向。

步骤三:通过几何图形或代数方法求出力矩的代数和,判断力矩的大小和方向。

步骤四:根据合外力和力矩都为零的条件,确定物体的平衡条件。

如果合外力或力矩不为零,则说明物体不处于平衡状态。

平衡在体的解法中,通常需要考虑物体所受力的叠加效应。

常见的方法有力的分解、力矩的叠加等。

除了上述两种平衡问题的解法,静力学中还有一些特殊情况的解法,如斜面上物体的平衡、悬挂物体的平衡等。

对于这些特殊情况,可以利用相关的几何关系和平衡条件,采取相应的解法进行求解。

总之,静力学中的平衡问题是一个重要的内容,通过合理的求解方法可以确定物体的平衡条件。

物体平衡问题解题方法及技巧

物体平衡问题解题方法及技巧

物体平衡问题的解题方法及技巧物体平衡问题是高考考查的一个热点,在选择题、计算题甚至实验题中都有考查和应用。

由于处于平衡状态的物体的受力和运动状态较为单一,往往为一些老师和同学所忽视。

但作为牛顿第二定律的一种特殊情况,它又涵盖了应用牛顿第二定律解决动力学问题的方法和技巧,所以解决好平衡问题是我们解决其他力学问题的一个基石。

物体的平衡是力的平衡。

受力分析就成了解决平衡问题的关键。

从研究对象来看,物体的平衡可分为单体平衡和多体平衡;从物体的受力来看,又可分为静态平衡和动态平衡。

一、物体单体平衡问题示例:例一:如图一,一物块置于水平地面上,当用与水平方向成60°角的力f1拉物块时,物块做匀速直线运动;当改用与水平方向成30°的力f2推物块时,物块仍做匀速直线运动。

若f1和f2的大小相等,则物块和地面间的动摩擦因数为:a.2-b. -1c. /2-1/2d.1- /2解析:将f1分解到水平方向和竖直方向,如图二,水平方向受力平衡:f1cos60°=fu竖直方向:fn-f1=mg同理,对f2进行分解,建立方程组,解出结果为a。

在解决这类问题时,我们用的方法就是将物体受到的力,分解到物体的运动方向和垂直与物体的运动方向,列出两个平衡方程,解出未知问题。

这种方法不光对平衡问题适用,对非平衡问题同样适用。

例二:如图三,光滑小球放在一带有圆槽的物体和墙壁之间,处于静止状态,现将圆槽稍稍向右移动一点,则球对墙的压力和对物体的压力如何变化?解析:这是单体的动态平衡问题。

对小球受力分析,(如图四)由于物体处于平衡,物体所受重力、墙壁的作用力的合力与圆槽的作用力等值反向。

当圆槽稍稍向右移时,θ角变小mg恒定,f墙的方向不变,所以斜槽和墙壁对物体的支持力都变小。

由牛顿第三定律可知,球对墙和斜槽的压力都变小。

在作图时,学生习惯在画平行四边形时,先把箭头打好,这实际上就把力的大小和方向都确定了,这样很难画出符合题意的平行四边形。

平衡的条件和力矩的计算

平衡的条件和力矩的计算

平衡的条件和力矩的计算平衡是物体所处的一种状态,在该状态下物体不会受到任何净外力作用而发生运动或变形。

在物理学中,平衡条件的判断和力矩的计算是解决平衡问题的重要方法。

本文将详细介绍平衡的条件以及力矩的计算方法。

一、平衡的条件物体达到平衡需要满足两个条件:合力为零,力矩为零。

1. 合力为零合力即作用在物体上的所有力的矢量和,根据牛顿第一定律,合力为零时物体将保持静止或匀速直线运动。

若物体处于静止状态,则合力为零是物体平衡的充分条件;若物体处于匀速直线运动状态,则合力为零是物体平衡的必要条件。

2. 力矩为零力矩是力对物体产生旋转的影响力。

它是描述物体转动的一种物理量,定义为力与物体某点到力作用线的垂直距离的乘积。

当物体处于平衡状态时,力矩的总和必须为零。

平衡的条件可以用以下公式表达:ΣF = 0 (1)Στ = 0 (2)其中,ΣF为合力的矢量和,Στ为力矩的矢量和。

二、力矩的计算方法力矩的计算需要考虑力的大小、方向和作用点的位置。

力矩的计算公式为:τ = F × r × sinθ (3)其中,τ为力矩,F为力的大小,r为力的作用点到旋转轴的距离,θ为力的作用线与r之间的夹角。

当力的方向垂直于旋转轴时,力矩的计算简化为:τ = F × r (4)当力的方向平行于旋转轴时,力矩为零,即力不会对物体产生旋转。

在求解力矩时,需要选择合适的参考点。

通常选择旋转轴上的某一点作为参考点,使得计算力矩更加简便。

三、案例分析下面以一个具体案例来说明平衡条件和力矩的计算方法。

假设有一个杆AB,其中A点处有一个重力为10N的物体悬挂着,杆AB的长度为2m,重力的作用点与A点的水平距离为1m。

现求解悬挂物体处于平衡状态时的杆AB的支持力大小和方向。

解题步骤如下:1. 选择参考点选择支持力作用点B为参考点。

2. 列出受力分析图根据题目描述,该物体受到的作用力只有重力。

3. 计算力矩a) 计算重力对参考点B产生的力矩:τg = Fg × r其中,Fg为重力的大小,r为重力的作用点到参考点B的距离。

力学中的平衡问题及解题方法

力学中的平衡问题及解题方法

力学中的平衡问题及解题方法力学是物理学的一个重要分支,研究物体的运动和相互作用。

在力学中,平衡是一个关键概念,指的是物体在外力作用下保持静止或者匀速运动的状态。

解决平衡问题是力学学习的基础,本文将重点介绍平衡问题的概念及解题方法。

一、平衡问题概述在力学中,平衡是指物体的合力与合力矩均为零的状态。

合力指的是物体受到的所有力的矢量和,合力矩是指物体受到的所有力矩之和。

当一个物体处于平衡状态时,其合力为零,即物体受到的所有力相互抵消;合力矩也为零,即力矩的总和等于零。

通过解决平衡问题,我们可以推导出物体的受力关系及各个力的大小和方向。

二、解题方法解决平衡问题的思路和方法有很多,下面将介绍几种常用的方法。

1. 通过自由体图分析自由体图是解决平衡问题的重要工具。

通过将物体从整体中分离出来,将作用在物体上的力单独画在一张图上,即可更清晰地分析受力情况。

首先,选择心理上合适的参考点,计算该点的合力和合力矩,然后利用力的平衡条件和力矩的平衡条件,推导出物体的受力关系。

在绘制自由体图时,需要标注各个力的名称、大小和方向,以便更好地进行分析。

2. 利用转动平衡条件解题当物体可以绕某个轴进行转动时,我们可以利用转动平衡条件解题。

转动平衡条件是指物体的合力矩等于零,即物体受力矩的总和等于零。

通过将每个力的力矩与其距离乘积求和,然后令其等于零,我们可以解得物体的未知量。

在利用转动平衡条件解题时,需要注意选择正确的参考点和力臂的方向。

3. 使用迭加法解题迭加法是一种常用的解决力学问题的方法。

对于一个复杂的平衡问题,我们可以将其分解为多个简单的平衡问题来处理。

将物体逐步分解,每次只考虑其中的一部分受力情况,然后根据平衡条件解题。

最后通过迭代计算,得到物体的受力关系和未知量。

4. 运用静摩擦力解决问题在某些平衡问题中,静摩擦力起到重要的作用。

静摩擦力是指物体接触面上的摩擦力,当其超过一定程度时,可以阻止物体发生滑动。

通过利用静摩擦力的性质,我们可以解决涉及摩擦力的平衡问题。

物体平衡问题的求解方法

物体平衡问题的求解方法

物体平衡问题的求解方法物体处于静止或匀速运动状态,称之为平衡状态。

平衡状态下的物体是是物理中重要的模型,解平衡问题的基础是对物体进行受力分析。

物体的平衡在物理学中有着广泛的应用,在高考中,直接出现或间接出现的概率非常大。

本文结合近年来的高考试题探讨物体平衡问题的求解策略。

1.整体法和隔离法对于连接体的平衡问题,在不涉及物体间相互作用的内力时,应道德考虑整体法,其次再考虑隔离法。

有时一道题目的求解要整体法、隔离法交叉运用。

[例1] (1998年上海高考题)有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环P ,两环质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1。

现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小解析 用整体法分析,支持力mg N 2=不变。

再隔离Q 环,设PQ 与OB 夹角为θ,则不mg T =θcos ,θ角变小,cos θ变大,从上式看出T 将变小。

故本题正确选项为B 。

2.正交分解法物体受到3个或3个以上的力作用时,常用正交分解法列平衡方程,形式为0=合x F ,0=合y F 。

为简化解题步骤,坐标系的建立应达到尽量少分解力的要求。

[例2] (1997年全国高考题)如图2所示,重物的质量为m ,轻细绳AO 与BO 的A 端、B 端是固定的,平衡时AO 是水平的,BO 与水平面夹角为θ,AO 的拉力F 1和BO 的拉力F 2的大小是()A .θcos 1mg F =B .θcot 1mg F =C .θsin 2mg F =D .θsin /2mg F =解析 选O 点为研究对象,O 点受3个力的作用。

物体的平衡解题方法、例解

物体的平衡解题方法、例解

物体的平衡解题方法、例解一、 正交分解法力的正交分解法在处理力的合成和分解问题时,我们常把力沿两个互相垂直的方向分解,这种方法叫做力的正交分解法。

正交分解是解决物理学中矢量问题的最得力的工具,因为矢量不仅有大小,而且有方向。

正交分解法的三个步骤第一步,建立正交x 、y 坐标,这是最重要的一步,x 、y 坐标的设立,并不一定是水平与竖直方向,可根据问题方便来设定方向,不过x 与y 的方向一定是相互垂直的。

第二步,将题目所给定要求的各矢量沿x 、y 方向分解,求出各分量,凡跟x 、y 轴方向一致的为正;凡与x 、y 轴反向为负,标以“—”号;凡跟轴垂直的矢量,该矢量在该轴上的分量为0,这是关键的一步。

第三步,根据在各轴方向上的运动状态列方程,这样就把矢量运算转化为标量运算;若各时刻运动状态不同,应根据各时间区间的状态,分阶段来列方程。

这是此法的核心一步。

第四步,根据各x 、y 轴的分量,求出该矢量的大小,一定表明方向,这是最终的一步。

例1、如图所示,用一个斜向上的拉力F 作用在箱子上,使箱子在水平地面上匀速运动。

已知箱子质量为m ,F 与水平方向的夹角为θ,箱子与地面的动摩擦因数为μ。

求拉力F 的大小。

解:箱子受四个力:mg 、F N 、f 、F 作用,如图所示。

建立直角坐标系如图,将拉力F 分解为:F x = Fcos θ , F y = F sin θ.根据共点平衡条件得: x 轴上: Fcos θ = f …… ①y 轴上: Fsin θ+ F N = mg …… ②摩擦定律:f = μF N …… ③将③代入①,再将②中的F N 的表达式代入后得:F =θμθμsin cos +mg 。

二、整体法与隔离法在解物理问题过程应用的整体法,是将几个具有相互作用或影响的物体看成一个整体或系统,进行分析或思考要解决的问题。

在平衡问题中,通常所求的目标是某几个外力时,优先应用整体法。

这时几个物体通常都处于平衡状态。

高考力学平衡问题的解题方法9篇

高考力学平衡问题的解题方法9篇

高考力学平衡问题的解题方法9篇第1篇示例:高考力学平衡问题是高考物理中的一个重要知识点,也是考生们备战高考物理的重点内容之一。

在解题过程中,许多考生常常会遇到困难和疑惑。

本文将从基本概念入手,系统地介绍高考力学平衡问题的解题方法,帮助考生更好地掌握该知识点。

要解决高考力学平衡问题,就要对平衡的概念有一个清晰的认识。

在物理学中,平衡指的是物体在受到外力作用后,其加速度为零,即物体处于静止状态或匀速直线运动状态。

平衡分为静力平衡和动力平衡。

静力平衡指物体受到多个力的作用后,力的合成为零;动力平衡指物体在匀速直线运动时,受到的合外力为零。

在解题过程中要根据具体情况进行分析,选择合适的平衡条件。

解决高考力学平衡问题还需要掌握一些解题技巧。

首先要善于画图,通过图示清晰地表达问题,有助于理清思路。

其次要合理选择坐标系和参照系,简化问题、减小计算难度。

再次要善于拆分分析,将复杂问题分解成若干小问题,逐个解决,最后再将结果合成整体答案。

最后要注重实际问题的分析和应用,加强思维能力和解题能力。

解决高考力学平衡问题需要多加练习,不断总结和提高。

通过大量真题练习,熟悉题目的出题规律和考点,拓宽解题思路和方法。

同时有针对性地进行专项训练,提高解决特定类型问题的能力。

并且要不断总结和反思解题过程中的不足,加以改进,逐步提高解题水平。

在高考力学平衡问题的解题过程中,要善用平衡条件,运用解题技巧,多进行练习,并不断总结提高。

只有通过不懈的努力,才能够在高考物理中取得优异的成绩。

希望本文的介绍和方法对高考物理备考的考生们有所帮助,祝愿大家都能够取得理想的成绩,实现自己的高考梦想。

第2篇示例:高考力学平衡问题是高中物理中的重要内容,也是考生们备战高考物理的重点。

在解题过程中,许多学生常常感到困惑和不知所措。

本文将为大家介绍一种解题方法,希望能对大家有所帮助。

我们需要了解什么是力学平衡问题。

力学平衡是指物体在受力作用下保持静止或匀速直线运动的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《物体平衡问题的解题方法及技巧》
课堂实录
陈光旭(兴山一中湖北443700)物体平衡问题是高考考查的一个热点,在选择题、计算题甚至实验题中都有考查和应用。

如2010安徽卷第18题、2010广东卷第13题、2010山东卷第17题、2010新课标全国卷第18题等等……
由于处于平衡状态的物体,它的受力和运动状态较为单一,往往为一些同学和老师所忽视。

但作为牛顿第二定律的一种特殊情况,它又涵盖了应用牛顿第二定律解决动力学问题的方法和技巧,所以解决好平衡问题是我们解决其它力学问题的一个基石。

物体的平衡是力的平衡。

受力分析就成了解决平衡问题的关键!从研究对象来看,物体的平衡可分为单体平衡和多体平衡;从物体的受力来看,又可分为静态平衡和动态平衡。

一、物体单体平衡问题示例:
例一:(2010新课标全国卷18)如图一,一物块置于水平地面上,当用与水平方向成600角的力F1拉物块时,物块做匀速直线运动;当改用与水平方向成300的力F2推物块时,物块仍做匀速直线运动。

若F1和F2的大小相等,则物块和地面间的动摩擦因数为:
F 2
A :2-3 B.3-1 C.3/2-1/2 D.1-3/2
解析:将F 1分解到水平方向和竖直方向,如图二,水平方向受力平衡: F 1COS600=Fu
竖直方向:FN -F 1=mg
同理,对F 2进行分解,建立方程组,解出结果为A 在解决这类问题时,我们用的方法就是将物体受到的力,分解到物体的运动方向和垂直与物体的运动方向,列出两个平衡方程,解出未知问题。

这种方法不光对平衡问题适用,对非平衡问题同样适用。

例二:如图三,光滑小球放在一
带有圆槽的物体和墙壁之间,处于静
止状态,现将圆槽稍稍向右移动一
点,则球对墙的压力和对物体的压力
如何变化?
解析:这是单体的动态平衡问题 图一
图二 图三
对小球受力分析,如图四.由
于物体处于平衡,物体所受重力、
墙壁的作用力的合力与圆槽的作
用力等值反向。

当圆槽稍稍向右移
时,θ角变小mg 恒定,F 墙的方向
不变,所以,斜槽和墙壁对物体的
支持力都变小。

由牛顿第三定律,
球对墙和斜槽的压力都变小。

在作图时,学生习惯是在画平行四边形时,先把箭头打好,这实际上就把力的大小和方向都确定了,这样很难画出符合题意的平行四边形。

为了能画出符合题意的平行四边形,我们的技巧是:先画出重力并打上箭头,再以重力的两个端点为起点,按另外两个力的方向画平行四边形,就可以画出满足题意的四边形了!
例三:如图五,一质量为m 的带电小球A ,用长为L 的绝缘细线悬挂于O 点,在O 点的正下方距离为H 处用绝缘
杆固定一带电小球B,已知两球带电相
同。

在库仑力的作用下,细线与竖直方
向的夹角为θ。

随着两球带电量的减少,
θ角也减小。

问绳的张力如何变化?
图五
A
L F H mg 2 解析:作出A 的受力图如图六。

设绳的拉力为F 2,库仑力为F 1,
由力的三角形和长度的三角形相似得: 由上式可知,由于mg 和H 、L 为定值,所以F 2不变。

现在我们来比较一下例二和例 三:研究对象都是三个力的平
衡,但例二受到的三个力中,一个力恒定(重力),一个力的方向不变(墙壁的弹力),另一个力大小和方向变化(斜槽的弹力),这样我们用平行四边形就很容易比较出力的变化;而例三一个力恒定,而其他两个力都不确定,这样如果我们再用平行四边形,就很难确定另外两个边的变化。

所以我们借助于相似三角形。

在以后的学习中,如果我们遇到三个力的平衡,若一个力恒定,一个力的方向恒定,一般用平行四边形去解决问题就较为简单;若一个力恒定,另外两个力不确定,则我们就用相似三角形去解决问题。

例四:如图,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a 、b 垂直导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用平行与导轨的恒力F 作用在a 的中点,使其向上运动。

若b 始终保持静止,则此过程中它所受摩擦力( )
F 1
a 图七 A.可能一直等于0
B.可能先减小后不变
C.可能一直等于 F
D.可能先减小再增大
解析:以b 为研究对
象,对它受力分析得:
mgsin θ-BIL -F U =0
以a 为研究对象:
F -mgsin θ-BIL=ma
R BLV
I
分析:a 由静止开始运动,所以V 逐渐增大,安培力逐渐增大,a 做加速度逐渐减小的加速运动。

当加速度为0时,a 做匀速直线运动,安培力恒定。

对b 来说,开始F U 沿斜面向下,然后逐渐减小。

若安培力稳定后,仍然小于mgsin θ,则摩擦力没反向,所以它先变小后稳定;若稳定后安培力BIL 大于mgsin θ,则摩擦力反向了,说明它先减小后增大,再稳定。

正确答案为BD 。

本题我们的研究对象是b ,可我们分析的重点却放在了a 上。

因为引起b 的摩擦力变化的因素是b 上安培力的变化,而安培力的变化又是因为电流I 的变化,I 的变化又是因为a 的v 的变化,所以对a 的分析就成了解决问题的关键!这是
物理问题中的追根溯源!
例五:位于同一水平面上的两根粗糙的导电轨,放置在斜向左上方,与水平面成600
角足够大的匀强磁场中,现
给出这一装置的侧视图,如
图八示。

一根通有恒定电流
的金属棒在导轨上向右做匀
速运动,在匀强磁场沿顺时
针缓慢转过300角的过程中,为了使金属棒保持匀速运动,磁感应强度B 的大小变化情况可能是:
A.一直减小
B.一直增大
C.先减小后增大
D.先增大后减小
解析:以金属棒为研究对象,受力如图九所示。

在磁场转动的
过程中,设B 与水平方向的夹角
为θ,则600≤θ≤900.
竖直方向:mg=F N +BILcos θ
水平方向:BILsin θ=u(mg -BILcos θ)
由三角函数知识得:BSin(θ+Φ)=21μμ+IL mg
图八
图九
其中cos Φ=211
μ+;若Φ≧300,则Sin(θ+Φ)为减函数,所以
B 始终增大;若Φ≦300,则B 先减小后增大。

答案:BC.
该题是动态平衡和数学知识的整合,对学生的能力要求较高。

但单从物理和数学的角度来看,用到的知识都很常规,因此,遇到这样的题我们也没必要有太大的心理压力。

二、多体平衡示例:
例六:(1998.上海)有一个直角支架AOB,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑。

AO 上套有小环P ,OB 上套有小环Q ,两环的质量均为m ,,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图十。

现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是:
A.N 不变,T 变大
B.N 不变,T 变小
C.N 变大,T 变大
D.N 变大,T 变小
A Q B
U
F N 图十一
解析:把P、Q看成一个整体,绳的拉力为整体的内力。

则在竖直方向:2mg=N
在水平方向:F N =F U
从方程可以很容易看出N不变。

再以Q为研究对象,利用平行四边形定则可以判定:在P向左移动一点后,T减小,F N也减少。

这是一道多体平衡的问题。

我们可以看到,在处理多体平衡的问题时,同时利用整体法和隔离法,可使问题大大简化。

但也并不是说一定要用整体法和隔离法才能处理。

以这道题为例,我们分别对Q和P用隔离法,同样可以把问题处理掉。

关于平衡的问题,题型还有很多。

但不管是复杂的还是简单的,只要我们按照我们解决物理问题的一般方法,先对研究对象进行受力分析,然后分析它的运动状态,再看它遵循的物理规律,一切就会柳暗花明!
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。

相关文档
最新文档