公务员考试 行测【数字推理】解题技巧
公务员行测中的数字推理与解题技巧

公务员行测中的数字推理与解题技巧数字推理是公务员行测中的重要内容之一,它需要考生运用逻辑思维和数学知识进行推理和解题。
本文将介绍一些数字推理的基本方法和解题技巧,帮助考生更好地应对公务员行测中的数字推理题。
一、数字推理的基本方法在解决数字推理题时,考生首先需要明确题目给出的数字序列或者关系,并找到其中的规律。
下面介绍几种常见的数字推理方法。
1. 数列推理数列推理题是公务员行测中常见的题型,它要求考生根据已知的数字序列,推断出接下来的数字。
解决这类题目的关键在于找到数列中数字的变化规律。
常见的数列规律有等差数列和等比数列。
其中,等差数列的每个数字之间的差值相等,等比数列的每个数字之间的比值相等。
通过观察数列中数字间的关系,找出变化规律,即可准确推测出下一个数字。
2. 数字关系推理数字关系推理题要求考生从一组数字中找出相互之间的关系,进而推断出缺失的数字。
解决这类题目需要考生具备较强的逻辑思维能力。
常见的数字关系有加减乘除、平方立方等运算关系;还有数字的奇偶、大小关系等。
考生需要仔细观察数字间的变化规律,找出其中的逻辑关系,才能正确推断出缺失的数字。
3. 数字排列与组合推理数字排列与组合推理题要求考生从一组数字排列或者组合中找出符合一定条件的数字。
解决这类题目需要考生熟练掌握排列组合的知识。
在排列与组合的题目中,数字的顺序、重复与否等都可能是解题的关键。
考生需要根据题目给出的条件,灵活运用排列组合的规则,准确地确定符合条件的数字。
二、数字推理解题技巧除了掌握数字推理的基本方法,考生还可以借助一些解题技巧,提高解决数字推理题的效率。
1. 注意整体和局部在解决数字推理题时,考生既要关注数字序列的整体规律,又要注意其中的局部规律。
有时候,数字序列的整体规律并不明显,但是通过观察数字间的局部规律,也可以推断出接下来的数字。
2. 多角度观察考生要习惯从不同的角度观察数字推理题。
有时候,单一的数学运算规律并不能完全解释题目中的数字关系,此时考生可以从逻辑思维、几何形状等其他角度出发,寻找隐藏的规律。
行测数字推理题技巧

行测数字推理题技巧
1.规律分析:首先看给出的数字序列是否存在其中一种规律,例如递增、递减、交替等。
通过观察规律,可以将下一个数字或者数字序列进行
推理。
2.数字运算:在数字推理题中,经常出现的是数字的运算关系。
可以
通过加减乘除等简单的运算符号,对给出的数字进行运算,从而得出新的
数字或者数字序列。
3.数字特征:观察给出的数字是否有一些特殊的特征,例如是否为质数、完全平方数、斐波那契数列等,可以通过这些特征进行逻辑推理。
4.数字拆分:有些数字推理题给出的数字较大,可以将其拆分成小的
数字,然后再进行运算或者找规律。
5.条件限制:有些数字推理题在给出的数字序列中存在一些限制条件,例如数字的位数、数字之间差距等。
可以通过这些限制条件进行推理。
6.平均数:在有些数字推理题中,给出的数字序列的平均数可能有特
殊的含义,通过计算平均数,可以得到下一个数字或者数字序列。
7.数字替换:有些数字推理题中,给出的数字序列中存在一些数字可
以进行替换,通过替换数字,可以发现其中一种规律。
公考数字推理攻略汇总

公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差 d 为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。
如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。
如7,11,16,22,( 29 )(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。
如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。
【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。
【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数 q 为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。
【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。
【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为 3 的n 次方。
【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。
【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1) “平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】 0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。
行测数字推理题技巧

行测数字推理题技巧
行测数字推理题是考验考生逻辑思维和数学能力的一个考试科目,一般都需要考生通过对数字规律的发现和推理来解决问题。
以下是一
些数字推理题的解题技巧。
1. 对于数字序列,首先需要看清楚序列中数字的规律是否有明
显的特点,比如数字之间的间隔、加减乘除等关系。
如果可以找到规律,就可以依据规律进行数学计算,得出答案。
2. 对于数字图形,需要先观察数字的排列顺序是否有规律,以
及数字之间的关系是什么。
然后需要分析图形中各个数字的位置和数量,通过计算来找出规律。
例如,可以统计数字在图形中出现的次数
及其位置,通过计算得出结果。
3. 对于数字的大小比较题,需要注意数字之间大小的差异和数
量的关系。
例如,如果题目中有两个数列,并且一个数列的数字都比
另一个数列的数字小,那么很可能需要找到两个数列之间数字的关系,例如倍数、比率、权重等等。
4. 对于数字的逻辑推理题,需要注意确定一些基本前提,以及
从基本前提中推出一些相关结论的能力。
例如如果已知不等式关系,
则需要基于此推断出更多的不等式关系,进而解题。
总之,通过对数字之间的关系和规律进行分析,发现规律,再通
过计算或逻辑推理求解问题,可以有效提高数字推理题的解题能力。
行测数字推理之解题技巧(精华版)

数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。
如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。
(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。
如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。
)6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。
行政职业能力测试中数字推理的答题技巧

行政职业能力测试中数字推理的答题技巧数字推理是行政职业能力测试中的一个重要部分,它考察了考生的逻辑思维和数学能力。
在数字推理题目中,考生需要根据给定的数字序列或图形规律,推断出下一个数字或图形是什么。
下面是一些数字推理的答题技巧,希望对考生有所帮助。
1. 观察数字序列的规律数字推理题目中最常见的是数字序列题目,考生需要根据给定的数字序列推断出下一个数字是什么。
在解决这类题目时,考生需要仔细观察数字序列中的规律,找出其中的规律和特点。
例如,数字序列中是否存在递增或递减的趋势,是否存在重复的数字或数字组合,是否存在数字之间的乘法或加法关系等等。
只有找到了数字序列中的规律,才能准确地推断出下一个数字是什么。
2. 注意数字序列中的异常数字在数字序列中,有时会出现一些异常数字,这些数字与其他数字不符合规律,容易让考生产生困惑。
因此,考生需要注意数字序列中的异常数字,并尝试找出它们的特点和规律。
有时,这些异常数字可能是为了干扰考生而故意设置的,因此考生需要保持警惕,不要被这些数字所迷惑。
3. 观察图形的形状和颜色除了数字序列题目外,数字推理题目中还有一类是图形题目。
在这类题目中,考生需要根据给定的图形规律,推断出下一个图形是什么。
在解决这类题目时,考生需要仔细观察图形的形状和颜色,并找出它们之间的规律和特点。
例如,图形中是否存在对称或旋转的关系,是否存在颜色的变化或重复,是否存在图形之间的大小或位置关系等等。
只有找到了图形中的规律,才能准确地推断出下一个图形是什么。
4. 利用排除法在数字推理题目中,有时候考生无法准确地推断出下一个数字或图形是什么。
这时,考生可以利用排除法来缩小答案的范围。
例如,在数字序列中,如果考生无法找到数字之间的规律,可以先排除一些不可能的答案,例如数字太大或太小,或者不符合数字序列中其他数字的规律。
这样可以缩小答案的范围,提高答题的准确性。
5. 多做练习题最后,要想在数字推理题目中取得好成绩,考生需要多做练习题,熟练掌握数字推理的答题技巧。
公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。
所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
行测数字推理解题方法指导

行测数字推理解题方法指导一、等差数列1.题型特征:数列呈现单调递增或者单调递减,并且前后变化差距小,大部分变化幅度大约在2倍以内。
2.主要考查点:一级等高,二级等高,三级等高较太少,以及等差变式这几种类型。
一级等差:后一项-前一项=固定值基准:9,16,23,30,37,a.42b.43c.44d.46解析:数列呈圆形单调递减,变化幅度在两倍以内,且后一项-前一项=7,所以括号里的值=37+7=44,恰当答案挑选c。
一级等差变式:后一项-前一项的差值呈现特殊数列。
基准:13,15,18,23,30,a.41b.43c.44d.46解析:数列呈圆形单调递减,变化幅度在两倍以内,且后一项-前一项=2,3,5,7,差值呈圆形质数列,所以后面的差值必须为11,则括号里的=30+11=41,恰当答案挑选a。
二级等差:后一项-前一项=第一差值,第一差值再相减=固定差值。
基准:2,17,29,38,44,a.45b.46c.47d.48解析:数列呈圆形单调递减,变化幅度大部分在两倍以内,优先考量等差数列。
二、和数列1.题型特征:大数字较多,两数之间变化陡峭。
2.主要考察点:横向:两项和数列及其变式,三项和及其变式;纵向:加和形成数列。
两项和数列:第一项+第二项=第三项。
例:12,18,,48,78a.20b.22c.26d.30解析:相邻两项在2倍以内,变化幅度平缓,优先考虑和数列。
12+18=30,18+30=48,30+48=78,符合规律,所以选d。
两项和数列变式:第一项+第二项常数=第三项;第一项+第二项数列=第三项。
例:4,7,12,20,33,,88a.54b.42c.49d.40解析:相邻两项在2倍以内,变化幅度平缓,优先考虑和数列。
4+7+1=12,7+12+1=20,20+33+1=54,所以应该选a。
三项和数列:前三项之和=后一项。
例:7,8,2,17,27,46,a.88b.90c.92d.94解析:相邻两项在2倍以内,变化幅度平缓,优先考虑和数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b
2)深一愕模型,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3)看各数的大小组合规律,作出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=74 , 40*40 -74=1526 , 74*74-40=5436,这就是规律。
4)如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、6 0、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上fjjngs解答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵25 6+13=269269+17=286286+16=302 ∴下一个数为302+5=307。
7)再复杂一点,如0、1、3、8、21、55,这组数的规律是b*3-a=c,即相邻3个数之间才能看出规律,这算最简单的一种,更复杂数列也用把前面介绍方法深化后来找出规律。
8)分数之间的规律,就是数字规律的进一步演化,分子一样,就从分母上找规律;或者第一个数的分母和第二个数的分子有衔接关系。
而且第一个数如果不是分数,往往要看成分数,如2就要看成2/1。
补充:
1)中间数等于两边数的乘积,这种规律往往出现在带分数的数列中,且容易忽略
如1/2、1/6、1/3、2、6、3、1/2
2)数的平方或立方加减一个常数,常数往往是1,这种题要求对数的平方数和立方数比较熟悉如看到2、5、10、17,就应该想到是1、2、3、4的平方加1
如看到0、7、26、63,就要想到是1、2、3、4的立方减1
对平方数,个人觉得熟悉1~20就够了,对于立方数,熟悉1~10就够了,而且涉及到平方、立
方的数列往往数的跨度比较大,而且间距递增,且递增速度较快
3)A^2-B=C因为最近碰到论坛上朋友发这种类型的题比较多,所以单独列出来
如数列5,10,15,85,140,7085
如数列5, 6, 19, 17 , 344 , -55
如数列5,15,10,215,-115
这种数列后面经常会出现一个负数,所以看到前面都是正数,后面突然出现一个负数,就考虑这个规律看看
4)奇偶数分开解题,有时候一个数列奇数项是一个规律,偶数项是另一个规律,互相成干扰项
如数列1,8,9,64,25,216
奇数位1、9、25 分别是1、3、5的平方
偶数位8、64、216是2、4、6的立方
先补充到这儿。
5) 后数是前面各数之各,这种数列的特征是从第三个数开始,呈2倍关系
如数列:1、2、3、6、12、24
由于后面的数呈2倍关系,所以容易造成误解!。