八年级上册数学勾股定理练习题及答案

合集下载

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。

初二上册数学第一章勾股定理练习题及答案

初二上册数学第一章勾股定理练习题及答案
二、选择题(每小题3分,共15分)
6. 在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )
A. 5、4、3、 B. 13、12、5 C. 10、8、6 D. 26、24、10
7.如图,在同一平面上把三边为BC=3,AC=4、AB=5的三角形沿最长边AB翻折后得到△ABC′,则CC′的长等于( )
处的食物,需要爬行的最短路程大约( )
A. 10cm B. 12cm C. 19cm D. 20cm
三、 解答题 (每小题10分, 共50分)
21. 如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解)
22. 如图, 在△ABC中, AD⊥BC于D,AB=3,BD=2,DC=1, 求AC2的值.
A. 15° B. 30° C. 45° D. 60°
19. 在△ABC中,AB=12cm,BC=16cm,,AC=20cm,,则△ABC的面积是( )
A. 96cm2 B. 120cm2 C. 160cm2 D. 200cm2
20. 如图:有一圆柱,它的高等于8cm,底面直径等于4cm( )
在圆柱下底面的 点有一只蚂蚁,它想吃到上底面与 相对的 点
A. 4 B. 8 C. 10 D. 12
12. 小丰的妈妈买了一部29英寸(74cm)的电视机,下列对29英寸的说法中正确的是( )
A. 小丰认为指的是屏幕的长度
B. 小丰的妈妈认为指的是屏幕的宽度
C. 小丰的爸爸认为指的是屏幕的周长
D. 售货员认为指的是屏幕对角线的长度
13. 如图中字母A所代表的正方形的面积为( )
25. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积.

八年级数学-勾股定理测试题(含答案)

八年级数学-勾股定理测试题(含答案)

勾股定理单元测试题一、选择题(每小题3分,共30分)1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :1,1C :6,8,11D :5,12,232、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :213、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :74、在Rt △ABC 中,∠C =90°,∠B =45°,c =10,则a 的长为( ) A :5 B :10 C: D :5 5、已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 26、若等腰三角形的腰长为10,底边长为12,则底边上的高为( )A 、6 B 、7 C 、8 D 、97、已知,如图长方形ABCD 中,AB=3cm ,AD=9cm , 将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、3cm 2B 、4cm 2C 、6cm 2D 、12cm 28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为 A 、14 B 、4 C 、14或4 D 、 以上都不对9、 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( (A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对10、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高是( )A 、 17 B 、14 C 、16 D 、1 5二、填空题(每小题3分,共21分)1、若一个三角形的三边满足222c a b -=,则这个三角形是 。

勾股定理初二练习题及答案

勾股定理初二练习题及答案

勾股定理初二练习题及答案勾股定理是初中数学中十分重要的定理之一,它在数学中的应用广泛,是解决直角三角形问题的基础。

下面将为大家提供一些勾股定理的初二练习题及答案,希望能够帮助大家更好地理解和掌握这一概念。

练习题1:已知直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,直角三角形斜边的平方等于两个直角边的平方和。

设斜边长度为x,则根据勾股定理可得:x² = 3² + 4²x² = 9 + 16x² = 25两边同时开方,得到x = 5。

因此,该直角三角形的斜边长度为5cm。

练习题2:已知直角三角形的斜边为10cm,直角边为6cm,求另一个直角边的长度。

解答:根据勾股定理,直角三角形斜边的平方等于两个直角边的平方和。

设另一个直角边长度为x,则根据勾股定理可得:10² = x² + 6²100 = x² + 36x² = 100 - 36x² = 64两边同时开方,得到x = 8。

因此,该直角三角形的另一个直角边长度为8cm。

练习题3:一个直角三角形的斜边长度为13cm,另一个直角边的长度为5cm,求第二个直角边的长度。

解答:根据勾股定理,直角三角形斜边的平方等于两个直角边的平方和。

设第二个直角边长度为x,则根据勾股定理可得:13² = 5² + x²169 = 25 + x²x² = 169 - 25x² = 144两边同时开方,得到x = 12。

因此,该直角三角形的第二个直角边长度为12cm。

通过以上练习题,我们可以看到勾股定理的运用。

只需要知道其中两个量,即可求解第三个量。

这是数学中的一种非常有用的定理,能够帮助我们解决许多实际问题。

总结起来,勾股定理可以用公式表示为:斜边² = 直角边₁² + 直角边₂²其中,斜边表示直角三角形的斜边,直角边₁和直角边₂分别表示直角三角形的两个直角边。

(新)八年级数学《勾股定理》精选练习题及答案解析

(新)八年级数学《勾股定理》精选练习题及答案解析

勾股定理精选题一、选择题1.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为a,较短的直角边为b,且a:b=4:3,则大正方形面积与小正方形面积之比为()A.25:9 B.25:1 C.4:3 D.16:92.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m3.下列结沦中,错误的有()①Rt△ABC中,已知两边分别为3和4,则第三边的长为5;②三角形的三边分别为a、b、c,若a2+b2=c2,则∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,则这个三角形是一个直角三角形;④若(x﹣y)2+M=(x+y)2成立,则M=4xy.A.0个B.1个C.2个D.3个4.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4 B.4πC.8πD.85.已知Rt△ABC的三边分别为a、b、c,则下列结论不可能成立的是()A.a2﹣b2=c2B.∠A﹣∠B=∠CC.∠A:∠B:∠C=3:4:5 D.a:b:c=7:24:256.《九章算术》是我国古代的数学名著,书中的“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断后离地面的高度为x尺,则可列方程为()A.x2﹣3=(10﹣x)2B.x2﹣32=(10﹣x)2C.x2+3=(10﹣x)2D.x2+32=(10﹣x)27.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.如图,等腰△ABC中,AB=AC=10cm,BC=12cm,D为BC上一点,连接AD,E为AD上一点,连接BE,若∠ABE=∠BAE═∠BAC,则DE的长为()A.cm B.cm C.cm D.1cm9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.满足下列条件的△ABC不是直角三角形的是()A.AC=3,BC=5,AB=4 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题11.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.12.如图所示,一棵36m高的树被风刮断了,树顶落在离树根24m处,则折断处的高度AB是m.13.如图,已知直角△ABC的两直角边分别为6,8,分别以其三边为直径作半圆,则图中阴影部分的面积为.14.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.15.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.t=时△ABP为直角三角形.16.已知等腰△ABC中,AB=AC=5,BC=6,则△ABC的面积为.17.已知△ABC中,AB=10,BC=21,CA=17,则△ABC的面积等于.18.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.19.已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.20.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.三、解答题21.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?22.如果三角形的三边a,b,c满足a2+b2+c2+50=6a+8b+10c,试判断三角形的形状.B'=3.将纸片沿某条直线折叠,使点B落在点B' 23.如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,C处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.24.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.已知,如图,在△ABC中,∠C=90°,∠1=∠2,CD=15,BD=25,求AC的长.26.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.27.如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P 运动几秒时,P点与顶点A的连线PA与腰垂直.28.如图,已知AB=12,AB⊥BC于点B,AB⊥AD于点A,AD=5,BC=10.点E是CD的中点,求AE的长.29.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.30.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B 方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.勾股定理精选题(参考答案)一、选择题1.【答案】【解析】解:∵a:b=4:3,∴大正方形面积与小正方形面积之比为(a2+b2):(a﹣b)2=b2:b2=25:1.故选:B.2.【答案】【解析】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.3.【答案】【解析】C4.【答案】【解析】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.5.【答案】【解析】解:(A)当∠A=90°时,此时a2=b2+c2,故A能成立.(B)∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,故B能成立.(C)设∠A=3x,∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴x=15°,∴∠C=75°,故C不能成立.当∠C=90°,∴a2+b2=c2,故D能成立,故选:C.6.【答案】【解析】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.故选:D.7.【答案】【解析】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.8.【答案】【分析】根据条件得出AE=BE,再使用勾股定理计算.【解析】解:∵AB=AC,∠BAE═∠BAC,∴AD⊥BC,∴∠BDE=90°,BD=BC=6,∵AB=10,∴AD==8,∵∠ABE=∠BAE,∴AE=BE,设DE=x,则AE=BE=8﹣x,在Rt△BDE中,BE2=DE2+BD2,∴(8﹣x)2=x2+62,解得:x=,即DE=cm,故选:C.9.【答案】【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1.推而广之,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故选:D.10.【答案】【解析】解:A、∵32+42=52∴满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.二、填空题11.【答案】【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.12.【答案】【解析】根据题意构造直角三角形,设AB=x米,则AC=(36﹣x)米,BC=24米,由勾股定理得出方程,解方程即可.解:由勾股定理得:x2+242=(36﹣x)2,解得:x=10;即折断处的高度AB是10m;故答案为:10.13.【答案】【解析】解:在Rt△ABC中,AC=6,BC=8,根据勾股定理得:AB==10,则S阴影=S半圆AC+S半圆BC+S△ABC﹣S半圆AB=π+π+×6×8﹣π=24.故答案为:2414.【答案】【解析】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.15.【答案】【解析】解:在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4cm,由题意知BP=2tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即2t=4,t=2;②当∠BAP为直角时,BP=2tcm,CP=(2t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(2t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(2t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=2或t=,故答案为:2s或s16.【答案】【解析】解:如图,过点A作AD⊥BC,垂足为点D,∵AB=AC=5,BC=6,∴BD=CD=BC=×6=3,∵AD2+BD2=AB2,∴AD==4,∴S△ABC=BC•AD=×4×6=12,故答案为:12.17.【答案】【解析】解:过点A作AD⊥BC.设BD=x,则CD=21﹣x,在Rt△ABD中,AD2=102﹣x2,在Rt△ADC中,AD2=172﹣(21﹣x)2,∴102﹣x2=172﹣(21﹣x)2,100﹣x2=289﹣441+42x﹣x2,解得x=6,∴CD=15,在Rt△ACD中,AD==8,∴△ABC的面积=×BC•AD=×21×8=84.故答案为:84.18.【答案】3.6或4.32或4.8【解析】19.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.20.【答案】5【解析】作E 点关于直线BD 的对称点E′,连接AE′,则线段AE′的长即为AP+EP 的最小值5.三、解答题21.【答案】【解析】解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有 x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .22.【答案】【解析】因为a 2+b 2+c 2+50=6a+8b+10c ,所以a 2+b 2+c 2-6a-8b-10c+50=0,即a 2-6a+9+b 2-8b+16+c 2-10c+25=0,所以(a-3)2+(b-4)2+(c-5)2=0,所以a=3,b=4,c=5,因为a 2+b 2=c 2,所以三角形为直角三角形.23.【答案】 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称,∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.24.【答案】【解析】设EC=xcm ,则DE=(8-x )cm ,由折叠可知,EF=DE ,AD=AF ,在直角△ABF 中,由勾股定理得AB 2+BF 2=AF 2,即82+BF 2=102,所以BF=6cm ,所以FC=10-6=4(cm ).在直角△EFC 中,由勾股定理得FC 2+CE 2=EF 2,即42+x 2=(8-x )2,解之得x=3,即EC 的长度为3cm.25.【答案】【解析】过D 作DE ⊥AB ,垂足为E ,因为∠1=∠2,所以CD=DE=15,在Rt △BDE 中,BE 2=BD 2-DE 2=252-152=202,所以BE=20,因为∠1=2,∠C=∠DEA=90°,AD=AD ,所以Rt △ACD ≌Rt △AED ,又因为AB 2=AC 2+BC 2,即(AC+20)2=AC 2+(15+25)2,解得AC=30.26.【答案】【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=, 故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.27.【答案】【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.28.【答案】【解析】如图,延长AE交BC于点F.因为AB⊥BC,AB⊥AD,所以AD∥BC所以∠D=∠C,∠DAE=∠CFE,又因为点E是CD的中点,所以DE=CE.因为在△AED与△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,所以△AED≌△FEC(AAS),所以AE=FE,AD=FC.因为AD=5,BC=10.所以BF=5.在Rt△ABF中,AF2=AB2+BF2=122+52=169,所以AF=13,所以AE=AF=6.5.29.【答案】【解析】解:(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,当t=6时,点P与A重合,也符合条件,∴当或6时,P在△ABC的角平分线上;(3)在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4﹣2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t﹣3﹣4=,解得:t=,②PB=BC,即2t﹣3﹣4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.30.【答案】【解析】解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm),∠B=90°,∴PQ===(cm);(2)BQ=2t,BP=16﹣t,根据题意得:2t=16﹣t,解得:t=,即出发秒钟后,△PQB能形成等腰三角形;(3)①当CQ=BQ时,如图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒.②当CQ=BC时,如图2所示,则BC+CQ=24,∴t=24÷2=12秒.③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE==,∴CE=,∴CQ=2CE=14.4,∴BC+CQ=26.4,∴t=26.4÷2=13.2秒.综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.。

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)

一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a ,较短直角边长为b ,大正方形面积为S 1,小正方形面积为S 2,则(a +b )2可以表示为( )A .S 1﹣S 2B .S 1+S 2C .2S 1﹣S 2D .S 1+2S 2 2.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .22D .32 3.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10C .1.5、2、2.5D .3、2、7 4.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .22cm 2D .225cm 5.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC=∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =( )A .6B .()326+C .63D .96.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .77.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .418.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .15 9.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.15.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.16.如图,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= __________.17.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB OA ⊥,使3AB =(如图);再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数是____________.18.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.19.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.20.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD =3,AE =10,则正方形ODCE 的边长等于____.三、解答题21.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.22.某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为4m ,底面边长为1m ,求灯带最短的长度.23.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.24.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.25.在等腰直角△ABC中,AB= AC, BAC=90°,过点B作BC的垂线l.点P为直线AB 上的一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转90°交直线l于点D.(1)如图1,点P在线段AB上,依题意补全图形;①求证:∠BDP =∠PCB;②用等式表示线段BC,BD,BP之间的数量关系,并证明.(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.D解析:D【分析】根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 4.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,=EM ,∴,∴EF=FG=5, ∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.5.B解析:B【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =32方程求出PM 、PE 、PF ,继而求出PD 的长即可求解.【详解】解:如图:等腰Rt △DEF 中,DE =DF =6, ∴22226662EF DE DF =++=过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =32设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=, 解得:16x =26x =-即PM 6,∴PE =PF =26故DP =DM -PM =326,则PD +PE +PF =326463236326. 故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.6.D解析:D【分析】根据“AAS”可得到△ABC ≌△CDE ,由勾股定理可得到b 的面积=a 的面积+c 的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,∵∠ABC=∠CDE ,AC=CE ,∴△ABC ≌△CDE ,∴BC=DE ,∵AC 2=AB 2+BC 2,∴AC 2=AB 2+DE 2,∴b 的面积=a 的面积+c 的面积=3+4=7.故答案为:D .【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.7.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.8.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 9.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵25∴125故选A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键 解析:589+【分析】根据勾股定理解答即可;【详解】 由题可知△14102PFG S FG =⨯⨯=, ∴5FG =, 作PM FG ⊥,∵PFG △是等腰三角形,∴52FM GM ==, ∴25891622PF PG ⎛⎫==+= ⎪⎝⎭, 由翻折可知,BF PF PG CG ===,∴89BF CG ==∴589BC BF FG CF =++=+;故答案是589+.【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h 解析:374或22 【分析】根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=7 ∴此等腰三角形的面积为1732⨯⨯=37; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形,设底边上的高为h ,如下图所示则22232⎛⎫- ⎪⎝⎭2 ∴此等腰三角形的面积为12222⨯⨯=22或综上:此等腰三角形的面积为4故答案为:或4【点睛】本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a,b的值是解题的关键,要注意分情况讨论.15.【分析】根据ACDC解直角△ACD可以求得AD根据求得的AD和BD解直角△ABD可以计算AB【详解】∵AD⊥BC于D∴△ACD△ABD为直角三角形∴AC2=AD2+DC2∴AD===∵△ABD为直角解析:【分析】根据AC,DC解直角△ACD,可以求得AD,根据求得的AD和BD解直角△ABD,可以计算AB.【详解】∵AD⊥BC于D,∴△ACD、△ABD为直角三角形,∴AC2=AD2+DC2,∴AD,∵△ABD为直角三角形,∴AB2=AD2+BD2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.16.8【分析】设AB=5x则BC=3x根据勾股定理可求出AC=4x由周长为24列方程求出x的值即可求出AC的长【详解】设AB=5x∵AB:BC=5:3∴BC=3x∴AC=4x∵直角三角形ABC的周长为2解析:8【分析】设AB=5x,则BC=3x,根据勾股定理可求出AC=4x,由周长为24列方程求出x的值,即可求出AC的长.【详解】设AB=5x,∵AB:BC=5:3,∴BC=3x,∴AC=4x,∵直角三角形ABC的周长为24,∴3x+4x+5x=24,解得:x=2,∴AC=4x=8.故答案为8【点睛】本题主要考查了勾股定理的运用,用含有x的式子分别表示出三边的值,代入周长公式求解是解题关键.17.【分析】根据勾股定理可计算出OB的长度即点P在数轴正半轴表示的数【详解】解:在Rt△OAB中∵OA=2OB=3;∴OB=;∴以点O为圆心OB为半径与正半轴交点P表示的数为故答案为:【点睛】本题考查勾【分析】根据勾股定理可计算出OB的长度,即点P在数轴正半轴表示的数.【详解】解:在Rt△OAB中∵OA=2,OB=3;∴==;∴以点O为圆心,OB为半径与正半轴交点P【点睛】本题考查勾股定理的应用及数轴上点的坐标的表示,根据题意先计算OB的长度,注意以点O交点即可得解.18.【分析】根据条件作出示意图根据勾股定理求解即可【详解】解:由题意可画图如下:在直角三角形ABO中根据勾股定理可得如果梯子的顶度端下滑1米则在直角三角形中根据勾股定理得到:则梯子滑动的距离就是故答案为解析:1m【分析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,22534OA =-=,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键. 19.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.20.2【分析】根据题意有两对全等的直角三角形设正方形的边长为x 则BC=3+xAC=10+xAB=13根据勾股定理BC2+AC2=AB2列出方程解出x 即可【详解】解:设DC=CE=x 则BC=3+xAC=1解析:2【分析】根据题意,有两对全等的直角三角形,设正方形的边长为x,则BC=3+x,AC=10+x,AB=13,根据勾股定理,BC2+AC2=AB2,列出方程,解出x即可.【详解】解:设DC=CE=x,则BC=3+x,AC=10+x∵BC2+AC2=AB2∴(3+x)2+(10+x)2=132∴x=2故答案为:2.【点睛】本题主要考查了全等三角形的性质与勾股定理,熟悉全等三角形对应边相等,勾股定理的应用是解决本题的关键.三、解答题21.BC=43+3或43-3【分析】作AD⊥BC于D,分点D在线段BC上和BC的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,BD=2222AB AD-=-=,8443在Rt△ACD中,CD=2222AC AD-=-=3,54∴BC=BD+CD=43+3;②高AD在CB的延长线上,如图2所示:BC=BD-CD=43-3;综上所述,BC的长为43+3或43-3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:22AA'=+=(m).435答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD+DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.也考查了余角的性质和勾股定理.24.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 25.(1)见解析;①见解析;②BC -BD;见解析;(2)BD -BCBP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P 作PF ⊥BP 交BC 于点F .证明△BPD ≌△FPC ,即可得到结论;(2)过点P 作PH ⊥BP 交CB 的延长线于点H ,证明△HPC ≌△BPD 即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD≌△FPC.∴BD=FC.∵BF2BP,∴BC -BD=2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BC 2BP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。

八年级数学上册《第一章 勾股定理的应用》练习题-带答案(北师大版)

八年级数学上册《第一章 勾股定理的应用》练习题-带答案(北师大版)

八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。

八年级数学(上)第一章《勾股定理》测试题及答案

八年级数学(上)第一章《勾股定理》测试题及答案

八年级数学(上)第一章《勾股定理》测试题及答案选择题
1.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为()
A.4
B.8
C.10
D.12
2.小丰的妈妈买了一部29英寸(74m)的电视机,下列对29英寸的说法中正确的是()
A.小丰认为指的是屏幕的长度
B.小丰的妈妈认为指的是屏幕的宽度
C.小丰的爸爸认为指的是屏幕的周长
D.售货员认为指的是屏幕对角线的长度
3.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()
A.钝角三角形
B.锐角三角形
C.直角三角形
D. 等腰三角形
4.一直角三角形的一条直角边长是 7cm,另一条直角边与斜边长的和是 49cm,则斜边的长()
A.18cm
B.20 cm
C.24 cm
D.25cm
填空题
1. 小华和小红都从同一点0出发,小华向北走了9米到 A 点,小红向东走了12米到了B点,则AB=_____米。

2.一个三角形三边满足(a+b)2-c2=2ab,则这个三角形是_____三角形。

3.木工做一个长方形桌面,量得桌面的长为 60cm,宽为
32cm,对角线为 68cm,这个桌面______(填“合格”或“不合格”)。

4.直角三角形一直角边为12cm,斜边长为13cm,则它的面积为_______。

参考答案:
选择题:CDCD
填空题:1.15;2.直角;3.合格;4.30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学勾股定理练习题及答案一、选择题1. 下列各组中,不能构成直角三角形的是 .,12,1 15,32,3 16,30,3,40,412. 如图1,直角三角形ABC的周长为24,且AB:BC=5:3,则AC= .10 123. 已知:如图2,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为 .94924. 如图3,在△ABC中,AD⊥BC与D,AB=17,BD=15,DC=6,则AC的长为.11 105. 若三角形三边长为a、b、c,且满足等式2?c2?2ab,则此三角形是.锐角三角形钝角三角形等腰直角三角形直角三角形6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 .6.201360137. 高为3,底边长为8的等腰三角形腰长为 .468. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需 .秒秒秒秒9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为.4 1 110. 如图5所示,在长方形ABCD中,E、F分别是AB、BC上的点,且BE=12,BF=16,则由点E到F的最短距离为 .08 二、填空题11. 写出两组直角三角形的三边长 . 12. 如图6、中,正方形A的面积为 .2斜边x= .13. 如图7,已知在Rt△ABC中,?ACB?Rt?,AB?4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于.14. 四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有个直角三角形.15. 如图8,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD 的长为.三、简答题16.如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD的面积.17.如图10,方格纸上每个小正方形的面积为1个单位.在方格纸上,以线段AB为边画正方形并计算所画正方形的面积,解释你的计算方法. 你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?18.如图11,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E 点,则他滑行的最短距离是多少?19.如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?20.如图13所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13所示.已知展开图中每个正方形的边长为1.求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. 试比较立体图中∠ABC与平面?ABC的大小关系.///展开图中21.如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. 这个梯子底端离墙有多少米?如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?22.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.1. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么的值为.11 13图1252. 以下列各组数为边长,能构成直角三角形的是 .22232、4、 1、2、33. 如图2,等腰三角形ABC中,AB=AC,AD是底边上的高.若AB=5cm,BC=6cm,那么AD=cm.4. 正方体的棱长为2cm,用经过A、B、C三点平面截这个正方体,所得截面的周长是cm.. 如图4,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?6. 为了打击索马里海盗,保护各国商船顺利通行,我海军某部奉命前往某海域执行保航任务.某天我护航舰正在某小岛A北偏西45°并距该岛20海里的B处待命.位于该岛正西方向C出的某外国商船招到海盗袭击,船长发现在其北偏东60°方向有我军护航舰,便发出紧急求救信号.我护航舰接警后,立即沿BC航线以每小时60海里的速度前去救援.该船舰需要多少分钟可以达到商船所在位置处?答案提示:1. D. A. .5. 约22米.根据半圆柱的展开图可计算得:AE=?22?22米.6. 约38分.提示:过点A作AM⊥BC于D,根据勾股定理分别在Rt△Rt△ACD中求出BD和CD的长,即BD+CD为航程.答案提示:一、选择题ABD和1.C .B .C .B .D .D .C .C .A10.A 二、填空题11.略 12.36,1313.π 14. 1 15. 三、简答题16. 在Rt△ABC中,AC=3?422154?5.2又因为52?122?132,即AD 所以∠DAC=90°.所以S 四边形17.略ABCD?AC2?CD2.?SRt?ACD?SRt?ABC?12?3?4?12?5?12=6+30=36.18. 约22米.根据半圆柱的展开图可计算得:AE=2?2?22米. 19. 如图12,在Rt△A BC中,根据勾股定理可知,BC=50002?40002?3000.3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞行540千米.20. ;4条21.米;不是.设滑动后梯子的底端到墙的距离为x米,得方程, x2?252?,解得x=15,所以梯子向后滑动了8米.,BC?6由勾股定理有:AB?10,扩充部分为22.在Rt△ABC中,?ACB?90°,AC?8Rt△ACD,扩充成等腰△ABD,应分以下三种情况:①如图1,当AB?AD?10时,可求CD?CB?6,得△ABD的周长为32m.②如图2,当AB?BD?10时,可求CD?4,由勾股定理得:AD?,得△ABD的周长为20?m.③如图3,当AB为底时,设AD?BD?x,则CD?x?6,由勾股定理得:x?A253?,得△ABD的周长为A803m.ADC 图1BDC 图2BDC 图3B八年级数学勾股定理测试题姓名:基础知识,你都掌握了吗?试试看!251、如图字母B所代表的正方形的面积是A. 12B. 1C. 14D. 11692、下列各组数中不能作为直角三角形的三边长的是 A. 1.5,,; B.,4,5;C. ,8, 10;D., 12, 15.、适合下列条件的△ABC中, 是直角三角形的个数为①a?A、2㎝B、3㎝C、4㎝22D、5㎝29. 在△ABC中,∠C=90°,AB=5,则AB+AC+BC=_______. 10、一座桥横跨一江,桥长12m,一般小船自桥北头出发,向正南方驶去,因水流原因到达南岸以后,发现已偏离桥南头5m,则小船实际行驶m。

11. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和的平方等于.12.在高5m,长13m的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要___________m.5m第11题图13.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.14、已知直角三角形的三边长为6、8、x,则以x为边长的正方形的面积为_____。

15、已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为。

16、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的2正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm17、一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_____________。

B第9题图图5B111,b?,c?; ②a?6,∠A=450;③∠A=320, ∠B=580;45④ a?7,b?24,c?25;⑤a?2,b?2,c?4.A.个;B.个;C.个;D.个.4、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是 A 钝角三角形; B. 锐角三角形; C. 直角三角形; D. 等腰三角形. .等腰三角形的一腰长为13,底边长为10,则它的面积为 A.6B.60 C.120 D.130.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC 的面积是2222A、24cmB、36cmC、48cmD、60cm7.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距A、25海里B、30海里C、35海里D、40海里 A E东C BD第8题图第7题图8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC沿直线AD折叠,使它落在斜边AB 上,恰与AE重合,则CD等于- 1 -勾股定理能力提高训练题一.勾股定理中方程思想的运用例题1.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,则DE的长为多少? AD1.已知,如图,折叠长方形的一边AD使点D落在BC边的点F处,已知AB =cm,BC = 10 cm,求EC的长二.勾股定理中分类讨论思想的运用例题2.已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积。

2.Rt△ABC的两边长分别是3和4,若一个正方形的边长是△ABC的第三边,则这个正方形的面积是。

三.勾股定理中类比思想的运用例题3.如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则那么S1、S2、S3之间有什么关系并加以证明?如图③,分别以直角三角形ABC三边为边向外作三个等边三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系B3.如图,在△ABC中,∠ACB=90o,AC>BC,分别以AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,连接EF、GM、ND,设△AEF、△BND、△CGM的面积分别为S1、S2、S3,则下列结论正确的是 D A.S1=S2=S B.S1=S2<S3C.S1=S3<SD.S2=S3<S1C4.如图,已知直角△ABC的两直角边分别为6,8,分别2以其三边为直径作半圆,求图中阴影部分的面积.例1四.勾股定理中整体思想的运用例题4.在直线l上依次摆放着七个正方形.已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____.- -九年级数学一元二次方程姓名______一、典型例题分析:|m|-1例1. 关于x的方程关于x的一元二次方程x?x?a?1?0的一个根为0,则实数a的值为 A.?1 B.0 C.1 D.?1或1 例2.用适当的方法解方程22?x?1??144?0=x x-2x+2=05.若关于x的一元二次方程2.x?2x?m?0没有实数根,则实数m的取值范围5.若关于x的一元二次方程x?2x?m?0没有实数根,则实数m的取值范围是是A.m-1C.m>l D.m-1C.m>l D.m 26.已知关于x的一元二次方程x2?2x?1?0有两个不相等的实6.已知关于x的一元二次方程x?2x?1?0有两个不相等的实 2.数根,则a的取值范围是数根,则a的取值范围是A.a?B.a?2C.a?2且a?1D.a??A.a?B.a?2C.a?2且a?1D.a??27.若关于x的一元二次方程kx2?2x?1?0有两个不相等的实数根,7.若关于x的一元二次方程kx?2x?1?0有两个不相等的实数根,则k的取值范围是则k的取值范围是A.k??1B.k??1且k?0C.k?1D.k?1且k?0 A.k??1B.k??1且k?0C.k?1D.k?1且k?08.已知关于x的一元二次方程mx2?nx?k?0有两个实数根,8.已知关于x的一元二次方程mx?nx?k?0有两个实数根,则下列关于判别式n2?4mk的判断正确的是则下列关于判别式n?4mk的判断正确的是n2?4mk?0 n2?4mk?0 n2?4mk?0 n2?4mk?0 n?4mk?0 n?4mk?0 n?4mk?0 n?4mk?0 例4.设x1,x2是方程2x2+4x -3=0的两个根,则x1?x2? x1?x2? 例4.设x1,x2是方程2x+4x-3=0的两个根,则x1?x2?x1?x2?222222222x+6x-7=0 x+8x―3=0例3. 一元二次方程x?2x?1?0的根的情况是有两个不相等的实数根有两个相等的实数根没有实数根不能确定.已知关于x的一元二次方程x??m?1?x?m?2?0.若方程有两个相等的实2222求 x12+x222求 x1+x22211? x12x2+ x1 x22? x1x2+ x1 x2212x2- -数根,求m的值;勇敢闯一闯:图形面积问题:例5.如右图,某小区规划在长32米,宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?9、如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.C.x?130x?1400?0D.x?65x?350?012.如图所示,要建一个面积为130平方米的仓库,仓库的一边靠墙并在与墙平行的一边开一道1米宽的门,现有能围成32米长的木板,求仓库的长和宽,对于这个问题,你能列出方程吗?试着求其解来。

相关文档
最新文档