信号与系统实验报告

合集下载

信号与系统软件实验实验报告

信号与系统软件实验实验报告

信号与系统软件实验实验报告一、实验目的本次信号与系统软件实验的主要目的是通过使用相关软件工具,深入理解和掌握信号与系统的基本概念、原理和分析方法,并通过实际操作和实验结果的观察与分析,提高对信号处理和系统性能的认识和应用能力。

二、实验环境本次实验使用的软件工具为_____,运行环境为_____操作系统。

计算机配置为_____处理器,_____内存,_____硬盘。

三、实验内容1、信号的表示与运算生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、锯齿波信号等,并观察其波形和特征参数。

对生成的信号进行加、减、乘、除等运算,分析运算结果的波形和频谱变化。

2、系统的时域分析构建简单的线性时不变系统,如一阶惯性系统、二阶振荡系统等。

输入不同类型的信号,如阶跃信号、冲激信号等,观察系统的输出响应,并分析系统的稳定性、瞬态性能和稳态性能。

3、系统的频域分析对给定的系统进行频率响应分析,计算系统的幅频特性和相频特性。

通过改变系统的参数,观察频率响应的变化规律,并分析系统对不同频率信号的滤波特性。

4、信号的采样与重构对连续时间信号进行采样,研究采样频率对信号重构的影响。

采用不同的重构方法,如零阶保持重构、一阶线性重构等,比较重构信号与原始信号的误差。

四、实验步骤1、打开实验软件,熟悉软件的操作界面和功能菜单。

2、按照实验内容的要求,依次进行各项实验操作。

在信号表示与运算实验中,通过软件提供的函数生成所需的信号,并使用绘图功能显示信号的波形。

然后,利用软件的计算功能进行信号运算,并观察运算结果的波形。

对于系统时域分析实验,首先在软件中构建指定的系统模型,然后输入相应的激励信号,使用仿真功能获取系统的输出响应。

通过观察输出响应的波形,分析系统的性能指标,如上升时间、调节时间、超调量等。

在系统频域分析实验中,利用软件的频率响应分析工具,计算系统的幅频特性和相频特性曲线。

通过调整系统的参数,如增益、时间常数等,观察频率响应曲线的变化情况,并总结规律。

信号与系统实验报告总结

信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。

方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。

方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。

幅值较一二次谐波大为减少。

方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。

幅值较三次谐波再次减小。

方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。

幅值减少到0.3以内,几乎可以忽略。

综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。

分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。

二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。

可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。

方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。

综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。

2.通过软件工具绘制不同信号的时域和频域图像。

3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。

三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。

2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。

3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。

4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。

四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。

通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。

此外,通过滤波器的处理,我也了解了滤波对信号的影响。

通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验实验一 常用信号分类与观察一、实验目的1、了解单片机产生低频信号源2、观察常用信号的波形特点及产生方法。

3、学会使用示波器对常用波形参数的测量。

二、实验仪器1、20MHz 双踪示波器一台。

2、信号与系统实验箱一台。

三、实验内容1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。

2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。

四、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。

1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。

其波形如下图所示:图 1 正弦信号2、指数信号:指数信号可表示为atKe t f =)(。

对于不同的a 取值,其波形表现为不同的形式,如下图所示:图 2 指数信号3、指数衰减正弦信号:其表达式为 ⎪⎩⎪⎨⎧><=-)0()sin()0(0)(t t Ke t t f at ω其波形如下图:图 3 指数衰减正弦信号4、抽样信号:其表达式为: sin ()tSa t t=。

)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图4 抽样信号5、钟形信号(高斯函数):其表达式为:2()()tf t Ee-τ= , 其信号如下图所示:图 5 钟形信号6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。

信号与系统 实验报告

信号与系统 实验报告

信号与线性系统实验报告
班级: 电科122
学号: 124633224
姓名: 纳扎尔·库尔曼别克
2015年10月
计算机与信息工程学院
2. 已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和>> a=[1,1,1,2];
>> b=[1,2,3,4,5];
>> g=conv(a,b);
2.利用ifourier( ) 函数求下列频谱函数的傅氏反变换
22()16F j j ω
ωω=-+
已知下列系统函数H (s),求其频率特性。

已知系统函数H (s),求其频率特性和零极点图。

t
已知信号的拉氏变换如下,请用MATLAB画出其三维曲面图,观察其图形特点,
.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列2121()2z z F z z z ++=+-
syms k z
3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,统的作用
122344()()()
z H z z z +=++。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学实验报告(信号与系统)学生姓名: 学 号: 专业班级:实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩: _离散时间系统的时域特性分析一、 实验名称:离散时间系统的时域特性分析 二、 实验目的:线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲着响应序列可以刻画其时域特性。

本实验通过使用MATLAB 函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性时不变特性的理解。

三、 实验原理:1、 线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N 个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。

如果系统在序列1x (n)和)(2n x 输入时的输出分别为)()(21n y n y 和(1)那么当且仅当式(2)和式(3)成立时,该系统是线性的(2)和(3)式中:a 为任意常数。

上述第一个性质称为可加性,第二个性质称为齐次性或比例性。

这两个性质和在一起就称为叠加原理,写成(4)式(4)对任意常数21a a 和都成立。

在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例常数都可以是复数。

2、 时不变系统系统的运算关系T[·]在整个运算过程中不随时间而变化,这种关系称为是不变系统。

这个性质可用以下关系表示:若输入)(n x 的输出为)(n y南昌大学实验报告(信号与系统)学生姓名: 潘书敏 学 号: 6100210062 专业班级: 通信101 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012.5.17 实验成绩: _则将输入序列移动任意位后,其输出序列出了跟着移位外,数值应保持 不变,即:满足以上关系的系统就称为是不变系统。

3、 常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:(5)当输入)(n x 为单位冲激序列时,输出)(n y 即为系统的单位冲激响应)(n h 。

当0 k a 时,k=1,2,……,N 时,)(n h 是有限长度的,称系统为有限长单位冲激响应系统;反之,则称系统为无限长单位冲激响应系统。

四、 实验说明1、产生一个长度为N=100的单位冲激序列。

2、产生一个长度为N=100的单位阶跃序列。

3、产生一个正弦序列。

4、产生一个复指数序列。

5、假设系统y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2),输入三个不同的序列1x (n) ,)(2n x 和x(n)=a 1x (n)+b )(2n x ,求)()(21n y n y 和及y(n),并判断此系统是否为线性系统。

6、用MATLAB 命令y=impz(num,den,N)计算因果线性时不变离散系统的冲激响应的前N 个样本。

五、实验内容1、产生一个长度为N=100的单位冲激序列。

>> N=100;学生姓名:潘书敏学号:6100210062 专业班级:通信101实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_>> u=[1 zeros(1,N-1)];>> Stem(0:N-1,u)Warning: Could not find an exact (case-sensitive) match for 'Stem'.C:\MATLAB701\toolbox\matlab\specgraph\stem.m is a case-insensitive match and will be used instead. You can improve the performance of your code by using exact name matches and we therefore recommend that you update your usage accordingly.Alternatively, you can disable this warning using warning('off','MATLAB:dispatcher:InexactMatch').2、产生一个长度为N=100的单位阶跃序列。

>> N=100;>> s=[ones(1,N)];>> stem(0:99,s);>> axis([0 100 0 2])学生姓名:潘书敏学号:6100210062 专业班级:通信101 实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_3、产生一个正弦序列。

>> n=0:40;>> f=0.1;>> phase=0;>> A=1.5;>> arg=2*pi*f*n-phase;>> x=A*cos(arg);>> stem(n,x);>> axis([0 40 -2 2]);>> grid学生姓名:潘书敏学号:6100210062 专业班级:通信101 实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_4、产生一个复指数序列。

>> c=-(1/12)+(pi/6)*i;>> k=2;>> n=0:40;>> x=k*exp(c*n);>> subplot(2,1,1);>> stem(n,real(x));>> subplot(2,1,2);>> stem(n,imag(x));>> xlabel('时间序列n');>> ylabel('信号幅度')>> title('虚部');学生姓名: 潘书敏 学 号: 6100210062 专业班级: 通信101 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012.5.17 实验成绩: _5、 假设系统y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2),输入三个不同的序列1x (n) ,)(2n x 和x(n)=a 1x (n)+b )(2n x ,求)()(21n y n y 和及y(n),并判断此系统是否为线性系统。

>> n=0:40; >> a=2; >> b=-3;>> x1=cos(2*pi*0.1*n); >> x2=cos(2*pi*0.4*n); >> x=a*x1+b*x2;>> num=[2.2403 2.4908 2.2403]; >> den=[1 -0.4 0.75]; >> y1=filter(num,den,x1); >> y2=filter(num,den,x2); >> y=filter(num,den,x); >> y1=a*y1+b*y2; >> subplot(2,1,1); >> stem(n,y);>> ylabel('信号幅度');学生姓名:潘书敏学号:6100210062 专业班级:通信101 实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_>> subplot(2,1,2);>> stem(n,y1);>> ylabel('信号幅度');6、用M ATLAB命令y=impz(num,den,N)计算因果线性时不变离散系统的冲激响应的前N个样本。

>> N=40;>> num=[2.2403 2.4908 2.2403];>> den=[1 -0.4 0.75];>> y=impz(num,den,N);>> stem(y);>> xlabel('时间序列n');>> ylabel('信号幅度');>> title('冲激响应');>> grid;南昌大学实验报告(信号与系统)学生姓名: 潘书敏 学 号: 6100210062 专业班级: 通信101 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012.5.17 实验成绩: _选做:1、阅读例题程序,理解每一天语句的含义,改变例题中的有关参数(如信号的频率、周期、幅度、显示时间的取值范围、采集点数等),观察对信号波形有何影响。

例题: 假设系统y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2),输入三个不同的序列1x (n) ,)(2n x 和x(n)=a 1x (n)+b )(2n x ,求)()(21n y n y 和及y(n),并判断此系统是否为线性系统。

>> n=0:40; >> a=2; >> b=-3;>> x1=cos(2*pi*0.1*n); >> x2=cos(2*pi*0.4*n); >> x=a*x1+b*x2;>> num=[2.2403 2.4908 2.2403]; >> den=[1 -0.4 0.75]; >> y1=filter(num,den,x1); >> y2=filter(num,den,x2);学生姓名:潘书敏学号:6100210062 专业班级:通信101 实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_>> y=filter(num,den,x);>> y1=a*y1+b*y2;>> subplot(2,1,1);>> stem(n,y);>> ylabel('信号幅度');>> subplot(2,1,2);>> stem(n,y1);>> ylabel('信号幅度');改参数之后:>> n=0:40;>> a=2;>> b=-3;>> x1=cos(2*pi*0.5*n);>> x2=cos(2*pi*0.8*n);>> x=a*x1+b*x2;>> num=[2.5 2.5 2.5];>> den=[1 -0.5 0.8];>> y1=filter(num,den,x1);>> y2=filter(num,den,x2);>> y=filter(num,den,x);学生姓名:潘书敏学号:6100210062 专业班级:通信101 实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_>> y1=a*y1+b*y2;>> subplot(2,1,1);>> stem(n,y);>> ylabel('信号幅度');>> subplot(2,1,2);>> stem(n,y1);>> ylabel('信号幅度');n ,-5≤n≤5;2、(2)x(n)=3sin()4>> n=-5:5;>> f=0.125;>> phase=0;>> A=0;>> arg=2*pi*f*n-phase;>> x=3*sin(arg);>> stem(n,x);>> axis([-5 5 -6 6]);>> grid on学生姓名: 潘书敏 学 号: 6100210062 专业班级: 通信101 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 2012.5.17 实验成绩: _(3)x (n )=n j e )6.11.0(π+;160≤≤n>> c=0.1+j*1.6*pi;>> k=1;>> n=0:16;>> x=k*exp(c*n);>> stem(n,real(x));学生姓名:潘书敏学号:6100210062 专业班级:通信101 实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:_。

相关文档
最新文档