《整式的加减》过关检测题(一)
第二章 整式的加减【过关测试01】(解析版)

人教版2020年第二单元《整式的加减》过关检测(一)一.选择题(共12小题)1.代数式2(a 2﹣b )表示( )A .两倍a 的平方与b 的差B .a 的平方与b 的差的两倍C .a 的平方与b 的两倍的差D .a 与b 的平方差的两倍【分析】根据代数式的意义即可写出.【解答】解:代数式2(a 2﹣b )表示a 的平方与b 的差的两倍,故选:B .2.下列所列代数式正确的是( )A .a 与b 的积的立方是ab 3B .x 与y 的平方差是(x ﹣y )2C .x 与y 的倒数的差是y 1x -D .x 与5的差的7倍是7x ﹣5【分析】根据题意列式即可.【解答】解:(A )a 与b 的积的立方是(ab )3,故A 错误;(B )x 与y 的平方差是x 2﹣y 2,故B 错误;(D )x 与5的差的7倍是7(x ﹣5),故D 错误,故选:C .3.当21b 2a =-=,时,代数式b4a 2ab -的值等于( ) A .61 B .61- C .6 D .﹣6 【分析】把21b 2a =-=,代入b4a 2ab -,即可求出原式的值.【解答】解:把21b 2a =-=,代入b4a 2ab -得, 原式()6124121422212=---=⨯--⨯⨯-= 故选:A .4.下列各式:;;⑦;⑥;⑤;④;③;②①πy 4x 5y x 26x 2x a 18m m n 2122+-++-中,整式有( ) A .3个 B .4个 C .6个 D .7个【分析】根据整式的定义,结合题意即可得出答案. 【解答】解:在;;⑦;⑥;⑤;④;③;②①πy 4x 5y x 26x 2x a 18m m n 2122+-++-中,整式有πy 4x 5y x 26x 2x 8m m n 2122+-++-;⑦;⑥;⑤;③;②①,一共6个. 故选:C .5.下列说法正确的是( )5.下列说法正确的是( )A .单项式2x 22π-的系数是21- B .ab 的系数、次数都是1C .a44a 和都是单项式 D .单项式2πr 的系数是2π【分析】直接利用单项式的次数与系数确定方法分析得出答案.【解答】解:单项式2x 22π-的系数是22π-,故此选项错误;B 、ab 的系数是1,次数都是2,故此选项错误;C 、4a 是单项式,a4不是单项式,故此选项错误; D 、单项式2πr 的系数是2π,正确.故选:D .6.组成多项式6x 2﹣2x +7的各项是( )A .6x 2﹣2x +7B .6x 2,2x ,7C .6x 2﹣2x ,7D .6x 2,﹣2x ,7【分析】根据多项式的项的定义得出即可.【解答】解:组成多项式6x 2﹣2x +7的各项是6x 2,﹣2x ,7,故选:D .7.与﹣125a 3bc 2是同类项的是( )A .a 2b 3cB .21ab 2c 3C .0.35ba 3c 2D .13a 3bc 3【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,进行判断.【解答】解:A 、a 2b 3c 与﹣125a 3bc 2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误;B 、21ab 2c 3与﹣125a 3bc 2所含的相同字母的指数不相同,所以它们不是同类项.故本选项错误; C 、0.35ba 3c 2与﹣125a 3bc 2所含的相同字母的指数相同,所以它们是同类项.故本选项正确;D 、13a 3bc 3与﹣125a 3bc 2所含的相同字母c 的指数不相同,所以它们不是同类项.故本选项错误; 故选:C .8.已知﹣51x 3y 2n 与2x 3m y 4是同类项,则m +n 的值是( ) A .1 B .2 C .3 D .7【分析】先根据同类项的定义得出关于m 、n 的方程,求出m 、n 的值再代入代数式进行计算即可. 【解答】解:∵﹣51x 3y 2n 与2x 3m y 4是同类项, ∴3m =3,2n =4,解得m =1,n =2,∴原式=1+2=3.故选:C .9.下列合并同类项正确的是( )A .4a 2+3a 3=7a 6B .4a 3﹣3a 3=1C .﹣4a 3+3a 3=﹣a 3D .4a 3﹣3a 3=a【分析】根据同类项的定义和合并同类项的法则.【解答】解:A 、4a 2和3a 2不是同类项,不能合并;B 、漏掉字母部分a 3;C 、正确;D 、字母指数不对.故选:C .10.多项式﹣x +x 3+1﹣x 2按x 的升幂排列正确的是( )A .x 2﹣x +x 3+1B .1﹣x 2+x +x 3C .1﹣x ﹣x 2+x 3D .x 3﹣x 2+1﹣x【分析】根据升幂排列的定义,将多项式的各项按照x 的指数从小到大排列起来.【解答】解:按x 的升幂排列为﹣x+x3+1﹣x2=1﹣x﹣x2+x3.故选:C.11.下列式子去括号正确的是()A.﹣(2x﹣y)=﹣2x﹣yB.﹣3a2+(4a2+2)=﹣3a+4a2﹣2C.﹣[﹣(2a﹣3y)]=2a﹣3yD.﹣3(a﹣7)=﹣3a+7【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣(2x﹣y)=﹣2x+y.故本选项错误;B、﹣3a2+(4a2+2)=﹣3a+4a2+2.故本选项错误;C、﹣[﹣(2a﹣3y)]=2a﹣3y.故本选项正确;D、﹣3(a﹣7)=﹣3a+21.故本选项错误;故选:C.12.将2(x+y)﹣3(x﹣y)﹣4(x+y)+5(x﹣y)﹣3(x﹣y)合并同类项得()A.﹣3x﹣y B.﹣2(x+y)C.﹣x+y D.﹣2(x+y)﹣(x﹣y)【分析】先合并同类项,再去括号.【解答】解:原式=2(x+y)﹣4(x+y)﹣3(x﹣y)+5(x﹣y)﹣3(x﹣y)=﹣2(x+y)﹣(x﹣y)=﹣2x﹣2y﹣x+y=﹣3x﹣y,故选:A .二.填空题(共4小题)13.4x 3x x 2332---是 次多项式,最高次项是 . 【分析】直接利用多项式的次数确定方法分析得出答案. 【解答】解:4x 3x x 2332---是三次多项式,最高次项是:4x 3-. 故答案为:三,4x 3-.14.如图,长方形的长、宽分别为a ,b ,试用代数式表示图中阴影部分的面积:S 阴影= .【分析】由图知三个三角形的底的和等于a 、高均为b ,据此依据三角形的面积公式可得答案.【解答】解:由图知,S 阴影=21ab , 故答案为:21ab . 15.如图,它是一个程序计算器,用字母及符号把它的程序表达出来 ,如果输入m =3,那么输出 .【分析】首先计算m 的平方,再加上2m ,除以10,最后加上﹣1,输出得数,由此列出代数式即可;把m =3代入(1)中列出的代数式求得结果即可. 【解答】解:依据计算程序可知:输出结果=110m 2m 2-+. 当m =3时,输出结果=211103232=-⨯+. 故答案为:110m 2m 2-+;21. 16.当a =21,b =31-时,代数式5(3a 2b ﹣ab 2)﹣(ab 2+3a 2b )的值是 . 【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=15a 2b ﹣5ab 2﹣ab 2﹣3a 2b=12a 2b ﹣6ab 2,当a =21,b =31-时,原式=343121*********-=⎪⎭⎫ ⎝⎛-⨯⨯-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯ 故答案为34-.三.解答题(共8小题)17.计算: (1)322a 64a 217a 3--⎪⎭⎫ ⎝⎛--; (2)()()()y 2x 4y x 2y 2x 5--++-; (3)()()22x 2y 3y x 2+--; (4)()()[]x 2x 2x x 2x x 32222---+-. 【分析】利用整式加减运算法则即可求出答案.【解答】解:(1)原式=3a 3﹣7+21a 3﹣4﹣6a 3=(3a 3+21a 3﹣6a 3)+(﹣7﹣4)=﹣25a 3﹣11. (2)原式=5x ﹣2y +2x +y ﹣4x +2y =3x +y .(3)原式=2x 2﹣2y ﹣3y ﹣6x 2=﹣4x 2﹣5y .(4)原式=3x 2﹣(x 2+2x 2﹣x ﹣2x 2+4x )=2x 2﹣3x .18.确定m ,n 的值,使关于x ,y 的多项式x m ﹣2y 2+m x m ﹣2y +nx 3y m ﹣3﹣2x n ﹣3y +m +n 是一个五次三项式. 【分析】根据多项式为五次三项式,求出m 与n 的值即可.【解答】解:∵关于x ,y 的多项式x m ﹣2y 2+m x n ﹣2y +nx 3y m ﹣3﹣2x n ﹣3y +m +n 是一个五次三项式, ∴m ﹣2+2=5,m ﹣2+1=n ﹣3+1解得m =5,n =6.19.已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求3A +6B ;(2)若3A +6B 的值与a 的取值无关,求b 的值;(3)如果A +2B +C =0,则C 的表达式是多少?【分析】(1)先把A 、B 的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A +6B 的表达式,再令a 的系数等于0,求出b 的值即可;(3)先把A 、B 的表达式代入,求出C 的表达式即可.【解答】解:(1)∵A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1,∴3A +6B =3(2a 2+3ab ﹣2a ﹣1)+6(﹣a 2+ab ﹣1)=6a 2+9ab ﹣6a ﹣3﹣6a 2+6ab ﹣6=15ab ﹣6a ﹣9;(2)3A +6B =15ab ﹣6a ﹣9=a (15b ﹣6)﹣9,∵3A +6B 的值与a 无关,∴15b ﹣6=0,∴b =52; (3)∵A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1,A +2B +C =0,∴C =﹣A ﹣2B =﹣(2a 2+3ab ﹣2a ﹣1)﹣2(﹣a 2+ab ﹣1)=﹣2a 2﹣3ab +2a +1+2a 2﹣2ab +2=﹣5ab +2a +3.20.计算某个整式减去多项式ab ﹣2bc +3a +bc +8ac 时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab +b c +8ac .请你求出原题的正确答案.【分析】设该整式为A ,求出A 的表达式,进而可得出结论.【解答】解:∵A +(ab ﹣2bc +3a +b c +8ac )=﹣2ab +b c +8ac ,∴A =(﹣2ab +b c +8ac )﹣(ab ﹣2bc +3a +b c +8ac )=﹣2ab + b c +8ac ﹣ab +2bc ﹣3a ﹣b c ﹣8ac=﹣3ab +2bc ﹣3a ,∴A ﹣(ab ﹣2bc +3a +b c +8ac )=(﹣3ab +2bc ﹣3a )﹣(ab ﹣2bc +3a +b c +8ac )=﹣3ab +2bc ﹣3a ﹣ab +2bc ﹣3a ﹣b c ﹣8ac=﹣4ab +3bc ﹣6a ﹣8ac .21.一个代数式加上3x 4﹣x 3+2x ﹣1得﹣5x 4+3x 2﹣7x +2,求这个代数式.【分析】设这个代数式是A ,再根据整式的加减法则进行计算即可.【解答】解:设这个代数式是A ,∵A +(3x 4﹣x 3+2x ﹣1)=﹣5x 4+3x 2﹣7x +2,∴A =(﹣5x 4+3x 2﹣7x +2)﹣(3x 4﹣x 3+2x ﹣1)=﹣5x 4+3x 2﹣7x +2﹣3x 4+x 3﹣2x +1=(﹣5﹣3)x 4+3x 2﹣(7+2)x +x 3+3=﹣8x 4+3x 2﹣9x +x 3+3.22.规定bc ad d c b a -=,如-232-414321=⨯⨯=.若33x 25x 35-22=-+,求11x 2﹣5. 【分析】根据题中所给出的式子列出关于x 的式子,再合并同类项即可. 【解答】解:∵规定bc ad d c b a -=,如-232-414321=⨯⨯=.若33x 25x 35-22=-+, ∴原式==-+3x 25x 35-22(﹣5)×(x 2﹣3)﹣2×(3x 2+5) =﹣5x 2+15﹣6x 2﹣10=﹣11x 2+5=3,∴﹣11x 2=3﹣5=﹣2.∴11x 2﹣5=2﹣5=﹣3.23.已知a =﹣1,b =﹣2,求代数式b a 3b a 21ab 4b a 3b a 22222+⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--的值. 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式=a 2b ﹣3a 2b +4ab 2+21a 2b +3a 2b =23a 2b +4ab 2, 当a =﹣1,b =﹣2时,原式=﹣3﹣16=﹣19.24.学习了整式的加减运算后,郑老师出了一道题课堂练习题为“当a =﹣2,b =2016时,求多项式3b 2b a 41b a b b a 41b b a 4b b a 21b a 322332233233+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛--+-+-的值.”张同学把a =﹣2抄成 a =2,韦同学没有抄错题,但他们做出的结果恰好一样,说说这是怎么回事?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:原式=3a 3b 3﹣21a 2b +b ﹣4a 3b 3﹣b +41a 2b +b 2+a 3b 3+41a 2b ﹣2b 2+3=﹣b 2+3, 结果与a 的取值无关,故张同学把a =﹣2抄成a =2,韦同学没有抄错题,但他们做出的结果恰好一样.。
(常考题)人教版初中数学七年级数学上册第二单元《整式的加减》检测卷(含答案解析)(1)

一、选择题1.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.定义运算“*”,其规则为2*3a ba b +=,则方程4*4x =的解为( ) A .3x =- B .3x =C .2x =D .4x =3.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 4.若三个连续偶数的和是24,则它们的积为( ) A .48B .240C .480D .1205.下列变形不正确的是( ) A .由2x-3=5得:2x=8 B .由-23x=2得:x=-3 C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x6.一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A .106x x +=1 B .22106x x +-+=1 C .2106x x -+=1 D .222106x x x --++=17.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( ) A .54 B .72 C .45 D .628.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.已知方程(1)30mm x -+=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或110.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 11.下列方程的变形,符合等式的性质的是( ) A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣3 12.下列判断错误的是 ( ) A .若,则 B .若,则C .若,则D .若,则二、填空题13.若方程2(2)3m m x x ---=是一元一次方程,则m =________.14.购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.15.若关于x 的方程1253n ax bx x x +-+=+是一元一次方程,则a n +=_________ ,b_________. 16.在方程1322x -=-的两边同时_________,得x =__________. 17.在公式5(32)9c f =-中,已知20c =,则f =_____________. 18.完成下面的填空:一家商店将某种服装按成本价提高40%后标价,又以八折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?我们知道,每件商品的利润是商品售价与商品成本价的差,如果设每件服装的成本价为x 元,那么每件服装的标价为_________元;每件服装的实际售价为___________元; 每件服装的利润为____________元. 由此,列出方程_________________. 解这个方程,得x =______________. 因此每件服装的成本价是___________元.19.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.20.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题21.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题:()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?22.公园门票价格规定如下表: 购票张数 1~50张 51~100张 100张以上 每张票的价格13元11元9元50人.若两个班都以班为单位购票,则一共应付1240元,问: (1)如果两班联合起来,作为一个团体购票,可省多少元? (2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱? 23.小明用的练习本可以到甲商店购买,也可以到乙商店购买.已知两店的标价都是每本1元,甲商店的优惠条件是买10本以上,从第11本开始按标价的7折卖;乙商店的优惠条件是购买10本以上,每本按标价的8折卖. (1)小明要买20本练习本,到哪个商店较省钱?(2)小明要买10本以上练习本,买多少本时到两个商店付的钱一样多? (3)小明现有32元钱,最多可买多少本练习本? 24.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=.25.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱? (2)若此人将这两次购物合为一次购买是否更节省?为什么?26.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元. (2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,可以找到很多数量关系,那么选取合适的关系列出等式是关键,仔细观察网格图,可以发现第一纵行与第二橫行互相交叉,有相同的空格,同时包含了参数a 与b ,根据该等量关系可以列出等式解答. 【详解】解:设第二橫行第一个空格为字母c ,如下图,据题意得, 85a c c b ++=++, 移项可得, 3b a -=. 故选:D. 【点睛】本题以幻方形式考查等式与方程的应用,理解题意,观察图形,找到合适的等量关系列出等式是解答关键.2.D解析:D 【分析】根据新定义列出关于x 的方程,解之可得. 【详解】 ∵4*x=4,∴234x⨯+=4, 解得x=4, 故选:D . 【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.3.C解析:C 【分析】 将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2. 故选C . 【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.4.C解析:C 【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积. 【详解】解:设中间的偶数为m ,则 (m-2)+m+(m+2)=24, 解得m=8.故三个偶数分别为6,8,10. 故它们的积为:6×8×10=480. 故选:C . 【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.5.C解析:C 【分析】根据等式的性质逐一进行判断即可得答案. 【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32-得:x=-3,故该选项正确, C.由2x=5的两边同时除以2得:x=52,故该选项错误, D.由x+5=3x-2的两边同时加上(2-x )得:7=2x ,故该选项正确, 故选:C . 【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.C解析:C 【分析】设总工作量为1,从而可得甲、乙的工作效率,再根据“甲完成的工作量+乙完成的工作量1=”建立方程即可得. 【详解】设总工作量为1,则甲的工作效率为110,乙的工作效率为16, 若设完成这项工程共需x 天,则甲工作的天数为x 天,乙工作的天数为(2)x -天,由题意得:21106x x -+=, 故选:C . 【点睛】本题考查了列一元一次方程,读懂题意,正确找出等量关系是解题关键.7.B解析:B 【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可. 【详解】设个位上的数为x ,则十位数字为()31x +,由题意得: x +(3x +1)=9, 解得:x =2,十位数字为:6+1=7, 这个两位数是:72. 故选:B. 【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.8.D解析:D 【详解】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.考点:1.新定义题2.一元一次方程.9.C解析:C 【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】∵方程(1)30m m x -+=是关于x 的一元一次方程, ∴1m =,10m -≠, 解得:1m =-. 故选:C . 【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键.10.C解析:C 【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程. 【详解】设甲一共做了x 天,则乙一共做了(x−1)天. 可设工程总量为1,则甲的工作效率为14 ,乙的工作效率为16. 那么根据题意可得出方程1146x x -+=, 故选C. 【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程.11.D解析:D 【分析】根据等式的基本性质对各选项进行逐一分析即可. 【详解】A .∵2x ﹣3=7,∴2x=7+3,故本选项错误;B .∵3x ﹣2=x+1,∴3x ﹣x=1+2,故本选项错误;C .∵﹣2x=5,∴x=﹣52,故本选项错误; D .∵﹣13x=1,∴x=﹣3,故本选项正确. 故选D . 【点睛】考核知识点:等式基本性质.理解等式基本性质的内容是关键.12.D解析:D 【解析】 【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案. 【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则,正确;D. 当c=0时,若,a 就不一定等于b ,故本选项错误;故选D. 【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.二、填空题13.1或2【分析】利用一元一次方程的定义分和两种情况讨论即可求出m 的值【详解】①当时由题意得且解得;②当时解得综上或2故答案为:或2【点睛】本题考查了一元一次方程的定义以及绝对值熟练掌握一元一次方程的定解析:1或2 【分析】利用一元一次方程的定义,分20m -≠和20m -=两种情况讨论,即可求出m 的值. 【详解】①当20m -≠时,由题意得|2|1m -=,且210m --≠,解得1m =; ②当20m -=时,解得2m =. 综上,1m =或2. 故答案为:1或2. 【点睛】本题考查了一元一次方程的定义以及绝对值,熟练掌握一元一次方程的定义,利用分类讨论思想是解本题的关键.14.9900或110002000【分析】(1)分两种情况讨论可求解;(2)设第2次原料款为x 元列出方程可求x 的值可求两次原料款总额由③方案可求一次性购买同样数量的原料的付款金额即可求解【详解】(1)99解析:9900或11000 2000. 【分析】(1)分两种情况讨论,可求解;(2)设第2次原料款为x 元,列出方程可求x 的值,可求两次原料款总额,由③方案可求一次性购买同样数量的原料的付款金额,即可求解. 【详解】(1)9900或11000若购买金额不超过1万元,则购买的原料原价为9900元;若购买金额超过1万元但不超过3万元,则99000.911000÷=(元). 故答案为:9900或11000. (2)2000设第2次原料原价为x 元.根据题意,可得0.925200x =,解得28000x =.所以两次原料总价为28000800036000+=(元), 按照方案③,一次性购买同样数量的原料付款为(3000090%)600070%31200⨯+⨯=(元),所以一次性购买同样数量的原料可比分两次购买少付800025200312002000+-=(元) 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.4或0≠-1【分析】根据一元一次方程的定义可知二次项系数为0则求出n 的值再根据二次项系数为0一次项系数不等于0求出a 的值即可【详解】解:根据一元一次方程的定义可知二次项系数为0则解得n=1或-3把代解析:4或0 ≠-1 【分析】根据一元一次方程的定义可知,二次项系数为0,则12+=n ,求出n 的值,再根据二次项系数为0,一次项系数不等于0,求出a 的值即可. 【详解】解:根据一元一次方程的定义可知,二次项系数为0,则12+=n ,解得n=1或-3,把12+=n 代入方程得:2253-+=+ax bx x x , 整理得:()()23150-+--+=a x b x ,∴a-3=0,-b-1≠0, 解得:a=3,b≠-1, ∴a+n=4或0, 故答案为:4或0;≠,-1. 【点睛】本题是对一元一次方程定义的考查,熟练掌握一元一次方程是解决本题的关键.16.加【解析】【分析】根据等式的性质2方程的两边加即可【详解】方程的两边同时加得:x =-1故答案为:加;【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:加121- 【解析】 【分析】根据等式的性质2,方程的两边加12即可. 【详解】 方程1322x -=-的两边同时加12得:x =-1, 故答案为:加12;1-. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.17.68【解析】【分析】把C=20代入C 与f 之间的关系式解方程就可以求出f 的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68 【解析】 【分析】把C=20代入C 与f 之间的关系式5(32)9c f =-,解方程就可以求出f 的值. 【详解】 由题意,得 当C=20时, 20=5(32)9f -,180=5f−160,−5f=−340,f=68.故答案为:68.【点睛】本题考查解一元一次方程,熟练掌握运算法则是解题关键.18.【解析】【分析】根据题意可得每件衣服的标价售价利润关于x 的代数式根据售价-标价=利润列出方程求解即可【详解】每件服装的标价为:(1+40)x 每件服装的实际售价为:(1+40)x×80每件服装的利润为解析:(140%)x + (140%)80%x +⋅ (140%)80%x x +⋅-(140%)80%15x x +⋅-= 125 125【解析】【分析】根据题意可得每件衣服的标价、售价、利润关于x 的代数式,根据售价-标价=利润列出方程求解即可.【详解】每件服装的标价为:(1+40%)x ,每件服装的实际售价为:(1+40%)x×80%,每件服装的利润为:(1+40%)x×80%−x ,列出方程:(1+40%)x×80%−x=15,解方程得:x=125,因此每件服装的成本价是125元.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找出等量关系.19.3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可【详解】根据题意得:3x+(8-x )=18故答案为:3x+(8-x )=18【点睛】此题考查了由实际问题抽象出一元一次方程弄清题意是解本解析:3x+(8-x )=18【解析】【分析】根据题意列出相应的方程即可.【详解】根据题意得:3x+(8-x )=18,故答案为:3x+(8-x )=18,【点睛】此题考查了由实际问题抽象出一元一次方程,弄清题意是解本题的关键.20.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.三、解答题21.(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-.. 解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 22.(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱.【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程;(3)应尽量设计的能够享受优惠.【详解】(1)12401049304-⨯=(元),所以可省304元.(2)设七(1)班有x 人,则七(2)班有(104)x -人.由题意得1311(104)1240x x +-=或139(104)1240x x +-=,解得48x =或76x =(不合题意,舍去).即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元),所以买51张门票可以更省钱.【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.23.(1)到乙商店较省钱;(2)买30本;(3)最多可买41本练习本.【分析】(1)分别按照甲商店与乙商店给的优惠活动,计算出费用,哪个商店的费用更低,即更省钱,即可解决;(2)可设买x 本时到两个商店付的钱一样多,分别用x 表示到甲商店购买的钱与到乙商店购买的钱,令其相等,解出x ,即可解决本题;(3)设可买y 本练习本,分别算出到甲商店能买多少本,到乙商店能买多少本,取更多的即可解决.【详解】解:(1)∵甲商店:101(2010)170%17⨯+-⨯⨯=(元);乙商店:20180%16⨯⨯=(元).又∵17>16,∴小明要买20本练习本时,到乙商店较省钱.(2)设买x 本时到两个商店付的钱一样多.依题意,得10170%(10)80%x x ⨯+-=,解得30x =.∴买30本时到两个商店付的钱一样多.(3)设可买y 本练习本.在甲商店购买:1070%(10)32y +-=. 解得29034177y ==. ∵y 为正整数,∴在甲商店最多可购买41本练习本.在乙商店购买:80%32y =.解得40y =.∴在乙商店最多可购买40本练习本.∵41>40,∴最多可买41本练习本.【点睛】本题主要考查了一元一次方程的实际应用,能够找出等量关系,列出方程是解决本题的关键.24.(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可;(2)先两边同时乘以12去分母,然后去括号解方程即可;(3)先两边同时乘以6去分母,然后去括号解方程即可;(4)先两边同时乘以1去分母,然后去括号解方程即可;(5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可.【详解】解:(1)103(4)510--=-x x10312510-+=-x x351022--=--x x832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y224+16=-y28y =-4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x1218182-=-+x x616-=-x83x =; (4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x1710121-+=-x x711-=x117x =-;(5)315x x +-=①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13, ∴2x =-满足;②当x >13时, ()315+-=x x46x =32x = 3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx644+3+6-=-x mx m()642+3-=m x m2+364=-m x m. 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 25.(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x元,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.26.(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.。
有理数、整式的加减--检测题(一)

有理数、整式的加减 检测题(一)姓名 得分一、选择题(每小题3分,共36分):1、绝对值小于5的整数有( )A .4个 B. 5个 C. 8个 D. 9个2、下列各组数中,相等的是( )A. -2与)2(--B. -2与2-C. 2-与2--D. 2-与23、已知a 、b 都是有理数,且021=++-b a ,则a+b =( )A. -1B. 1C. -3D. 34、单项式 22b a x 与 y b a 3- 是同类项,则 y x 等于( )A. -8B. 8C. -9D. 95、一个两位数,十位数字是x ,个位数字比十位数字的2倍少3,则这个两位数是( )A. x(2x-3)B. x(2x+3)C. 12x-3D. 12x+36、去括号后等于 a-b+c 的是( )A. a-(b+c)B. a+(b-c)C. a-(b-c)D. a+(b+c)7、已知 0122=--b a ,则多项式 2422+-b a 的值等于( )A. 1B. 4C. -1D. -48、下列说法: ① 近似数 39.0有三个有效数字; ② 近似数 2.5万 精确到十分位; ③ 如果a<0,b>0, 那么ab<0; ④ 多项式122+-a a 是二次三项式,正确的有( )A .1个 B. 2个 C. 3个 D. 4个9、计算 20092008)1()1(-+- 所得结果是( )A. -2B. 0C. 1D. 210、减去 -2m 等于 232++m m 多项式是( )A. 252++m mB. 2m +m+2C. 2m -5m-2D. 2m -m-211、一件商品的进价是a 元,提价 20% 后出售,则这件商品的售价是( )A. 0.8a 元B. a 元C. 1.2a 元D. 2a 元12、已知0 < x < 1, 则 2x 、x 、x1 大小关系是( ) A. 2x <x<x 1 B. x<2x <x 1 C. x<x 1<2x D. x1<x<2x 二、填空题(每小题3分,共24分):13、太阳光的速度是 300 000 000 米/秒,用科学记数法表示为 米/秒。
整式的加减测试题及答案1

《整式的加减测试题》 姓名___________班级_____一、选择题(每题3分,计24分)1.下列各式中不是单项式的是( )A .3aB .-51C .0D .a3 2.甲数比乙数的2倍大3,若乙数为x ,则甲数为( )A .2x -3B . 2x+3C .21x -3D .21x+33.如果2x 3n y m+4及-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=24.已知3221A a ab =-+,3223B a ab a b =+-,则A B +=( )A .3222331a ab a b --+B .322231a ab a b +-+C .322231a ab a b +-+D .322231a ab a b --+5.从减去的一半,应当得到( ). A. B. C. D. 6.减去-3m 等于5m 2-3m-5的式子是( )A .5(m 2-1)B .5m 2-6m-5C .5(m 2+1)D .-(5m 2+6m-5)8.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +_____________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是( )A .7xy -B .7xyC .xy -D .xy二、填空题(每题4分,计32分)9.单项式2r π-的系数是 ,次数是 .10.当 x =5,y =4时,式子x -2y 的值是 .11.按下列要求,将多项式x 3-5x 2-4x+9的后两项用( )括起来. 要求括号前面带有“—”号,则x 3—5x 2—4x+9=___________________12.把(x —y )看作一个整体,合并同类项:5(x —y )+2(x —y )—4(x —y )=_____________. 13.一根铁丝的长为54a b +,剪下一部分围成一个长为a 宽为b 的长方形,则这根铁丝还剩下_____________________.15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a 个座位,后面每一排都比前一排多一个座位,若第n 排有m 个座位,则a 、n 和m 之间的关系为 .16.小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,•得到的答案是5x 2—2x+4,则正确的答案是_______________.三、解答题(共28分)17.化简:(1))343(4232222x y xy y xy x +---+; (2))32(5)5(422x x x x +--.18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n 个图形由n•个正方形组成.(1)第2个图形中,火柴棒的根数是________;(2)第3个图形中,火柴棒的根数是________;(3)第4个图形中,火柴棒的根数是_______;(4)第n 个图形中,火柴棒的根数是________19.(8分)证明:代数式332332376336310a a b a b a a b a b a -+++--+2019的值及b a , 的取值无关。
整式的加减测试题华丽的多项式相加

整式的加减测试题华丽的多项式相加整式的加减测试题本文为一篇关于整式加减的测试题,旨在考察读者对整式加减运算的理解和应用能力。
请读者仔细阅读并按要求完成以下题目。
题目一:多项式相加将下列多项式相加,并将结果简化:1. $3x^3 + 4x^2 - 2x + 5$2. $-2x^3 + 6x^2 + 3x - 1$3. $-x^2 + 5x - 3$4. $4x^3 - 2x - 6$请在答题区域写出你的解答。
题目二:多项式相减将下列多项式相减,并将结果简化:1. $3x^3 + 4x^2 - 2x + 5$2. $-2x^3 + 6x^2 + 3x - 1$3. $-x^2 + 5x - 3$4. $4x^3 - 2x - 6$请在答题区域写出你的解答。
题目三:加减混合运算将下列多项式进行加减混合运算,并将结果简化:1. $(x^2 + 2x - 3) + (-3x^2 + 4x + 1) - (-4x^2 - 6x + 2)$2. $(-2x^3 + 7x^2 - 3x + 5) - (-4x^2 + 3x - 2) + (x^3 + 5x^2 + 2x + 1)$请在答题区域写出你的解答。
题目四:常数项整式相加将下列整式相加,并将结果简化:1. $3x^2 + 4 - 2x + 5$2. $-2x + 6 - 3x^2 - 1$3. $-x^2 + 5 - 3x$4. $4 - 2x + 6 + 4x^2$请在答题区域写出你的解答。
题目五:常数项整式相减将下列整式相减,并将结果简化:1. $3x^2 + 4 - 2x + 5$2. $-2x + 6 - 3x^2 - 1$3. $-x^2 + 5 - 3x$4. $4 - 2x + 6 + 4x^2$请在答题区域写出你的解答。
题目六:常数项整式加减混合运算将下列整式进行加减混合运算,并将结果简化:1. $(x^2 + 2 - 3x) + (-3x^2 + 4x + 1) - (-4x^2 - 6x + 2)$2. $(-2 + 7x^2 - 3x + 5) - (-4 - 3x + 2x^2) + (x^2 + 5x + 2)$请在答题区域写出你的解答。
北师大版七年级数学上册 第三章《整式的加减》达标检测题

北师大版七年级数学上册 第三章达标检测题(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -2020;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.多项式 与m 2+m -2的和为m 2-2m. 8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 吨. 9.化简:m -[n -2m -(m -n)]的结果为 . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = .11.若a -b =1,则(a -b)2-2a +2b 的值是 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1;(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5].14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.17.已知:a3b n+2+ab3+6是一个六次多项式,单项式x3n y7-m的次数与该多项式相同,求m,n的值.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.19.一个花坛的形状如图所示,它的两端是半径相等的半圆.(1)求花坛的周长l;(2)求花坛的面积S;(3)若a=8 m,r=5 m,求此时花坛的周长及面积(π取3.14).20.已知A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,当a=1,b=2时,求A-2B+3C的值.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件. (1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.六、(本题共12分)23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________.(2)其中某一行最后一个数字可能是2 020吗?若不可能,请说明理由;若可能,请求出是第几行?参考答案第Ⅰ卷(选择题 共18分)二、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -2020;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分)7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 . 11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1, 当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a3b n+2+ab3+6是一个六次多项式,单项式x3n y7-m的次数与该多项式相同,求m,n的值.解:因为a3b n+2+ab3+6是一个六次多项式,所以3+n+2=6,解得n=1,所以3n+7-m=6,即3+7-m=6,所以m=4,即m,n的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x4+ax3+3x2+5x3-7x2-bx2+6x-2合并同类项后不含x3,x2项,求2a+3b的值.解:原式=x4+(ax3+5x3)+(3x2-7x2-bx2)+6x-2=x4+(a+5)x3+(-4-b)x2+6x-2.由题意,得a+5=0,-4-b=0,解得a=-5,b=-4,所以2a+3b=2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆.(1)求花坛的周长l;(2)求花坛的面积S;(3)若a=8 m,r=5 m,求此时花坛的周长及面积(π取3.14).解:(1)l=2πr+2a.(2)S=πr2+2ar.(3)当a=8 m,r=5 m时,l=2π×5+2×8=10π+16≈47.4 m,S=π×52+2×8×5=25π+80≈158.5 m2.20.已知A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,当a=1,b=2时,求A-2B+3C的值.解:∵A=5a+3b,B=3a2-2a2b,C=a2+7a2b-2,∴A-2B+3C=(5a+3b)-2(3a2-2a2b)+3(a2+7a2b-2)=5a+3b-6a2+4a2b+3a2+21a2b-6=-3a2+25a2b+5a+3b-6.当a=1,b=2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件. (1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分)23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________.(2)其中某一行最后一个数字可能是2 020吗?若不可能,请说明理由;若可能,请求出是第几行? 解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3. 所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 020,因为由3n -2=2 020, 解得n =32022=674, ∴最后一个数字可能是2 020,是第674行.。
整式的加减测试题--习题

整式的加减测试题(含答案)--习题(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 整式的加减一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx , 则代数式51)1(2010-+++xx x x 的值是 。
5、张大伯从报社以每份元的价格购进了a 份报纸,以每份元的价格售出了b 份报纸,剩余的以每份元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x ,)9()35(b a b a -+-= 。
7)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-bc a 2+的相反数是 ,π-3= ,最大的负整是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则=-22b a 。
12、多项式172332+--x x x是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mnbc a a b a xy -+中单项式的个数是()A 、3B 、4C 、5D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
新北师大版《整式的加减》单元测试卷及答案

《整式的加减》单元测试卷班级 姓名 座号一.1.在代数式222515,1,32,,,1x x x x x x π+--+++中,整式有( )A.3个B.4个C.5个D.6个 2.单项式233xy z π-的系数和次数分别是( )A.-3,5B.-1,6C.-3π,6D.-3,7 3.下面计算正确的是( )A .2233x x -= B.235325a a a += C.33x x += D.10.2504ab ab -+= 4.多项式2112x x ---的各项分别是( ) A.21,,12x x - B.21,,12x x --- C.21,,12x x D.21,,12x x --5.下列去括号正确的是( )A.()5252+-=--x xB.()222421+-=+-x x C.()n m n m +=-323231D. x m x m 232232--=⎪⎭⎫ ⎝⎛--6.下列各组中的两个单项式能合并的是( ) A .4和4x B .32323x y y x -和C .c ab ab 221002和D .m 和2m7.如果51=-n m ,则-3()m n -的值是 ( )A .-53 B.35 C.53 D.1518.已知-51x 3y 2n 与2x 3m y 2是同类项,则mn 的值是( )A .1B .3C .6D .9二.填空题(每小题3分,共18分)9.任写两个与b a 221-是同类项的单项式: ; .10.多项式5253323+-+-y x y x xy 的次数是 ,最高次项系数是 _.11.多项式y x 23-与多项式y x 24-的差是 .12.张强同学到文具商店为学校美术组的10名同学购买铅笔和橡皮,已知铅笔每支m 元,橡皮每块n 元,若给每名同学买3支铅笔和4块橡皮,则一共需付款 元.13.已知单项式32b a m 与-3214-n b a 的和是单项式,则m = ,n = . 14.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: . 三.解答题(共58分) 15.计算(每题4分共16分) (1)b a b a b a 2222134+-(2) (x -3y )-(y -2x )(3)()()222243258ab b a ab b a --- (4)ab ab a ab a 21]421[2122-)-(-+16.先化简,后求值(每题6分共12分) (1)()()ab b a b a 245352323+++-,其中21,1=-=b a(2)1]242[6422+y x xy xy y x )--(--,其中1,21==y x -.17.(7分)已知某船顺水航行2小时,逆水航行3小时,(1)已知轮船在静水中前进的速度是x 千米/时,水流的速度是y 千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?18.(7分)有这样一道题:“当a =2010,b =-2011时,求多项式 201292842853233233++++a b a b a a b a b a a ---的值.”小颖说:本题中a =2009,b =—2010是多余的条件;小彤马上反对说:这不可能,多项式中含有a 和b ,不给出b a ,的值怎么能求出多项式的值呢? 你同意哪名同学的观点?请说明理由.参考答案第二章《整式的加减》单元测试卷一、选择题1.B2.C3.D4.B5.A6.D7.C8.A 二.填空题9.b a 2,b a 22 (答案不唯一) 10.5,-2 11.x -12.n m 4030+ 13.4, 3 14.12122+=+n n n -)( 三.解答题15.(1)b a 223(2)y x 43- (3)2232ab b a + (4)ab a 52-16.(1)化简得ab b 22+,值=43- (2)化简得3252-xy y x +,值=47-17.(1)y x -5 (2)295千米 18.同意小颖的观点,因为该式化简得2012,所以值与b a ,无关.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 一个 多项 式减 去 一 一1等于 +3 . x一9 则 这个 多 项式 是 ( ,
5 ,r . J 都是关 于 字母 的 五次多 项式 , 么 +J 的次数 是 ( 7 、 那 7 、 r
A 5次 . B1 . 0次 C 至 少 5次 .
) .
D 至 多 5次 .
维普资讯
◇ @⑥考
《 整式的加减》 过关捡 测题( 一)
◎ 黑龙 江 张 海 岩
温 馨提 示 : . 套测试 题 注重 基础 知 识 、 本 技能 训练 ; 1本 基 2 本 套测试 题 共三 道大 题 。 . 考试 时 间 4 5分 。 满分 1 0分 . O
A. 一 一3
B +( 2 . 一 y+3 ) z
C +[ (r+3 ) . 一2 z]
A. x 6 2— 1 0 C. 一5 一6 + 1 0
D +( 2 ) + z . 一 一( 3 ) ) .
B. x + 一 9 62 D. + 一 1 6 0
A P=- Q=一l . m, ,
) .
B P=m, . Q=一l , C P=- Q=r . m, t D P=m, . Q=i r l ,
二 、 心填 一填 。 试你 的身 手 !( 细 试 每小 题 3分 。 3 共 0分 ) 9 请 你 写 出一个 系数 是 2 0 , 只含 x y两个 字母 的三次 单项 式 : . 0 8且 ,
A. 4个 B 3个 .
) .
C 2个 . D1 . 个
① 3 一 =1 ② + = ; 3 n 3 m= ; 4b 一 a b; 3 2 4 7 ; ③ m 一 n 0 ④ a 5b=a ⑤ m + m = .
8 设 P=5 x 一2 Q=2 一6 当 =1时 , 们 的 值分 别 是 P=m, . x +2 , x一 , 它 Q=r 那 么 当 =一 t , 1 时, 它们 的值 为 (
1 4n 的值 是
— ; 多项式 +5 y与 一 +7 x的差是 当
1 . a (2 b=一 一 ), 7 若 =一 一 ), ( 3 C=一 一 , 0 a- c ) (4 )贝 一 ( —b 的值 是 — — . 1 . 个三 角形 的三 边 长是三 个 连续 偶数 , 8一 最长 的边 长 是 2 那 么最 短 的边 长是 m, m=2 5时 . 个三 角形 的周长 是 这 三 、 心做 一做 。 示你 的能 力 !( 4 用 显 共 6分 )
6 果 ÷ 2 - 6 同 项那 的 是 ) . 一 a  ̄ ,是 类 ,么 , 值 ( . 如 bL 9 e Y
A. = 2, Y=0 B. =-2, Y=0 C. = 2, Y= 1 D. =-2. Y= 1
7 下 列合并 同类 项 中 , 误 的个 数有 ( . 错
2 . 7分 ) 明在计 算从 某个 整式 减去 多项 式 a 2( 小 b一2 c a , b +3c时 因将 减号 误看 成 加号 , 果得 到 结 的答 案是 一 a 2b+6 c+8c 请你 帮 助小 明求 出正 确 的答 案. a,
2 . 7分 ) 3( 已知 l a-5 +( l 6+3 , 2 o 。+6 。 +2的值 . ) =0  ̄ 5 ( )一 3
2 下 列各 组单 项式 中 , . 不是 同类 项 的是 (
A. .ab与 03 6 04 2 .0
) . B. 3 l 2 n 1 n Nhomakorabea 4 m
C - 0 6与 2 0 . 20 07
D 一1 .
二
与一 1 ) .
3 不 改变 一( 一3 )的值 , . z 只改 变它 的形 式 , 正确 的是 (
.
1 . 算下 列各题 ( 小题 4分 , 8分 ) 9计 每 共
㈩ 1g g
一
3一 ( + ( ÷ 2 x
() r 2 5 n一[m n一(mn +m ) 一2 r a 4 6 n ] 3 n. a
2 . 7分 )已知 A=2 x +9 B=5 一7 0( x 一3 , x 一9 x一1 .
维普资讯
o⑥ 考
式 一1
3
65 7 吉y 1的 高 项 系 是 + 一 中 最 次 的 数 一 +
.
,
常 数 项
是
它 是
次多项 式.
1 . 5 一8 若 1
=一3 , m= 则
,
1 . 知 一 是 关 于 , 的 一 个 单 项 式 , 系 数 是 次 数 为 8, 么 后= 2已 后 y 且 5 那
题
得
一
号
分
总得 分
、
精 心选 一选 。 相信 自 己的判 断 !( 每小 题 3分 , 2 共 4分 ) ) .
1 下 列说 法正 确 的是 ( .
A 整式 一定 是单 项式 .
c 多项 式 +2 的系 数是 2 .
B 单 项式 mn 的 系数 为 0 . ,
D + 是 三 次多 项式 .
1 . 多 项 式 3把
排列为 — 1. 4 如果
一
—
一 1一
.
按 字 母 作 升 幂 排 列 为
;按 字 母 y作 降 幂
与一3
是 同类 项 则 m—n =
,
1 . m=3 n=- , 5当 , 4t 多项式 一 m +m  ̄ 3
1. 6 多项式 一5 y与 一 +7 x的和是 —
( ) B一3 1求 A; ( )当 =一 2 5时 , B一3 的值 . 求 A
维普资讯
◇@ ⑥考
2 .7 先化简, 1 ( 分) 再求值. ‘
3 _2 一2 一1 [ (
2> ] 其 。 ,一. + + , =6 ÷ a 3 中 3= 2 b