2014年最新初二学生数学同步《全等三角形》检测卷(C卷)
第12章《全等三角形》人教版八年级数学上册单元检测A+B+C卷(含答案)

A.AAS
B.ASA
C.SAS
D.SSS
3.如图,在△ABC 与△DEF 中,给出以下六个条件:
(1)AB=DE;
(2)BC=EF;
(3)AC=DF;
(4)∠A=∠D;
(5)∠B=∠E;
(6)∠C=∠F.
以其中三个作为已知条件,不能判断△ABC 与△DEF 全等的是( )
A.(1)(5)(2) B.(1)(2)(3) C.(4)(6)(1) D.(2)(3)(4) 4.如图,已知 MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN 的是( )
,
∴△ABC≌△DBE(ASA), 故选:B. 3.解:A、正确,符合判定方法 SAS; B、正确,符合判定方法 SSS; C、正确,符合判定方法 AAS; D、不正确,不符合全等三角形的判定方法. 故选:D. 4.解:A、∠M=∠N,符合 ASA,能判定△ABM≌△CDN,故 A 选项不符合题意; B、根据条件 AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故 B 选项符合题意; C、AB=CD,符合 SAS,能判定△ABM≌△CDN,故 C 选项不符合题意; D、AM∥CN,得出∠MAB=∠NCD,符合 AAS,能判定△ABM≌△CDN,故 D 选项不 符合题意. 故选:B.
∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°, ∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°, ∴∠CAF=100°, 在 Rt△PFA 和 Rt△PMA 中,
∴FG=EF ∵GC+CF>FG ∴BE+CF>EF 故选:A.
9.解:在△ABC 中,AD⊥BC,CE⊥AB, ∴∠AEH=∠ADB=90°; ∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°, ∵∠EHA=∠DHC(对顶角相等), ∴∠EAH=∠DCH(等量代换); ∵在△BCE 和△HAE 中
人教版八年级上学期数学《全等三角形》单元检测卷含答案

22.如图,在 中, , 是 的平分线, 于点 ,点 在 上, ,求证: .
A. 1:1:1B. 1:2:3C. 2:3:4D. 3:4:5
[答案]C
[解析]
[分析]
直接根据角平分线的性质即可得出结论.
[详解]∵O是△A B C三条角平分线的交点,A B、B C、A C的长分别12,18,24,∴S△OA B:S△OB C:S△OA C=A B:OB:A C=12:18:24=2:3:4.
∴∠A′C B′=∠A C B=10k,
在△A B C中,∠B′C B=∠A+∠B=3k+5k=8k,
∴∠A′C B=∠A′C B′-∠B′C B′=10k-8k=2k,
∴∠B C A′:∠B C B′=2k:8k=1:4.
故选D.
6.如图,已知∠A B C=∠D C B,下列所给条件不能证明△A B C≌△D C B的是()
①是根据边边边(SSS);
②是根据两边夹一角(SAS);
③是根据两角夹一边(ASA)都成立.
根据三角形全等的判定,都可以确定唯一的三角形;
而④则不能.
故选A.
8.如图,在△A B C中,∠B=42°,A D⊥B C于点D,点E是B D上一点,EF⊥A B于点F,若ED=EF,则∠AEC的度数为( )
人教版八年级上册《全等三角形》单元测试卷
(时间:120分钟 满分:150分)
全等三角形 浙教版八年级数学上册同步练习卷(含解析)

1.4 全等三角形同步练习卷一.选择题1.如果△ABC与△DEF是全等形,则有()(1)它们的周长相等;(2)它们的面积相等;(3)它们的每个对应角都相等;(4)它们的每条对应边都相等.A.(1)(2)(3)(4)B.(1)(2)(3)C.(1)(2)D.(1)2.如图,已知CB=DB,△ABC≌△ABD,则∠C的对应角为()A.∠DAB B.∠D C.∠ABD D.∠CAD3.如图是两个全等三角形,则∠1的度数为()A.48°B.60°C.62°D.72°4.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5.如图,若△ABC≌△DEF,BC=6,EC=4,则CF的长为()A.1B.2C.2.5D.36.已知,△ABC≌△DEF,且△ABC的周长为20,AB=8,BC=3,则DF等于()A.3B.5C.9D.117.如图,已知△OAB≌△OCD,若OA=4,∠AOB=35°,∠OCA=62°,则下列结论不一定正确的是()A.∠BDO=62°B.∠BOC=21°C.OC=4D.CD∥OA8.如图,锐角△ABC中,F、G分别是AB、AC边上的点,△ACF≌△ADF,△ABG≌△AEG,且DF∥BC∥GE,BG、CF交于点H,若∠BAC=40°,则∠BHC的大小是()A.95°B.100°C.105°D.110°二.填空题9.如图中有6个条形方格图,图上由实线围成的图形与(1)是全等形的有.10.如图,△ABC≌△AED,AE=2cm,∠D=30°,∠B=60°,则∠C=;∠DAE =;BC=.11.如图是由6个边长相等的正方形组合成的图形,∠1+∠2+∠3=.12.如图,△ABD和△ACE全等,点B和点C对应.AB=8,BD=7,AE=3,则CD=.13.如图,△ABC≌△ADE,且∠EAB=112°,则∠EFC=度.14.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于.三.解答题15.如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,△ABC≌△ADE,∠B=10°,∠AED=20°,AB=4cm,点C为AD中点.(1)求∠BAE的度数和AE的长.(2)延长BC交ED于点F,则∠DFC的大小为度.18.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.参考答案一.选择题1.解:根据全等形的概念可以判定:(1)(2)(3)(4)都成立.故选:A.2.解:∵CB=DB,△ABC≌△ABD,∴∠C=∠D,故选:B.3.解:∵∠B=48°,∠C=60°,∴∠A=180°﹣48°﹣60°=72°,∵两个三角形全等,∴∠1=∠A=72°,故选:D.4.解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选:D.5.解:∵△ABC≌△DEF,∴BC=EF,∵BC=6,EC=4,∴EF=6,∴CF=EF﹣EC=6﹣4=2,故选:B.6.解:∵△ABC的周长为20,AB=8,BC=3,∴AC=20﹣3﹣8=9,∵△ABC≌△DEF,∴DF=AC=9,故选:C.7.解:A、∵△OAB≌△OCD,∴OA=OC,OB=OD,∠COD=∠AOB,∴∠OAC=∠OCA=62°,∠OBD=∠ODB,∠BOD=∠AOC,∴∠AOC=180°﹣∠OAC﹣∠OCA=56°,∴∠BOD=∠AOC=56°,∴∠BDO=×(180°﹣56°)=62°,故本选项说法正确,不符合题意;B、∵∠AOC=56°,∠AOB=35°,∴∠BOC=56°﹣35°=21°,故本选项说法正确,不符合题意;C、∵△OAB≌△OCD,OA=4,∴OC=OA=4,故本选项说法正确,不符合题意;D、∵∠AOC=56°,∠OCD不一定是56°,∴CD与OA不一定平行,故本选项说法错误,符合题意;故选:D.8.解:延长EG交AB于Q,交AD于P,∵△ACF≌△ADF,△ABG≌△AEG,∠BAC=40°,∴∠DAF=∠BAC=40°,∠EAG=∠BAC=40°,∠D=∠ACF,∠E=∠ABG,∴∠P AE=120°,∴∠APE+∠E=60°,∵DF∥EP,∴∠APE=∠D,∴∠APE=∠ACF,∴∠ABG+∠ACF=60°,∵∠BFH=∠BAC+∠ACF,∴∠BHC=∠ABG+∠BFH=∠ABG+∠BAC+∠ACF=60°+40°=100°,故选:B.二.填空题9.解:由图可知,图上由实线围成的图形与(1)是全等形的有(2),(3),(6),故答案为:(2),(3),(6),10.解:∵△ABC≌△AED,∴∠C=∠D=30°,∠DAE=∠BAC,AB=AE=2cm,∵∠B=60°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣30°=90°,∴∠DAE=90°,在Rt△ABC中,BC=AB=2×2=4cm.故答案为:30°;90°;4cm.11.解:如图,根据题意得DE=BC,EC=AB,GF=GC,∠DEC=∠ABC=∠FGC=90°,∴△CGF为等腰直角三角形,∴∠2=45°,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠1=∠DCE,∵∠DCE+∠3=90°,∴∠1+∠3=90°,∴∠1+∠2+∠3=90°+45°=135°.故答案为135°.12.解:∵△ABD≌△ACE,点B和点C对应,∴AB=AC,AD=AE,∴AB﹣AE=AC﹣AD,即CD=BE,已知AB=8,AE=3,∴CD=BE=AB﹣AE=8﹣3=5.故答案填:5.13.解:∵△ABC≌△ADE,∠EAB=112°,∴∠EAD=DAB=56°,∠D=∠B,∴∠ACB+∠B=180°﹣56°=124°,∵∠ACB=∠FCD,∴∠FCD+∠D=124°,∵∠EFC是△FCD的一个外角,∴∠EFC=∠FCD+∠D=124°,故答案为:124.14.解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故答案为:180°.三.解答题15.解:∵△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,∴对应边:AN与AM,BN与CM;对应角:∠BAN=∠CAM,∠ANB=∠AMC.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.解:(1)∵△ABC≌△ADE,∠B=10°,AB=4cm,∴∠ADE=∠B=10°,∠EAD=∠CAB,AD=AB=4cm,∵∠AED=20°,∴∠EAD=180°﹣∠EAD﹣∠AED=180°﹣10°﹣20°=150°,∴∠CAB=150°,∴∠EAB=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=×4=2(cm),∴AE=2cm;(2)∵∠B=10°,∠CAB=150°,∴∠ACB=180°﹣150°﹣10°=20°,∴∠FCD=20°,∴∠DFC=180°﹣20°﹣10°=150°,故答案为:150.18.(1)证明:∵△ABD≌△CFD,∴∠BAD=∠DCF,又∵∠AFE=∠CFD,∴∠AEF=∠CDF=90°,∴CE⊥AB;(2)解:∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.。
八年级数学上册《全等三角形》单元测试卷(含答案解析)

八年级数学上册《全等三角形》单元测试卷(含答案解析)一.选择题1.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规3.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性4.如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①去和带②去6.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°7.如图,AB=CD,∠ABC=∠DCB,AC与BD交于点E,在图中全等三角形有()A.2对B.3对C.4对D.5对8.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形9.如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同10.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,正确的个数为()个.A.1 B.2 C.3 D.4二.填空题11.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为13.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.14.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A=°,B′C′=,AD=.15.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.17.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).18.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD =CE,∠DCE=55°,则∠APB的度数为.19.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.20.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.三.解答题21.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.22.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C =70°.(1)求线段AE的长.(2)求∠DBC的度数.23.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.24.已知:如图,AB∥DE,AC∥DF,AB=DE,AC=DF.求证:BC=EF.25.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.(1)试说明AB=CD.(2)求线段AB的长.26.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与解析一.选择题1.解:A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选:D.2.解:尺规作图的画图工具是没有刻度的直尺和圆规.故选:D.3.解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.4.解:∵AD=CF,∴AC=DF,∵∠F=∠ACB,∴当添加BC=EF时,可根据”SAS“判断△ABC≌△DEF;当添加∠A=∠EDF(或AB∥DE)时,可根据”ASA“判断△ABC≌△DEF;当添加∠B=∠E时,可根据”AAS“判断△ABC≌△DEF.故选:D.5.解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.6.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.7.解:①△ABC≌△DCB;∵AB=CD,∠ABC=∠DCB,∵BC=CB,∴△ABC≌△DCB;②△ABE≌△DCE,∵△ABC≌△DCB,∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△CDE;③△ABD≌△DCA,∵∠BAC=∠CDB,∠AEB=∠DEC,∴∠ABD=∠DCA,∵AB=CD,BD=AC,∴△ABD≌△DCA;故选:B.8.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.9.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,故②正确∴∠EAB=∠FAC=40°,故①正确,∴∠C=∠AFC=∠AFE=70°,∴∠EFB=180°﹣70°﹣70°=40°,故⑤正确,∵AE=AB,∠EAB=40°,∴∠AEB=∠ABE=70°,若∠EBC=110°,则∠ABC=40°=∠EAB,∴∠EAB=∠ABC,∴AE∥BC,显然与题目条件不符,故③错误,若AD=AC,则∠ADF=∠AFD=70°,∴∠DAF=40°,这个显然与条件不符,故④错误.故选:C.二.填空题11.解:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3),(2),(1).12.解:∵∠C=30°,∠ABC=85°.∴∠CAB=180°﹣∠C﹣∠ABC=65°,∵△ABC≌△ABD,∴∠BAD=∠CAB=65°.故答案为:65°.13.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.14.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.15.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.16.解:在△AEF和△LBA中,∴△AEF≌△LBA(SAS),∴∠7=∠EAF,∴∠1+∠7=90°,同理可得∠2+∠6=90°,∠3+∠5=90°,而∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.故答案为315°.17.解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).18.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠D=∠E,∵∠DPE+∠1+∠E=∠DCE+∠2+∠D,而∠1=∠2,∴∠DPE=∠DCE=55°,∴∠APB=∠DPE=55°.故答案为55°.19.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC=AC,∴AC⊥DB,故②③正确.故答案是:3.20.解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.三.解答题21.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).22.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.23.证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).24.证明:如图,∵AB∥DE,AC∥DF,∴四边形AMDN是平行四边形,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.25.解:(1)∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD(2)∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=226.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
人教版八年级数学上册第十二章全等三角形同步测评试卷(含答案详解)

八年级数学上册第十二章全等三角形同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知,AB DC ABC DCB =∠=∠.能直接判断ABC DCB △≌△的方法是( )A .SASB .AASC .SSSD .ASA2、如图,在ABC 和ADE 中,90ACB ADE ∠=∠=︒,AB AE =,12∠=∠,线段BC 的延长线交DE 于点F ,连接AF .若14ABF S =,4=AD ,54CF =,则线段EF 的长度为( )A .4B .92 C .5 D .1123、如图,若90B C AB AC ∠=∠=︒=,,则ABD ACD △≌△的理由是( )A .SASB .AASC .ASAD .HL4、如图,把ABC 沿线段DE 折叠,使点B 落在点F 处;若AC DE ∥,70A ∠=︒,AB AC =,则CEF ∠的度数为( )A .40︒B .60︒C .70︒D .80︒5、如图所示,AD 是ABC ∆的边BC 上的中线,5AB =cm ,4=AD cm ,则边AC 的长度可能是( )A .3cmB .5cmC .14cmD .13cm6、如图:∠B =∠C =90°,E 是BC 的中点,DE 平分∠ADC ,则下列说法正确的有几个( )(1)AE 平分∠DAB ;(2)△EBA ≌△DCE ;(3)AB +CD =AD ; (4)AE ⊥DE .(5)DE =AEA .2个B .3个C .4个D .57、某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ).A .带①去B .带②去C .带③去D .①②③都带8、如图,AC 与BD 相交于点O ,,OA OD OB OC ==,不添加辅助线,判定ABO DCO △≌△的依据是( )A .SSSB .SASC .AASD .HL9、如图,在△ABC 和△DEF 中,AB =DE ,AB //DE ,运用“SAS ”判定△ABC ≌△DEF ,需补充的条件是( )A .AC =DFB .∠A =∠DC .BE =CFD .∠ACB =∠DFE10、如图,在梯形ABCD 中,//AB CD ,AD DC CB ==,AC BC ⊥,那么下列结论不正确的是( )A .2AC CD =B .60ABC ∠=︒ C .CBD DBA ∠=∠ D .BD AD ⊥第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点B ,F ,C ,E 在一条直线上,BF CE =,B E ∠=∠,请添加一个条件,使ABC ≌DEF ,这个添加的条件可以是______(只需写一个,不添加辅助线).2、如图,点B 、C 、E 三点在同一直线上,且AB =AD ,AC =AE ,BC =DE ,若12394∠+∠+∠=︒,则∠3=______°.3、如图,在矩形ABCD 中,AB =8cm ,AD =12cm ,点P 从点B 出发,以2cm/s 的速度沿BC 边向点C 运动,到达点C 停止,同时,点Q 从点C 出发,以vcm /s 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为______时,△ABP 与△PCQ 全等.4、如图,MN∥PQ,AB⊥PQ,点A ,D ,B ,C 分别在直线MN 和PQ 上,点E 在AB 上,AD +BC =7,AD =EB ,DE =EC ,则AB =_____.5、如图,90,,E F B C AE AF ∠=∠=︒∠=∠=给出下列结论:①EM FN =;②CD DN =;③12∠=∠;④ACN ABM ≌.其中正确的有_______(填写答案序号).三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =.(1)求证:CF AE =;(2)若3AE =,4BF =,求AB 的长.2、如图,∠A =∠D =90°,AC =DB ,AC 、DB 相交于点O .求证:OB =OC .3、如图,已知ABC .(1)请用尺规作图.在ABC 内部找一点P ,使得点P 到AB 、BC 、AC 的距离相等,(不写作图步骤,保留作图痕迹);(2)若ABC 的周长为14cm ,面积为221cm 2,求点P 到AC 的距离. 4、如图,在ABC 中,90ACB ∠=︒,点E 在AC 的延长线上,ED AB ⊥于点D ,若BC ED =,求证:CE DB =.5、如图,已知ABC 和AEF 中,B E ∠=∠,AB AE =,BC EF =,25EAB ∠=︒,57F ∠=︒,线段BC 分别交AF ,EF 于点M ,N .(1)请说明EAB FAC ∠=∠的理由;(2)ABC 可以经过图形的变换得到AEF ,请你描述这个变换;(3)求AMB ∠的度数.-参考答案-一、单选题1、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在△ABC 和△DCB 中,AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DCB △≌△(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到全等所需的对应相等的边或角是解题的关键.2、B【解析】【分析】证明(AAS)ACB ADE ≅,t t ()R ACF R ADF HL ≅,根据全等三角形对应边相等,得到=AC AD BC DE =,,CF DF =,由14ABF S =解得7BF =,继而解得234DE =,最后由EF DE DF =-解答.【详解】解:90ACB ADE ∠=∠=︒,AB AE =,12∠=∠,(AAS)ACB ADE ∴≅=AC AD BC DE ∴=,14ABFS =,4=AD , 4AC ∴=,1142BF AC ∴⋅= 7BF ∴=54CF = 523744BC ∴=-= 234DE ∴= 90,,ACF ADF AC AD AF AF ∠=∠=︒==t t ()R ACF R ADF HL ∴≅CF DF ∴=2351894442EF DE DF ∴=-=-== 故选:B .【考点】本题考查全等三角形的判定与性质、线段的和差等知识,是重要考点,掌握相关知识是解题关键.3、D【解析】【分析】根据两直角三角形全等的判定定理HL 推出即可.【详解】解:∠B =∠C =90°,在Rt △ABD 和Rt △ACD 中,AD AD AB AC =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),故选:D .【考点】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .4、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出55B C ∠=∠=︒,利用平行线的性质可得出55DEB C ∠=∠=︒则CEF ∠即可求.【详解】解:∵ABC 沿线段DE 折叠,使点B 落在点F 处,∴BDE FDE ≅△△ ,∴DEB DEF ∠=∠ ,∵70A ∠=︒,AB AC =, ∴()118070552B C ︒∠=∠=⨯-︒=︒ ,∵AC DE ∥,∴55DEB C DEF ∠=∠=︒=∠ ,∴18070FEC DEB DEF ∠=︒-∠-∠=︒ ,故选:C .【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决.5、B【解析】【分析】延长AD 至M 使DM =AD ,连接CM ,根据SAS 得出≅ADB MDC ,得出AB =CM =4cm ,再根据三角形的三边关系得出AC 的范围,从而得出结论.【详解】解:延长AD 至M 使DM =AD ,连接CM ,∵AD 是ABC ∆的边BC 上的中线,∴BD =CD ,∵∠ADB =∠CDM ,∴()ADB MDC SAS ≅,∴MC =AB =5cm ,AD =DM =4cm ,∴AM =8cm在AMC 中,AM CM AC AM CM -<<+即:3<AC <13,故选:B【考点】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC 长度的取值范围是解题的关键.6、B【解析】【分析】过点E 作EF ⊥AD 垂足为点F ,证明△DEF ≌△DEC (AAS );得出CE =EF ,DC =DF ,∠CED =∠FED ,证明Rt △AFE ≌Rt △ABE (HL );得出AF =AB ,∠FAE =∠BAE ,∠AEF =∠AEB ,即可得出答案.【详解】解:如图,过点E 作EF ⊥AD ,垂足为点F ,可得∠DFE =90°,则∠DFE =∠C ,∵DE 平分∠ADC ,∴∠FDE =∠CDE ,在△DCE 和△DFE 中,C DFE CDE FDE DE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEF ≌△DEC (AAS );∴CE =EF ,DC =DF ,∠CED =∠FED ,∵E 是BC 的中点,∴CE =EB ,∴EF =EB ,在Rt △ABE 和Rt △AFE 中,EF BE AE AE=⎧⎨=⎩, ∴Rt △AFE ≌Rt △ABE (HL );∴AF =AB ,∠FAE =∠BAE ,∠AEF =∠AEB ,∴AE 平分∠DAB ,故结论(1)正确,则AD =AF +DF =AB +CD ,故结论(3)正确;可得∠AED =∠FED +AEF =12∠FEC +12∠BEF =90°,即AE ⊥DE 故结论(4)正确.∵AB ≠CD ,AE ≠DE ,(5)错误,∴△EBA ≌△DCE 不可能成立,故结论(2)错误.综上所知正确的结论有3个.故答案为:B .【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键.7、C【解析】【分析】根据三角形全等的判定定理判断即可.【详解】带③去,理由如下:∵③中满足ASA 的条件,∴带③去,故选C .【考点】本题考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解题的关键.8、B【解析】【分析】根据OA OD =,OB OC =,AOB COD ∠=∠正好是两边一夹角,即可得出答案.【详解】解:∵在△ABO 和△DCO 中,OA OD AOB COD OB OC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABO DCO ≌△△,故B 正确.故选:B .【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键.9、C【解析】【分析】证出∠ABC =∠DEF ,由SAS 即可得出结论.【详解】解:补充BE =CF ,理由如下:∵AB ∥DE ,∴∠ABC =∠DEF ,若要利用SAS 判定,B 、D 选项不符合要求,若A :AC=DF ,构成的是SSA ,不能证明三角形全等,A 选项不符合要求,C 选项:BE=CF ,∵BE =CF ,∴BC =EF ,在△ABC 和△DEF 中,AB DE ABC DEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DEF (SAS ),故选:C .【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS ”的判定的特点.10、A【解析】【分析】A 、根据三角形的三边关系即可得出A 不正确;B 、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB =90°,从而得出B 正确;C 、由梯形的性质得出AB ∥CD ,结合角的计算即可得出∠ABC =60°,即C 正确;D 、由平行线的性质结合等腰三角形的性质即可得出∠DAC =∠CAB ,即D 正确.综上即可得出结论.【详解】A 、∵AD =DC ,∴AC <AD +DC =2CD ,故A 不正确;B 、∵四边形ABCD 是等腰梯形,∴∠ABC =∠BAD ,在△ABC 和△BAD 中,BC AD ABC BAD AB BA ⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△BAD (SAS ),∴∠BAC =∠ABD ,∵AB ∥CD ,∴∠CDB =∠ABD ,∠ABC +∠DCB =180°,∵DC =CB ,∴∠CDB =∠CBD =∠ABD =∠BAC ,∵∠ACB =90°,∴∠CDB =∠CBD =∠ABD =30°,∴∠ABC =∠ABD +∠CBD =60°,B 正确,C 、∵AB ∥CD ,∴∠DCA =∠CAB ,∵AD =DC ,∴∠DAC=∠DCA=∠CAB,C正确.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正确;故选:A.【考点】本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.二、填空题1、AB DE=(还可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根据等式的性质可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【详解】添加的条件是AB DE=,=,∵BF CE+=+,∴BF CF CE CF=.即BC EF∵在ABC 中DEF 中AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, (SAS)ABC DEF ∴△≌△.故答案为:AB DE =.(还可以添加A D ∠=∠或ACB EFD ∠=∠或AC DF ∥,答案不唯一)【考点】本题主要考查了三角形全等的判定,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、47【解析】【分析】根据“边边边”证明ABC ADE △≌△,再根据全等三角形的性质可得∠ABC =∠1,∠BAC =∠2,然后利用三角形的一个外角等于与它不相邻的两个内角和求出∠3=∠1+∠2,然后求解即可.【详解】解:在△ABC 和△ADE 中,AB AD BC DE AC AE =⎧⎪=⎨⎪=⎩, ∴ABC ADE △≌△(SSS ),∴∠ABC =∠1,∠BAC =∠2,∴∠3=∠ABC +∠BAC =∠1+∠2,∵12394∠+∠+∠=︒,∴23=94∠︒,∴3=47∠︒.故答案为:47.【考点】本题主要考查了全等三角形的判定与性质以及三角形的外角等于与它不相邻的两个内角和的性质,熟练掌握三角形全等的判定方法是解题关键.3、2或8 3【解析】【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=83,综上所述,当v=2或83时,△ABP与△PQC全等,故答案为:2或83.【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.4、7【解析】【详解】由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.5、①③④【解析】【分析】利用AAS可证明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差关系可得∠EAM=∠FAN,可得③正确,利用ASA可证明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正确;根据线段的和差关系可得CM=BN,利用AAS可证明△CDM≌△BDN,可得CD=DB,可得②错误;利用ASA可证明△ACN≌△ABM,可得④正确;综上即可得答案.【详解】在△ABE和△ACF中,C CE F AE AF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正确,在△AEM和△AFN中,EAM FAN AE AFE F∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正确,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,CDM BDNC BCM BN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴CD=DB,故②错误,在△CAN和△ABM中,C BAC ABBAC BAC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACN≌△ABM,故④正确,综上所述:正确的结论有①③④,故答案为:①③④【考点】本题考查全等三角形的判定与性质,判定两个三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形确定,当利用SAS证明时,角必须是两边的夹角;熟练掌握全等三角形的判定定理是解题关键.三、解答题1、 (1)证明见解析(2)10【解析】【分析】(1)由角平分线的性质可得DE DC =,证明()Rt Rt AED FCD HL ≌△△,进而结论得证;(2)证明()BED BCD AAS ≌△△,可得BE BC =,根据AB BE AE =+计算求解即可.(1)证明:(1)∵90C ∠=︒,∴DC BC ⊥,又∵BD 是ABC ∠的平分线,DE AB ⊥,∴DE DC =,90AED ∠=︒,在Rt AED △和Rt FCD △中,∵AD DF DE DC =⎧⎨=⎩, ∴()Rt Rt AED FCD HL ≌△△,∴CF AE =.(2)解:由(1)可得3CF AE ==,∴437BC BF CF =+=+=,∵DE AB ⊥,∴90DEB ∠=︒,∴DEB C ∠=∠,∵BD 是ABC ∠的平分线,∴ABD CBD ∠=∠,在BED 和BCD △中,∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()BED BCD AAS ≌△△,∴7BE BC ==,∴7310AB BE AE =+=+=,∴AB 的长为10.【考点】本题考查了角平分线的性质,三角形全等的判定与性质.解题的关键在于熟练掌握角平分线的性质并证明三角形全等.2、证明见解析.【解析】【分析】因为∠A=∠D=90°,AC=BD ,BC=BC ,知Rt△BAC≌Rt△CDB(HL ),所以∠ACB=∠DBC,故OB=OC .【详解】证明:在Rt△ABC 和Rt△DCB 中 ,BD CA BC CB=⎧⎨=⎩ ∴Rt△ABC≌Rt△DCB(HL ),∴∠OBC=∠OCB,∴BO=CO.【考点】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.3、 (1)见解析 (2)32【解析】【分析】(1)根据题意作,A B ∠∠的角平分线的交点P ,即为所求;(2)根据(1)的结论,设点P 到AC 的距离为d ,则1211422d ⨯=,解方程求解即可. (1)如图,点P 即为所求,(2)设点P 到AC 的距离为d ,由(1)可知点P 到AB 、BC 、AC 的距离相等 则()111422ABCS AB BC AC d d =++=⨯ ∴1211422d ⨯=解得:32d = ∴点P 到AC 的距离为32【考点】本题考查了作角平分线,角平分线的性质,掌握角平分线的性质是解题的关键.4、证明见解析【解析】【分析】利用AAS 证明AED ABC ∆≅∆,根据全等三角形的性质即可得到结论.【详解】证明:∵ED AB ⊥,∴∠ADE=90°,∵90ACB ∠=︒,∴∠ACB=∠ADE,在AED ∆和ABC ∆中ACB ADE A ABC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴AED ABC ∆≅∆,∴AE=AB ,AC=AD ,∴AE -AC=AB-AD ,即EC=BD .【考点】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识.5、(1)见解析;(2)通过观察可知ABC 绕点A 顺时针旋转25︒,可以得到AEF ;(3)82AMB ∠=︒【解析】【分析】(1)先利用已知条件∠B=∠E,AB=AE ,BC=EF ,利用SAS 可证△ABC≌△AEF,那么就有∠C=∠F,∠BAC=∠EAF,那么∠BAC -∠PAF=∠EAF -∠PAF,即有∠BAE=∠CAF=25°;(2)通过观察可知△ABC 绕点A 顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,而∠AMB 是△ACM 的外角,根据三角形外角的性质可求∠AMB.【详解】解:(1)∵B E ∠=∠,AB AE =,BC EF =,∴ABC AEF ≅,∴C F ∠=∠,BAC EAF ∠=∠,∴BAC PAF EAF PAF ∠-∠=∠-∠,∴25BAE CAF ∠=∠=︒;(2)通过观察可知ABC 绕点A 顺时针旋转25︒,可以得到AEF ;(3)由(1)知57C F ∠=∠=︒,25BAE CAF ∠=∠=︒,∴572582AMB C CAF ∠=∠+∠=︒+︒=︒.【考点】本题利用了全等三角形的判定、性质,三角形外角的性质,等式的性质等.。
人教版数学八年级上册:第十二章《全等三角形》检测卷复习课件(附答案)

2.如图,△AOC≌△BOD,点 A 与点 B 是对应点, 则下列结论中错误的是( C ) A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD
3.如图,已知 AB=AC,BD=CD,则可推出( B ) A.△ABD≌△BCD B.△ABD≌△ACD C.△ACD≌△BCD D.△ACE≌△BDE
∴∠1=∠2,∠3=∠4.(2 分) AE AG,
在△AEF 和△AGF 中,∠1 ∠2, AF AF,
∴△AEF≌△AGF(SAS).
∴∠AFE=∠AFG.(6 分)
∵∠B=60°,
∴∠BAC+∠ACB=120°.
∴∠2+∠3= 1 (∠BAC+∠ACB)=60°. 2
∵∠AFE=∠2+∠3, ∴∠AFE=∠CFD=∠AFG=60°. ∴∠CFG=180°-∠CFD-∠AFG =60°. ∴∠CFD=∠CFG.(9 分) 在△CFG 和△CFD 中,
解析:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD =∠COD+∠AOD,即∠AOC=∠BOD.在△AOC 和△BOD 中, OA OB, ∠AOC ∠BOD, OC OD, ∴△AOC≌△BOD(SAS).∴∠OCA=∠ODB, ∠OAC=∠OBD,AC=BD,故①正确.
由三角形的外角性质得∠AMB+∠OAC=∠AOB+ ∠OBD,∴∠AMB=∠AOB=40°,故②正确.过 点 O 作 OG⊥MC 于 G,OH⊥MB 于 H,如图所示, 则∠OGC=∠OHD=90°. 在△OCG 和△ODH 中, ∠OCA ∠ODB, ∠OGC ∠OHD, OC OD,
参考上面的方法,解答下列问题:如图②,在非等 边△ABC 中,∠B=60°,AD,CE 分别是∠BAC, ∠BCA 的平分线,且 AD,CE 交于点 F.求证:AC= AE+CD. 证明:如图②,在 AC 上截取 AG=AE,连接 FG.(1 分) ∵AD 是∠BAC 的平分线, CE 是∠BCA 的平分线,
人教版数学八年级上册第十二章《全等三角形》测试题含答案

人教版数学八年级上册第十二章《全等三角形》测试题一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.参考答案及试题解析一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EB C=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
八年级全等三角形综合测试卷(word含答案)

八年级全等三角形综合测试卷(word含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【解析】【分析】【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AB的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.∥,2.如图所示,ABC为等边三角形,P是ABC内任一点,PD AB,PE BC++=____cm.PF AC∥,若ABC的周长为12cm,则PD PE PF【答案】4【解析】【分析】先说明四边形HBDP是平行四边形,△AHE和△AHE是等边三角形,然后得到一系列长度相等的线段,最后求替换求和即可.【详解】∥解:∵PD AB,PE BC∴四边形HBDP是平行四边形∴PD=HB∵ABC为等边三角形,周长为12cm∴∠B=∠A=60°,AB=4∥∵PE BC∴∠AHE=∠B=60°∴∠AHE=∠A=60°∴△AHE是等边三角形∴HE=AH∵∠HFP=∠A=60°∴∠HFP=∠AHE=60°∴△AHE是等边三角形,∴FP=PH∴PD+PE+PF=BH+(HP+PE)=BH+HE=BH+AH=AB=4cm故答案为4cm.【点睛】本题考查了平行四边形的判定和性质以及等边三角形的性质,掌握等边三角形的性质是解答本题的关键.3.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.4.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,再根据BC=32,∠ABC=45°,BD 平分∠ABC 可知△BCE 是等腰直角三角形,由锐角三角函数的定义即可求出CE 的长.【详解】解:过点C 作CE ⊥AB 于点E ,交BD 于点M′,过点M′作M′N′⊥BC 于N′,则CE 即为CM+MN 的最小值,∵BC=32,∠ABC=45°,BD 平分∠ABC ,∴△BCE 是等腰直角三角形,∴CE=BC•cos45°=32×2=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.5.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.6.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上,故此选项正确;④∵在Rt△ACD中,∠2=30°,∴CD=12AD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S △ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故此选项正确.故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AE平分∠BAC,∠D=∠DBC=60°,若BD=5cm,DE=3cm,则BC的长是 ______cm.【答案】8.【解析】【分析】作出辅助线后根据等边三角形的判定得出△BDM为等边三角形,△EFD为等边三角形,从而得出BN的长,进而求出答案.【详解】解:延长DE交BC于M,延长AE交BC于N,作EF∥BC于F,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴△EFD为等边三角形,∵BD=5,DE=3,∴EM=2,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=1,∴BN=4,∴BC=2BN=8(cm),故答案为8.【点睛】本题考查等边三角形的判定与性质;等腰三角形的性质.9.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为______.【答案】1 2【解析】过点Q作AD的延长线的垂线于点F.因为△ABC是等边三角形,所以∠A=∠ACB=60°.因为∠ACB=∠QCF,所以∠QCF=60°.因为PE⊥AC,Q F⊥AC,所以∠AEP=∠CFQ=90°,又因为AP=CQ,所以△AEP≌△CFQ,所以AE=CF,PE=QC.同理可证,△DEP≌△DFQ,所以DE=DF.所以AC=AE+DE+CD=DE+CD+CF=DE+DF=2DE,所以DE=12AC=12.故答案为1 2 .10.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是_____.【答案】9.6.【解析】【分析】由等腰三角形的三线合一可得出AD 垂直平分BC ,过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长.在△ABC 中,利用面积法可求出BQ 的长度,此题得解.【详解】∵AB =AC ,AD 是∠BAC 的平分线,∴AD 垂直平分BC ,∴BP =CP .过点B 作BQ ⊥AC 于点Q ,BQ 交AD 于点P ,则此时PC +PQ 取最小值,最小值为BQ 的长,如图所示.∵S △ABC 12=BC •AD 12=AC •BQ ,∴BQ 12810BC AD AC ⋅⨯===9.6. 故答案为:9.6.【点睛】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC +PQ 的最小值为BQ 是解题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,ABC ∆中,3AC DC ==,BD 垂直BAC ∠的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为( )A .1.5B .3C .4.5D .9【答案】C【解析】【分析】 首先证明两个阴影部分面积之差=S △ADC ,然后由DC ⊥AC 时,△ACD 的面积最大求出结论即可.【详解】延长BD 交AC 于点H .设AD 交BE 于点O .∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°.∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH.∵AD⊥BH,∴BD=DH.∵DC=CA,∴∠CDA=∠CAD.∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC.∵BD=DH,AC=CH,∴S△CDH=12S△ADH14=S△ABH.∵AE=EC,∴S△ABE14=S△ABH,∴S△CDH=S△ABE.∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD.∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12⨯3×392=.故选C.【点睛】本题考查了等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.12.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.13.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.14.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.15.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE , 又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.16.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1 B .2 C .3 D .4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.17.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECDCE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.18.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年最新初二学生数学同步《全等三角形》检测卷(C卷) 一.填空题:(每题3分,共30分) 1.如图1,若△ABC≌△ADE,EAC=35,则BAD=_________度. 2.如图2,沿AM折叠,使D 点落在BC上的N点处,如果AD=7cm,DM=5cm,DAM=300,则AN= cm,NM= cm,NAM= . 3.如图3,△ABC≌△AED,C=85,B=30,则EAD= . 4.已知:如图4,ABC=DEF,AB=DE,要说明△ABC≌△DEF, (1)若以“SAS”为依据,还须添加的一个条件为________________. (2)若以“ASA”为依据,还须添加的一个条件为________________. (3)若以“AAS”为依据,还须添加的一个条件为________________. 5.如图5,在△ABC中,C=90,AD平分BAC,DEAB于E,则△______≌△_______. 6. 如图6,AB=AC,BD=DC,若,则 . 图 6 图 7 7.如图7,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对. 8. 如图8,在中,AB=AC,BE、CF是中线,则由可得. 图 8 图 9 9. 如图9,AB=CD,AD=BC,O为BD中点,过O点作直线与DA、BC延长线交于E、F,若,EO=10,则DBC= ,FO= . 10. 如图10,△DEF≌△ABC,且ACBCAB 则在△DEF中,______ ______ _____. 图 10 二.选择题(每题3分,共30分) 11. 在和中,下列各组条件中,不能保证:的是( ) ①②③④⑤⑥ A. 具备①②③ B. 具备①②④ C. 具备③④⑤ D. 具备②③⑥ 12. 两个三角形只有以下元素对应相等,不能判定两个三角形全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边 13. 如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( ) A. 一定全等 B. 一定不全等 C. 不一定全等 D. 面积相等 14. 如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 ( ) A. 相等 B. 不相等 C. 互余或相等 D. 互补或相等 15. 如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若AEB=120,ADB=30,则BCF= ( ) A. 150 B.40 C.80 D. 90 16. 如图ABBC,BEAC,1=2,AD=AB,则 ( ) A. 1=EFD B. BE=EC C. BF=DF=CD D. FD∥BC 17.下列说法正确是 ( ) A . 三边对应平行的两个三角形是全等三角形 B . 有一边相等,其余两边对应平行的两个三角形是全等三角形 C . 有一边重合,其余两边对应平行的两个三角形是全等三角形 D. 有三个角对应相等的两个三角形是全等三角形 18.下列说法错误的是 ( ) A. 全等三角形对应边上的中线相等 B. 面积相等的两个三角形是全等三角形 C. 全等三角形对应边上的高相等 D. 全等三角形对应角平分线相等
19.已知:如图,O为AB中点,BDCD ,ACCD,OECD,则下列结论不一定成立的是 ( ) A. CE=ED
B. OC=OD
C. ACO=ODB
D. OE=CD 20.如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么EDF等于( ) A..90-A B. 90-A C. 180-A D. 45-A 三.解答题(共40分) 21.(8分)如图,△ABC≌△ADE,E和C是对应角,AB与AD是对应边,写出另外两组对应边和对应角; 22.(8分)如图,A、E、F、C在一条直线上,△AED≌△CFB,你能得出哪些结论? 23.(7分)如图,已知1=2,3=4,AB与CD相等吗?请你说明理由. 24.(8分)如图,AB∥CD,AD∥BC,那么AD=BC,AB=BC,你能说明其中的道理吗? 25.(9分)如图,已知:E是AOB的平分线上一点,ECOB,EDOA,C,D是垂足,连接CD,求证:(1)ECD=EDC;(2)OD=OC;(3)OE是CD的中垂线. 1.35 2.7,5,30 3.50 4.BC=EF, ACB=F, A=D 5.ACD,AED 6.28 7.5 8.SAS 9.60,10 10.ED,EF,DF 11.B 12.C 13.C 14.A 15.D 16.D 17.C 18.B 19.D 20.B 21.AE和AC,ED和BC, B和D, BAC和DAE 22.AD=BC,AE=CF,DE=BF,AD∥BC, △ACD≌△ACB,AB∥CD等 23.相等, △AOB≌△DOC 24.连AC,证△ADC≌△ABC 25.(1)证DE=EC (2) 设BE与CD交于F,通过全等证DF=CF.。