北师大版初二数学下册知识点总结(2018最新教材版)

合集下载

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

八年级下册数学北师大版知识点总结

八年级下册数学北师大版知识点总结

八年级下册数学北师大版知识点总结一、三角形的证明。

1. 等腰三角形。

- 性质:- 等腰三角形的两腰相等,两底角相等(等边对等角)。

- 等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

- 判定:- 有两边相等的三角形是等腰三角形。

- 有两角相等的三角形是等腰三角形(等角对等边)。

2. 等边三角形。

- 性质:- 等边三角形的三条边都相等,三个角都相等,且每个角都等于60°。

- 判定:- 三条边都相等的三角形是等边三角形。

- 三个角都相等的三角形是等边三角形。

- 有一个角是60°的等腰三角形是等边三角形。

3. 直角三角形。

- 性质:- 直角三角形的两个锐角互余。

- 直角三角形斜边上的中线等于斜边的一半。

- 勾股定理:直角三角形两直角边的平方和等于斜边的平方(a^2+b^2=c^2,其中a、b为直角边,c为斜边)。

- 判定:- 有一个角是直角的三角形是直角三角形。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。

4. 线段的垂直平分线。

- 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

- 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

- 三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

5. 角平分线。

- 性质:角平分线上的点到这个角的两边的距离相等。

- 判定:在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

- 三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。

二、不等式(组)1. 不等式的基本性质。

- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。

- 不等式两边乘(或除以)同一个正数,不等号的方向不变。

- 不等式两边乘(或除以)同一个负数,不等号的方向改变。

2. 一元一次不等式。

- 定义:只含有一个未知数,并且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式。

北师大版八年级下册数学各章节知识梳理2018

北师大版八年级下册数学各章节知识梳理2018

八年级下册数学各章节知识梳理教学目标:经历探索、猜测过程能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理能够利用尺规作已知线段的垂直平分线重难点:重点是写出线段垂直平分线的性质定理的逆命题。

难点是两者的应用上的区别及各自的作用易错点:准确理解线段垂直平分线的性质定理,解题时要考虑全面,避免漏解整体分析【一】教学目标八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

优生不多,思想不够活跃,有少数学生不上进,思维跟不上。

要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

【二】教材分析本学期教学内容共计六章:《三角形的证明》、《一元一次不等式和一元一次不等式组》、《图形的平移与旋转》、《因式分解》、《分式与分式方程》、《平行四边形》。

《三角形的证明》:本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。

《一元一次不等式和一元一次不等式组》:本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。

《图形的平移与旋转》:本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。

《因式分解》:本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

《分式与分式方程》:本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。

《平行四边形》:本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

(完整word)2018八年级数学下册第一章知识点总结(北师大版),文档

(完整word)2018八年级数学下册第一章知识点总结(北师大版),文档

2021 八年级数学下册第一章知识点总结〔北师大版〕第一章三角形的证明、等腰三角形(1〕三角形全等的性质及判断全等三角形的对应边相等,对应角也相等判断:SSS、(2〕等腰三角形的判断、性质及推论性质:等腰三角形的两个底角相等〔等边同等角〕判断:有两个角相等的三角形是等腰三角形〔等角同等边〕推论:等腰三角形顶角的均分线、底边上的中线、底边上的高互相重合〔即“三线合一〞〕〔3〕等边三角形的性质及判判定理性质定理:等边三角形的三个角都相等,并且每个角都等于60 度;等边三角形的三条边都满足“三线合一〞的性质;等边三角形是轴对称图形,有 3 条对称轴。

判判定理:有一个角是60 度的等腰三角形是等边三角形。

也许三个角都相等的三角形是等边三角形。

〔4〕含 30 度的直角三角形的边的性质定理:在直角三角形中,若是一个锐角等于30 度,那么它所对的直角边等于斜边的一半。

2、直角三角形(1〕勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:若是三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

(2〕直角三角形两个锐角之间的关系定理:直角三角形两个锐角互余。

逆定理:有两个锐角互余的三角形是直角三角形。

(3〕含 30 度的直角三角形的边的定理定理:在直角三角形中,若是一个锐角等于30 度,那么它所对的直角边等于斜边的一半。

逆定理:在直角三角形中,一条直角边是斜边的一半,那么这条直角边所对的锐角是 30 度。

(4〕命题与抗命题命题包括和结论两局部;抗命题是将倒是的和结论交换;正确的抗命题就是逆定理。

〔5〕直角三角形全等的判判定理定理:斜边和一条直角边对应相等的两个直角三角形全等〔 HL〕3、线段的垂直均分线〔1〕线段垂直均分线的性质及判断性质:线段垂直均分线上的点到这条线段两个端点的距离相等。

判断:到一条线段两个端点距离相等的点在这条线段的垂直均分线上。

(2〕三角形三边的垂直均分线的性质三角形三条边的垂直均分线订交于一点,并且这一点到三个极点的距离相等。

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳

北师大版初二数学下册知识点归纳北师大版初二数学下册知识点归纳1第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

北师大版八年级下册数学知识点必看

北师大版八年级下册数学知识点必看

北师大版八年级下册数学知识点必看求学的三个条件是:多观察、多吃苦、多研究。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。

下面是小编给大家整理的一些北师大版八年级下册数学知识点的学习资料,希望对大家有所帮助。

北师大版初二数学下册知识点归纳第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章阐发知识要点总结北师大版八年级数学下卷各章知识预备班要点总结第一章十元一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立黎曼的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有兼顾不等式的解集合在一起,构成不等式的判别式.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式数列组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共定理部分。

6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是表达式.基本性质2:在等式的两边除以都乘以或相乘同一个数(除数不为0),所得的结果仍是表达式.二、不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向恒定.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都约等于(或除以)同一个正数,不等号的方向维持不变.性质3:不等式的两边都约等于(或除以)同一个负数,不等号的思路改变.不等式的基本性质、若a;b,则ac;bc;、若a;b,c;0则ac;bc,若cc,则a;c四、解不等式组的方法:1、解出不等式的重心坐标。

2、在同一数轴表示不等式的解集。

3、读到不等式组的解集。

五、列一元一次不等式组解实际问题一回的一般步骤:(1)审题;(2)设未知数,找(不等量)关系式;(3)设元,(根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答。

六、常考题型:1、求4x-6六、分解因式的方法:1、提公因式法。

2、运用公式法。

第三章分式注:1°对于任意一个分式,分母都不能为零.2°分式与整式不同的是:分式的指数函数中含有字母,整式的分母中不含字母.3°分式的值为零含两层意思:分母不等于零;分子等于零。

(AA中B≠0时,分式有意义;分式中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不 等式
解 集
图示
叙述语言表达
x a
x b
x>b
a
b
两大取较大
x a
x b
x>a
a
b
两小取小
x a x b
a<x<b
a
b
大小交叉中间找
x a x b
无解
在大小分离没有解
a
b
(是空集)
第三章 图形的平移与旋转 一、平移
1、定义 在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。 2、性质 平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。 二、旋转 1、定义 在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定 点称为旋转中心,转动的角叫做旋转角。 2、性质 旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的 角等于旋转角。
数学
知 识 提 纲
姓名
初二下册
最新北师大版《数学》(八年级下册)知识点总结 第一章 三角形的证明
1、等腰三角形 (1)三角形全等的性质及判定 全等三角形的对应边相等,对应角也相等 判定:SSS、SAS、ASA、AAS。 (2)等腰三角形的判定、性质及推论 性质:等腰三角形的两个底角相等(等边对等角) 判定:有两个角相等的三角形是等腰三角形(等角对等边) 推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”) (3)等边三角形的性质及判定定理 性质定理:等边三角形的三个角都相等,并且每个角都等于 60 度;等边三角形的三条边都满足“三 线合一”的性质;等边三角形是轴对称图形,有 3 条对称轴。 判定定理:有一个角是 60 度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。 (4)含 30 度的直角三角形的边的性质 定理:在直角三角形中,如果一个锐角等于 30 度,那么它所对的直角边等于斜边的一半。 2、直角三角形 (1)勾股定理及其逆定理 定理:直角三角形的两条直角边的平方和等于斜边的平方。 逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 (2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。 (3)直角三角形全等的判定定理 定理:斜边和一条直角边对应相等的两个直角三角形全等(斜边直角边,简称:HL) 3、线段的垂直平分线(中垂线) (1)线段垂直平分线的性质及判定 性质:线段垂直平分线上的点到这条线段两个端点的距离相等。 判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。 (2)三角形三边的垂直平分线的性质 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。 (3)如何用尺规作图法作线段的垂直平分线 分别以线段的两个端点 A、B 为圆心,以大于 AB 的一半长为半径作弧,两弧交于点 M、N;作直线 MN,则直线 MN 就是线段 AB 的垂直平分线。 4、角平分线 (1)角平分线的性质及判定定理 性质:角平分线上的点到这个角的两边的距离相等; 判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。 (2)三角形三条角平分线的性质定理 性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 (3)如何用尺规作图法作出角平分线
如: ab ac a(b c) ※2. 概念内涵:
(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式; (3)提公因式法的理论依据是乘法对加法的分配律,即: ma mb mc m(a b c) ※3. 易错点点评: (1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”; (3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法 ※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用 公式法. ※2. 主要公式: (1)平方差公式: a2 b2 (a b)(a b) (2)完全平方公式: a2 2ab b2 (a b)2
同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.
二. 分式的乘除法
※1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的
分子、分母颠倒位置后,与被除式相乘.
即: A C AC , B D BD
A C A D AD B D B C BC
5
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 十字相乘法:
※1.对于二次三项式 ax2 bx c ,将 a 和 c 分别分解成两个因数的乘积, a a1 a2 , c c1 c2 , 且满
※2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边 都乘以一个负数时,不等号要改变方向.
※3. 解一元一次不等式的步骤:①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为 1(不等号的改变问题)
※4. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:
第二章 一元一次不等式和一元一次不等式组
一. 不等关系
※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.
¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.
※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.
2
非负数 <===> 大于等于 0(≥0) <===> 0 和正数 <===> 不小于 0 非正数 <===> 小于等于 0(≤0) <===> 0 和负数 <===> 不大于 0 二. 不等式的基本性质 三. 不等式的解集: ※1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解 集;求不等式的解集的过程,叫做解不等式. ※2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四. 一元一次不等式: ※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是 1. 像这样的不等式叫做一元 一次不等式.
②解这个整式方程;
7
③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必 须舍去. ※2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出 (分式)方程;④解方程,并验根;⑤写出答案.
a1
足 b a1c2 a2c1 ,往往写成 a2
c1
c2 的形式,将二次三项式进行分解.
如: ax 2 bx c (a1x c1)(a2 x c2 )
※2. 二次三项式 x2 px q 的分解:
p ab
q ab
※3. 规律内涵:
1a 1b
x2 px q (x a)(x b)
a 2 2ab b2 (a b)2 ¤3. 易错点点评: 因式分解要分解到底.如 x4 y 4 (x2 y 2 )(x2 y 2 ) 就没有分解到底. ※4. 运用公式法: (1)平方差公式: ①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项 式(或多项式)的平方;③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底 数乘积的 2 倍. ※5. 因式分解的思路与解题步骤: (1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;
B D BD BD BD ※3. 概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最
简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因 式分解. 四. 分式方程
※1. 解分式方程的一般步骤: ①在方程的两边都乘最简公分母,约去分母,化成整式方程;
第四章 分解因式 一. 分解因式 ※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. ※2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系: (1)整式乘法是把几个整式相乘,化为一个多项式;
4
(2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法 ※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两 个因式乘积的形式.这种分解因式的方法叫做提公因式法.
※2. 分式乘方,把分子、分母分别乘方.
即:

A n B

An Bn
(n为正整数)
逆向运用
An Bn
A n ,当 n 为整数时,仍然有 A n
B
B

An Bn
成立.
※3. 分子与分母没有公因式的分式,叫做最简分式. 三. 分式的加减法
※1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原 来的分式相等的同分母的分式,叫做分式的通分.
3
集无公共部分,就说这个不等式组无解. 几个不等式解集的公共部分,通常是利用数轴来确定. ※3. 解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a、b 为实数,且 a<b)
相关文档
最新文档