3 多元线性回归模型-2

合集下载

多元线性回归模型

多元线性回归模型

Cov( X ji , i ) 0
j 1,2, k
假设4,随机项满足正态分布
i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
假设1,n(k+1)维矩阵X是非随机的,且X的秩=k+1,
即X满秩。
回忆线性代数中关于满秩、线性无关!
假设2,
E (μ)
E
1
E (1 )
0
n E( n )
X ki ) ) X 1i ) X 2i
Yi Yi X 1i Yi X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
解该( k+1)个方程组成的线性代数方程组,即
可得到(k+1) 个待估参数的估计值
$ j
,
j
0,1,2, ,
k

□正规方程组的矩阵形式
en
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各X之间互不 相关(无多重共线性)。
假设2,随机误差项具有零均值、同方差及不序列相关 性。
E(i ) 0
i j i, j 1,2,, n
Var
(i
)
E
(
2 i
)
2
Cov(i , j ) E(i j ) 0
假设3,解释变量与随机项不相关
这里利用了假设: E(X’)=0
等于0,因为解释变 量与随机扰动项不相 关。
3、有效性(最小方差性)
ˆ 的方差-协方差矩阵为
Co(v ˆ) E{[ˆ E(ˆ)][ˆ E(ˆ)]}
E[(ˆ )(ˆ )]
E{([ X X)-1X ]([ X X)-1X ]}

多元线性回归的计算模型

多元线性回归的计算模型

多元线性回归的计算模型多元线性回归模型的数学表示可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y表示因变量,Xi表示第i个自变量,βi表示第i个自变量的回归系数(即自变量对因变量的影响),ε表示误差项。

1.每个自变量与因变量之间是线性关系。

2.自变量之间相互独立,即不存在多重共线性。

3.误差项ε服从正态分布。

4.误差项ε具有同方差性,即方差相等。

5.误差项ε之间相互独立。

为了估计多元线性回归模型的回归系数,常常使用最小二乘法。

最小二乘法的目标是使得由回归方程预测的值与实际值之间的残差平方和最小化。

具体步骤如下:1.收集数据。

需要收集因变量和多个自变量的数据,并确保数据之间的正确对应关系。

2.建立模型。

根据实际问题和理论知识,确定多元线性回归模型的形式。

3.估计回归系数。

利用最小二乘法估计回归系数,使得预测值与实际值之间的残差平方和最小化。

4.假设检验。

对模型的回归系数进行假设检验,判断自变量对因变量是否显著。

5. 模型评价。

使用统计指标如决定系数(R2)、调整决定系数(adjusted R2)、标准误差(standard error)等对模型进行评价。

6.模型应用与预测。

通过多元线性回归模型,可以对新的自变量值进行预测,并进行决策和提出建议。

多元线性回归模型的计算可以利用统计软件进行,例如R、Python中的statsmodels库、scikit-learn库等。

这些软件包提供了多元线性回归模型的函数和方法,可以方便地进行模型的估计和评价。

在计算过程中,需要注意检验模型的假设前提是否满足,如果不满足可能会影响到模型的可靠性和解释性。

总而言之,多元线性回归模型是一种常用的预测模型,可以分析多个自变量对因变量的影响。

通过最小二乘法估计回归系数,并进行假设检验和模型评价,可以得到一个可靠的模型,并进行预测和决策。

多元线性回归模型原理

多元线性回归模型原理

多元线性回归模型原理Y=β0+β1*X1+β2*X2+...+βn*Xn+ε其中,Y表示因变量,X1、X2、..、Xn表示自变量,β0、β1、β2、..、βn表示模型的参数,ε表示误差项。

通过对数据进行拟合,即最小化误差平方和,可以估计出模型的参数。

多元线性回归模型的原理是基于最小二乘法,即通过最小化残差平方和来估计参数的值。

残差是指模型预测值与真实值之间的差异,最小二乘法的目标是找到一组参数,使得所有数据点的残差平方和最小。

通过求解最小二乘估计,可以得到模型的参数估计值。

为了评估模型的拟合程度,可以使用各种统计指标,例如R方值、调整R方值、标准误差等。

R方值表示模型解释因变量方差的比例,取值范围在0到1之间,值越接近1表示模型对数据的拟合程度越好。

调整R方值考虑了模型中自变量的个数和样本量之间的关系,可以更准确地评估模型的拟合程度。

标准误差表示模型预测值与真实值之间的标准差,可以用于评估模型的预测精度。

在建立多元线性回归模型之前,需要进行一些前提条件的检查,例如线性关系、多重共线性、异方差性和自变量的独立性。

线性关系假设要求自变量与因变量之间存在线性关系,可以通过散点图、相关系数等方法来检验。

多重共线性指的是自变量之间存在高度相关性,会导致参数估计的不稳定性,可以使用方差膨胀因子等指标来检测。

异方差性指的是残差的方差不恒定,可以通过残差图、方差齐性检验等方法来检验。

自变量的独立性要求自变量之间不存在严重的相关性,可以使用相关系数矩阵等方法来检验。

当满足前提条件之后,可以使用最小二乘法来估计模型的参数。

最小二乘法可以通过不同的方法来求解,例如解析解和数值优化方法。

解析解通过最小化误差平方和的一阶导数为零来求解参数的闭式解。

数值优化方法通过迭代来求解参数的数值估计。

除了最小二乘法,还有其他方法可以用于估计多元线性回归模型的参数,例如岭回归和lasso回归等。

岭回归和lasso回归是一种正则化方法,可以对模型进行约束,可以有效地避免过拟合问题。

计量经济学第三章 多元线性回归方程 2

计量经济学第三章 多元线性回归方程 2

接近。
意味着:所建立的食品需求函数满足零阶齐次性特征
THE END
22


它可以是总体均值E(Y0)或个值Y0的预测。 但严格地说,这只是被解释变量的预测值的估 计值,而不是预测值。 为了进行科学预测,还需求出预测值的置信区 间,包括E(Y0)和Y0的置信区间。
一、E(Y0)的置信区间
易知
ˆ ˆ) ˆ) E (Y0 ) E ( X 0β X 0 E (β X 0β E (Y0 )
(***) (****)
考虑到零阶齐次性时
ln(Q ) 0 1 ln( X / P0 ) 2 ln( P1 / P0 )
(****)式也可看成是对(***)式施加如下约束而得 1 2 3 0
因此,对(****)式进行回归,就意味着原需 求函数满足零阶齐次性条件。
2 Var (e0 ) E (e0 )
E ( 0 X 0 ( X X ) 1 X μ) 2 2 (1 X 0 ( X X ) 1 X 0 )
e0服从正态分布,即
二、Y0的置信区间
2
X) 1 X )) e0 ~ N (0, (1 X 0 ( X 0
一、E(Y0)的置信区间
容易证明
ˆ Y0 ~ N ( X 0β 2 X 0 (XX) 1 X ) , 0
ˆ Y0 E(Y0 ) ˆ X 0 (X X) 1 X 0
~ t ( n k 1)
于是,得到(1-)的置信水平下E(Y0)的置信区间:
ˆ ˆ ˆ ˆ Y0 t X 0 ( X X) 1 X E (Y0 ) Y0 t X 0 ( X X) 1 X 0 0
Q f ( X / P0 , P1 / P0 )

多元线性回归模型及其假设条件

多元线性回归模型及其假设条件

§5.1 多元线性回归模型及其假设条件 1.多元线性回归模型 多元线性回归模型:εi pi p iiix b xb x b b y +++++= 2211,n i ,,2,1 =2.多元线性回归模型的方程组形式 3.多元线性回归模型的矩阵形式4.回归模型必须满足如下的假设条件:第一、有正确的期望函数。

即在线性回归模型中没有遗漏任何重要的解释变量,也没有包含任何多余的解释变量。

第二、被解释变量等于期望函数与随机干扰项之和。

第三、随机干扰项独立于期望函数。

即回归模型中的所有解释变量Xj与随机干扰项u 不相关。

第四、解释变量矩阵X 是非随机矩阵,且其秩为列满秩的,即:n k k X rank 〈=,)(。

式中k 是解释变量的个数,n 为观测次数。

第五、随机干扰项服从正态分布。

第六、随机干扰项的期望值为零。

()0=u E 第七、随机干扰项具有方差齐性。

()σσ22=u i(常数)第八、随机干扰项相互独立,即无序列相关。

()()u u u u jiji,cov ,=σ=0§5.2 多元回归模型参数的估计建立回归模型的基本任务是:求出参数bb b p,,,,1σ的估计值,并进行统计检验。

残差:yy e iiiˆ-=;残差平方和:Q=()∑-∑==y y e i i ni iˆ212矩阵求解:X=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡x xxx x x x x x pn nnp p212221212111111,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=b b b b p B ˆˆˆˆ210ˆ ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=-y y y y n n Y 121 ,()YB X X X ττ1ˆ-=1ˆ2--=p n Qσ要通过四个检验:经济意义检验、统计检验、计量经济学检验、模型预测检验。

§5.4 多元线性回归模型的检验一、R2检验1.R2检验定义R2检验又称复相关系数检验法。

是通过复相关系数检验一组自变量xx x m,,,21与因变量y 之间的线性相关程度的方法。

(完整版)多元线性回归模型公式

(完整版)多元线性回归模型公式

二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。

因此,多元地理回归模型更带有普遍性的意义。

(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。

那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3。

2。

11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。

如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3。

2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。

偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。

根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3。

2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3。

2.14)式展开整理后得: ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x yx b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2。

(完整版)第三章(多元线性回归模型)3-3答案

(完整版)第三章(多元线性回归模型)3-3答案

3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。

( F )2、在多元线性回归中,t 检验和F 检验缺一不可。

( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。

( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。

( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。

则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。

第二次:多元线性回归模型

第二次:多元线性回归模型

多元线性回归模型国晓雯 10628003一. 模型设定根据房地产销售数据,考察住房总居住面积与估价对住房售价的影响程度。

1.被解释变量名称:Y 含义:住房售价 单位:1000美元 2.解释变量名称:1Z 含义:住房总居住面积 单位:100平方英尺 名称:2Z含义:住房估价 单位:1000美元3.数学形式εβββ+++=23121Z Z Y二. 样本 资料来源于[美]Rechard A.Johnson and Dean W.Wichern 《实用多元统计分析》表7.1 房地产数据三. 回归结果1 (1)模型由 F Value 可知,模型整体是显著的(2)截距由Intercept 的t Value ,显著性水平下,截距项是显著的 (3)2β由Z1的t Value ,显著性水平下, 1Z 的系数是显著的 (3)3β由Z2的t Value ,显著性水平下, 2Z 的系数是不显著的,接受原假设 (4) 由调整的8149.02=R ,说明模型的变差解释了总变差的8149.0,模型拟合效果比较理想2.样本回归超平面2104518.06344.287024.31Z Z Y t ++=四.经济分析回归的结果显示出住房房价是居住面积和房屋估价的线性函数。

由上面的模型,回归方程和显著性指标可以看出住房售价与住房面积显著相关,住房估价对住房售价的影响并不显著。

住房售价会随着住房面积的提高而提高,具体说来,住房面积每增加100平方英尺,住房售价会增加2634.4美元。

我们可以由此根据住房面积来预测售价。

五.附录1.1Z 对Y 的散点图2Z 对Y 的散点图3.原始数据4.程序代码(SAS)data estate;infile'd:\duoyuan\multidisk\multidisk\T7-1.dat'; input z1 z2 y;run;proc reg data=estate;model y=z1 z2/selection=none r dw influence; output out=regresult p=pre r=res ;run;proc plot data=regresult;plot res*pre;run;quit;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 Y1 X 1n Y2 Y X kn n
3、参数估计的矩阵表达式
ˆ X Y ○正规方程组的矩阵形式,即: (X X) β ˆ ( X X ) 1 X Y • 由于X'X满秩,故有:β ○将上述过程用矩阵形式表示为:
var( 1 ) cov( , ) n 1
cov( 1 , n ) 2 0 var( n )
0 2I 2
⑶序列不相关性假定:Cov ( i , j ) E ( i j ) 0 ⑷正态分布假定: i ~ N (0, 2 ) μ~ N (0, 2 I) ○向量 有一多维正态分布,即:
11 21 y1 k1 y 2 x x12 x 22 x k 2 y y x1n x 2 n x kn n
1 ˆ ˆ 2 β ˆ k
○样本回归函数(模型)的矩阵表达式:
ˆ Xβ ˆ Y
ˆ e Y Xβ
ˆ 0 ˆ ˆ β 1 ˆ k
1 2 n n 1
e1 e2 e e n
1 E ( 1 ) E (μ) E 0 E ( ) n n
1
12 n E n 1
1 n 2 n
i 1 i 1
n
n
i 1
2、普通最小二乘估计的矩阵表达式
⑴待估参数估计值的正规方程组为: ˆ ˆ X ˆ X ˆ X ) Y ( 0 1 1i 2 2i k ki i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1 i 2 2 i k ki 1i i 1i ˆ ˆ X ˆ X ˆ X ) X Y X ( 0 1 1i 2i 2i k ki 2i i 2i
○于是得到参数估计值: ˆ 0.7226 0.0003 15674 1 ˆ β 0.0003 1.35 E 07 39648400 ˆ 2
103 .172 0.7770
ˆ ˆ ˆ ˆ ( 0 1 X 1i 2 X 2 i k X ki ) X ki Yi X ki
○解该方程组,即可得到 k+1个待估参数的估计值。 ⑵正规方程组的矩阵形式:
n X 1i X ki
2、矩阵表达式
⑴用来估计总体回归函数的样本回归函数为: ˆ ˆ X ˆ X ˆ X ˆ Y i 0 1 1i 2 2i ki ki ˆ ˆ X ˆ X ˆ X e ○其随机表示式: Yi 0 1 1i 2 2i ki ki i ○ ei称为残差或剩余项(residuals),可看成是总体回归函数 中随机扰动项i的近似替代。 ⑵总体回归模型n个随机方程的矩阵表达式为: Y X β μ
2、解释变量假定
⑴解释变量是非随机的或固定的,且各X之间互不相关 (无多重共线性)。即:n(k+1)矩阵X是非随机的, 且X的秩=k+1,即X满秩。 ⑵解释变量与随机项不相关 Cov ( X ji , i ) 0 j 1,2, k ○ E(X')=0,即:
i E ( i ) X 1i i X 1i E ( i ) E 0 X X E ( ) Ki i Ki i
*二、最大或然估计(ML)
○对于多元线性回归模型 Yi 0 1 X 1i 2 X 2 i k X ki i ○易知 Yi ~ N (X i β , 2 ) ,Y随机抽取的n组样本观测值的联合概率
○即求解方程组:
ˆ X Y Y Xβ ˆ β ˆ X Xβ ˆ)0 ˆ ˆ (Y Y β ( Y Xβ) ( Y Xβ) 0 ˆ ˆ β β
ˆ β ˆ X Xβ ˆ) 0 ( Y Y 2Y Xβ ˆ β
ˆ 0 XY XXβ ˆ ○得到: X Y X Xβ ˆ ( X X) 1 X Y ○于是有:β
○在离差形式下,参数的最小二乘估计结果为 ˆ Y ˆ X ˆ X ˆ (x x) 1 x Y β 0 1 1 k k
6、随机误差项的方差的无偏估计
○可以证明,随机误差项的方差的无偏估计量为:
e e ˆ n k 1 n k 1
2
e
2 i
4、案例分析
○案例3.2.1:在例2.1.1的家庭收入-消费支出中,
X1 X i 10 X2 n 21500 1 1 ' ( X X) 2 X X X X 21500 53650000 i i 2 1 Xn Y1 1 1 Y2 Yi 15674 1 X Y X 1 X 2 X n X i Yi 39468400 Y n 0.0003 0.7226 1 ○可求得: ( X X) 0.0003 1.35 E 07 1 1 1 Xn 1
1 1 X 1 X 11 X 12 X 1n X 21 X 22 X 2n X k1 X k2 X kn n ( k 1 )
0 1 μ β 2 k ( k 1)1
第三章 经典单方程计量经济学模型: 多元线性回归模型
• • • • • • 多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 多元回归模型的其他形式 回归模型的参数约束
§3.1 多元线性回归模型
一、多元线性回归模型
二、多元线性回归模型的基本假定
一、多元线性回归模型
5、离差形式的普通最小二乘估计
ˆ ⑴对于正规方程组 XY XXβ
ˆ X e X Xβ ˆ X Xβ
Hale Waihona Puke ○于是有: Xe 0(*) ,或者:
e
i
i
0
ji i
X
e 0
(**)
○(*)或(**)是多元线性回归模型正规方程组的另一种写法 ⑵样本回归模型的离差形式: ˆ x ˆ x ˆ x e i=1,2…n yi 1 1i 2 2i k ki i ˆ e ○其矩阵形式为:y xβ x x x ˆ ○其中 :
3、其他假定
○同一元回归一样,多元回归还具有如下两个重要假设: ⑴样本容量趋于无穷时,各解释变量的方差趋于有界常数(该 假定是为了避免产生伪回归问题),即n∞时,有: 1 1 1 2 2 x ji ( X ji X j ) Q j xx Q n n n ○其中:Q为一非奇异固定矩阵,矩阵X是由各解释变量的离 差为元素组成的nk阶矩阵:
X X

1i 2 1i

X X X
ki
X
ki
X 1i
ˆ 1 0 ˆ X 11 1i ki 1 2 X ˆ X ki k k1
1 X 12 X k2


在非经典模型中多应用ML或者MM
在本节中, ML与MM为选学内容
一、普通最小二乘估计
△ △ △ △ △ △ 普通最小二乘估计 普通最小二乘估计的矩阵表达式 参数估计的矩阵表达式 案例分析 离差形式的普通最小二乘估计 随机误差项的方差的无偏估计
1、普通最小二乘估计
○对于随机抽取的n组观测值: (Yi , X ji ), i 1,2, , n, j 0,1,2, k ○如果样本函数的参数估计值已经得到,则有: ˆ ˆ X ˆ X ˆ X ˆ i=1,2…n Y i 0 1 1i 2 2i ki Ki ○根据最小二乘原理,参数估计值应该是一阶条件正规方程组 的解,即: Q0
△ 多元线性回归模型 △ 回归模型的矩阵表达式
1、多元线性回归模型
⑴多元线性回归模型:表现在线性回归模型中的解释变量有多 个。一般表现形式为: Yi 0 1 X 1i 2 X 2 i k X ki i i=1,2…,n ○其中:k为解释变量的数目,i称为回归参数(regression coefficient)。而习惯上:把常数项看成为一虚变量的系 数,该虚变量的样本观测值始终取1。于是:模型中解释变 量的数目为(k+1)。所以,上式也被称为总体回归函数的 随机表达形式。 ⑵它的非随机表达式即:总体回归函数为: E(Yi | X 1i , X 2i , X ki ) 0 1 X 1i 2 X 2i k X ki ○表示:各变量Xi值固定时Y的平均响应。 ○ i也被称为偏回归系数,表示在其他解释变量保持不变的情 况下,Xi每变化1个单位时,Y的均值E(Y)的变化; ○或者说i给出了Xi的单位变化对Y均值的“直接”或“净” (不含其他变量)影响。
x11 x x 1n

x k1 x kn
⑵假定回归模型的设定是正确的。
§3.2 多元线性回归模型的估计
一、普通最小二乘估计
*二、最大或然估计
*三、矩估计 四、参数估计量的性质 五、样本容量问题 六、案例分析


估计方法主要有三大类方法:OLS、ML或者MM – 在经典模型中多应用OLS
二、多元线性回归模型的基本假定
相关文档
最新文档