高考二轮数学专题:运用均值不等式的八类拼凑方法

合集下载

均值不等式解题技巧总结

均值不等式解题技巧总结

均值不等式解题技巧总结
均值不等式是数学中常用的一种算术不等式,可以用来证明和解决各种数学问题。

以下是一些常见的均值不等式解题技巧的总结:
1. 引入适当的均值:根据题目所给条件,选择适当的均值形式,如算术平均数、几何平均数、调和平均数等。

2. 利用均值不等式:根据所选择的均值形式,利用均值不等式进行推导。

常见的均值不等式有算术-几何均值不等式、几何-调和均值不等式、算术-几何-调和均值不等式等。

3. 引入适当的条件:在使用均值不等式之前,可以引入适当的条件,如非负性条件、大小关系条件等,以限制变量的取值范围,使得均值不等式成立。

4. 倒推法:对于一些需要证明的不等式,可以利用倒推法,从已知的均值不等式开始,逐步推导出需要证明的不等式。

5. 逼近法:对于一些复杂的不等式,可以通过逼近的方法,将其转化为一系列简单的均值不等式,从而解决问题。

6. 双曲线方法:对于一些特殊的均值不等式,可以利用双曲线的性质进行证明。

双曲线方法常用于解决两个变量的均值不等式。

7. 对称性方法:对于一些具有对称性的均值不等式,可以利用其对称性进行证明。

对称性方法常用于解决多个变量的均值不等式。

总之,解题时应根据具体情况选择合适的技巧和方法,并且需要灵活运用数学知识和技巧进行推导和证明。

高考数学点睛不等式专题均值不等式使用技巧

高考数学点睛不等式专题均值不等式使用技巧

高考数学点睛不等式专题均值不等式使用技巧
基本不等式(常用不等式和均值不等式)作为一种求最值的工具在高中数学各专题求最值中都用得到,所以作为一种工具咱们必须要掌握,但是由于基本不等式公式少,所以只能在技巧上增加难度,这次课主要探讨一下均值不等式单独出题的时候常见的类型以及常用的解题技巧有哪些。

均值不等式使用要求:
1.“正,定,等”,缺一不可
2.在给定定义域内运用均值不等式一定要注意等号能否取到,若取不到,根据单调性求最值。

3.积定和最小,和定积最大
使用技巧一、拼凑法,目的是产生定值。

注意:做的时候要根据问题和条件中的形式合理的选取方法,分子中有z,所以要看条件中z的部分,另外,分母中存在xy,而条件中又是平方的形式,所以很明显要使用常用不等式,接下来逐渐凑成所需要的条件。

使用技巧二、换元
注意:出现圆或者椭圆的形式,换元时换成含有三角函数的形式。

注意:整体代换法,但是带入后必须能够转化为关于某个参数的一元二次函数的形式,然后用根的知识来解。

使用技巧三、灵活运用条件中给出的定值,特别是常数1
注意:题目也可以用整体代换法使用技巧四、取平方
使用技巧五、多次不等式的使用
注意本题目用了两次不等式,第一次用常用不等式,第二次用均值不等式,但是需要注意多次使用不等式必须要满足等号同时取到才可以。

使用技巧六、多个参数的不等式,减少参数或者拼凑出已知条件的形式
注意:为什么这么拆?因为题目中都是平方的形式,需要用到常用不等式,问题中的y
用到了两次,且带有系数根号2,所以前面需要拆成两组,并且是把y拆成两个数相加的形式,因为有根号2,所以拆完之后的两个y方第一个必须是第二个的2倍。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a =b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:①注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;②熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭,当且仅当()2212x x =-,即x =时,上式取“=”。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等";② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值.(2) 已知01x <<,求函数321y x x x =--++的最大值.解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=".故max 3227y =。

评注:通过因式分解,将函数解析式由“和"的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积"的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-。

均值不等式的八类拼凑方法

均值不等式的八类拼凑方法

运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。

在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。

均值不等式等号成立条件具有潜在的运用功能。

以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。

笔者把运用均值不等式的拼凑方法概括为八类。

一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2求函数)01y x x =<<的最大值。

解:y ==因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即3x =时,上式取“=”。

故max 9y =。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3 已知02x <<,求函数()264y x x =-的最大值。

解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。

当且仅当()2224x x=-,即x ==”。

均值不等式应用(技巧)

均值不等式应用(技巧)

均值不等式应用(技巧)Wekede 整理一.均值不等式1.(1)若Rb a ∈,,则abba222≥+ (2)若Rb a ∈,,则222b aab+≤(当且仅当ba =时取“=”)2. (1)若*,R b a ∈,则abb a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x+≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x xxx+≥+≥+≤即或 (当且仅当b a =时取“=”)3.若0>ab ,则2≥+ab ba(当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b bababa+≥+≥+≤即或(当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧:技巧一:凑项 例1:已知54x <,求函数14245yx x =-+-的最大值。

第8关: 均值不等式问题—拼凑8法

第8关: 均值不等式问题—拼凑8法

第8关:均值不等式问题—拼凑8法利用均值不等式求最值或证明不等式是高中数学的一个重点。

在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。

均值不等式等号成立条件具有潜在的运用功能。

以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。

笔者把运用均值不等式的拼凑方法概括为八类。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1已知,求函数的最大值。

解:。

当且仅当,即时,上式取“=”。

故。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数的最大值。

解:。

因,当且仅当,即时,上式取“=”。

故。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3已知,求函数的最大值。

解:。

当且仅当,即时,上式取“=”。

故,又。

亲爱的老师们:我有一套非常好的word资料,叫“高考数学常考问题-大闯关(36关)”,但是部分内容是图片的不能编辑,为了更好的使用本资料,本人打算将这套资料翻录一下与愿意翻录的老师共享,所谓翻录就是重新用公式编辑器将资料中的图片录入成可以正常显示便于编辑的公式,每个老师录入1-2关,完全按照已有文档录入,在半天之内就可以完成。

(样品见第8关,红色的部分都不用编辑,只需编辑公式部分即可。

等所有老师录入编辑完成后,我将翻录好的word资料全部免费分享给愿意加入的老师。

有意参加的老师请加我微信:scttrz或加QQ:2780158525,愿意的老师请备注:资料共创共享。

高考数学常考问题-大闯关(36关)目录第1关:极值点偏移问题--对数不等式法第2关:参数范围问题—常见解题6法第3关:数列求和问题—解题策略8法第4关:绝对值不等式解法问题—7大类型第5关:三角函数最值问题—解题9法第6关:求轨迹方程问题—6大常用方法第7关:参数方程与极坐标问题—“考点”面面看第8关:均值不等式问题—拼凑8法第9关:不等式恒成立问题—8种解法探析第10关:圆锥曲线最值问题—5大方面第11关:排列组合应用问题—解题21法第12关:几何概型问题—5类重要题型第13关:直线中的对称问题—4类对称题型第14关:利用导数证明不等式问题—4大解题技巧第15关:函数中易混问题—11对第16关:三项展开式问题—破解“四法”第17关:由递推关系求数列通项问题—“不动点”法第18关:类比推理问题—高考命题新亮点第19关:函数定义域问题—知识大盘点第20关:求函数值域问题—7类题型16种方法第21关:求函数解析式问题—7种求法第22关:解答立体几何问题—5大数学思想方法第23关:数列通项公式—常见9种求法第24关:导数应用问题—9种错解剖析第25关:三角函数与平面向量综合问题—6种类型第26关:概率题错解分类剖析—7大类型第27关:抽象函数问题—分类解析第28关:三次函数专题—全解全析第29关:二次函数在闭区间上的最值问题—大盘点第30关:解析几何与向量综合问题—知识点大扫描第31关:平面向量与三角形四心知识的交汇第32关:数学解题的“灵魂变奏曲”—转化思想第33关:函数零点问题—求解策略第34关:求离心率取值范围—常见6法第35关:高考数学选择题—解题策略第36关:高考数学填空题—解题策略二、拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4设,求函数的最小值。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式2 . 2®a2 +b2> lab <^> ab < ° +(a. b e /?),当且仅当a = b时,号成立:2S + ZP)注:①注意运用均值不等式求最值时的条件:②熟悉一个重要的不等式链:-A-<v^<—<丄+丄2a b一、拼凑定和通过因式分解、纳入根号、升慕等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点, 均分系数,拼凑定和,求积的最大值。

例1⑴当0 <4时,求y = x(8-2x)的最大值。

(2)已知0vxvl,求函数y = -疋一/+兀+1的最大值。

解:y = -x2(x + l) + (x + l) = (x + l)(l-x2) = (x + l)2(l-x)当且仅当¥ = l — x,即x = |时,上式取“二”。

故儿琢°评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。

例2 求函数y = x2>J\-x2 (0<x<\)的最大值。

27当且仅当斗=(1 —/),即x = £时,上式取“二”。

故儿瘁=半。

2 3 9② a + b> 2y[cib <=> ab <(a、beRJ当且仅当&二b时,“日号成立:③ / + + c' »3abc 0 abc < -_"十"3/ d+/? + C、< 3 >(A)a + b + c>3y/abc <^> abc<(a、b、cer),当且仅当a二b二c时,“才号成立:(a、b、cwRT•当且仅当a = b = c时,“〜‘号成立.一“正”、二“定”、三“等”;=4•凹・斗1_归2 2x+i A+i 厶x y〒+〒+(宀)33227评注:将函数式中根号外的正变量移进根号的目的是集中变元,为“拼凑定和”创造条件例3已知0vx<2,求函数y = 6x(4-x2)的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用均值不等式的八类拼凑方法利用均值不等式求最值或证明不等式是高中数学的一个重点。

在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。

均值不等式等号成立条件具有潜在的运用功能。

以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。

笔者把运用均值不等式的拼凑方法概括为八类。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1:已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=∙∙∙-≤=⎪ ⎪⎝⎭ 。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2:求函数()22101y x x x =-<<的最大值。

解:()()2242214122x x y x x x =-=∙∙∙-。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪∙∙-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x =-,即63x =时,上式取“=”。

故max 239y =。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3:已知02x <<,求函数()264y x x =-的最大值。

解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。

当且仅当()2224x x=-,即233x =时,上式取“=”。

故max3218827y ⨯=,又max 3230,3y y >=。

二、拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件 例4:设1x >-,求函数()()521x x y x ++=+的最小值。

解:()()()141144152159111x x y x x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥++=+++。

当且仅当1x =时,上式取“=”。

故min 9y =。

评注:有关分式的最值问题,若分子的次数高于分母的次数,则可考虑裂项,变为和的形式,然后“拼凑定积”,往往是十分方便的。

例5:已知1x >-,求函数()()22413x y x +=+的最大值。

解:1,10x x >-∴+> ,()()()()22412424342241414141x y x x x x +∴==≤=⨯+++++++++。

当且仅当1x =时,上式取“=”。

故max 3y =。

评注:有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母“拼凑定积”。

例6:已知0x π<<,求函数2cos sin xy x -=的最小值。

解:因为0x π<<,所以022x π<<,令tan 2xt =,则0t >。

所以211cos 1131323sin sin 22222x t t ty t x x t t t -+=+=+=+≥= 。

当且仅当1322tt =,即3,33t x π==时,上式取“=”。

故min 3y =。

评注:通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。

三、拼凑常数降幂例7:若332,,a b a b R ++=∈,求证:2a b +≤。

分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供信息,开辟捷径。

本题已知与要求证的条件是1a b ==,为解题提供了信息,发现应拼凑项,巧妙降次,迅速促成“等”与“不等”的辩证转化。

证明:33333333333333113113,113113a a a b b b ++≥=++≥=。

()33463, 2.a b a b a b ∴++=≥+∴+≤当且仅当1a b ==时,上述各式取“=”,故原不等式得证。

评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。

例8:若332,,x y x y R ++=∈,求225x y xy ++的最大值。

解:333333311,311,311,x x x x y y y y x y x y ⨯⨯⨯≤++⨯⨯⨯≤++⨯⨯⨯≤++()()33333333221151775733x x y y x y x y x y xy ++++++++++∴++≤==。

当且仅当1a b ==时,上述各式取“=”,故225x y xy ++的最大值为7。

例9:已知,,0,1a b c abc >=,求证:333a b c ab bc ca ++≥++。

证明:333333131,131,131a b a b b c b c c a c a ++≥⨯∙∙++≥⨯∙∙++≥⨯∙∙ ,()()333323a b c ab bc ca ∴+++≥++,又322233ab bc ca a b c ++≥= , ()()3333333223,a b c ab bc ca a b c ab bc ca ∴+++≥+++∴++≥++。

当且仅当1a b c ===时,上述各式取“=”,故原不等式得证。

四、拼凑常数升幂例10.若,,a b c R +∈,且1a b c ++=,求证55543a b c +++++≤。

分析:已知与要求证的不等式都是关于,,a b c 的轮换对称式,容易发现等号成立的条件是13a b c ===,故应拼凑163,巧妙升次,迅速促成“等”与“不等”的辩证转化。

证明:()()()161616161616255,255,255333333a ab bc c +≤+++≤+++≤++()()1625553132.555433a b c a b c a b c ∴+++++≤+++=∴+++++≤当且仅当13a b c ===时,上述各式取“=”,故原不等式得证。

例11. 若2,,,a b a b R ++=∈,求证:332a b +≥。

证明:33333331111,31111,a a b b ⨯⨯≤++⨯⨯≤++ ()3334a b a b ∴+≤++。

又332,2a b a b +=∴+≥ 。

当且仅当1a b ==时,上述各式取“=”,故原不等式得证。

六、约分配凑通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。

例12.已知28,,0,1x y x y>+=,求xy 的最小值。

解:222846446413223264y x y xxy xy xy x y x y x y ⎛⎫==+=++≥+= ⎪⎝⎭。

当且仅当2812x y ==时,即 4.16x y ==,上式取“=”,故()min 64xy =。

例13.已知01x <<,求函数411y x x=+-的最小值。

解:因为01x <<,所以10x ->。

所以()()414141159111x x y x x x x x x x x -⎛⎫=+=+-+=++≥⎡⎤ ⎪⎣⎦---⎝⎭。

当且仅当()411x x xx -=-时,即23x =,上式取“=”,故min 9y =。

例14. 若,,a b c R +∈,求证()22212a b c a b c b c c a a b ++≥+++++。

分析:注意结构特征:要求证的不等式是关于,,a b c 的轮换对称式,当a b c ==时,等式成立。

此时22a ab c =+, 设()2a m b c +=,解得14m =,所以2a b c +应拼凑辅助式4b c+为拼凑的需要而添,经此一添,解题可见眉目。

证明:2222222,2,2444444a b c a b c b c a b c a c a b c a b a b c b c b c c a c a a b a b +++++++≥=+≥=+≥=++++++ ()22212a b c a b c b c c a a b ∴++≥+++++。

当且仅当a b c ==时,上述各式取“=”,故原不等式得证。

七、引入参数拼凑某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。

例15.已知,,x y z R +∈,且1x y z ++=,求149x y z++的最小值。

解:设0λ>,故有()10x y z λ++-=。

()1491491491x y z x x x x y z x y z x y zλλλλλ⎛⎫⎛⎫⎛⎫∴++=+++++-=+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 24612λλλλλλ≥++-=-。

当且仅当149,,x y z x y zλλλ===同时成立时上述不等式取“=”, 即123,,x y z λλλ===,代入1x y z ++=,解得36λ=,此时1236λλ-=,故149x y z++的最小值为36。

八、引入对偶式拼凑根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。

例16.设12,,,n a a a ⋅⋅⋅为互不相等的正整数, 求证31222221111123123n a a a a n n+++⋅⋅⋅+≥+++⋅⋅⋅+。

证明:记3122222123n n a a a a b n=+++⋅⋅⋅+,构造对偶式1231111n n d a a a a =+++⋅⋅⋅+, 则3122222123111111112123123n n n n a a a a b d a a a na n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=++++++⋅⋅⋅++≥+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当且仅当(),i a i i N i n +=∈≤时,等号成立。

又因为12,,,n a a a ⋅⋅⋅为互不相等的正整数,所以1111123n d n ≤+++⋅⋅⋅+,因此1111123n b n≥+++⋅⋅⋅+。

评注:本题通过对式中的某些元素取倒数来构造对偶式。

相关文档
最新文档