福建省泉州第三中学2012届九年级数学上学期期中考试试题_人教新课标版
福建省泉州九年级上学期期中考试数学试题附答案

期中考试卷初三数学 命题者:(满分:150分;考试时间:120分钟)一、 选择题:(本题共10小题,每小题4分,共40分).1.下列二次根式中的最简二次根式是( ) A .30B .12C .8D .0.52.下列计算正确的是( ) A .235+= B .236⋅= C .84=D .2(3)3-=-3.方程的根是( )A .2x =B .0x =C . 120,2x x ==D .120,2x x ==- 4.方程x 2﹣2x+3=0的根的情况是( ) A .有两个相等的实数根 B .只有一个实数根 C .没有实数根D .有两个不相等的实数根5.下列事件中,是必然事件的是( )A .从一个只有白球的盒子里摸出一个球是白球B .任意买一张电影票,座位号是3的倍数C .掷一枚质地均匀的硬币,正面向上D .汽车走过一个红绿灯路口时,前方正好是绿灯 6.用配方法解方程x 2+2x ﹣1=0时,配方结果正确的是( ) A .(x +2)2=2 B .(x +1)2=2 C .(x +2)2=3 D .(x +1)2=3 7.下列各组线段(单位:cm )中,成比例线段的是( )A .1、2、3、4B .1、2、2、4C .1、2、2、3D .3、5、9、138.如图,△ABC 中,D 为AB 中点, BE ⊥AC .若DE=5,AE=8,则BE 的长度是( ) A .5B .5.5C .6D .6.59.如图,△ABC 和△A ʹB ʹC ʹ位似,位似中心为点O ,点A (-1,2) 点A ʹ(2,-4),若△ABC 的面积为4,则△A ʹB ʹC ʹ的面积是( ) A .2 B .4 C .8 D .1610.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九卷《勾股》章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步) 你的计算结果是:( )A .300步B .315 步C .400 步D .415步二、填空题:(本题共6小题,每小题4分,共24分).11.二次根式3x -在实数范围内有意义,则 x 的取值范围是_______ .12.已知32=b a ,则ba a-的值为 . 13.在一个不透明的袋子中,装有4个红球和白球若干个,若抽到红球的概率为31,则袋中白球有 .14.如图,在5×5的正方形网格中,△ABC 的三个顶点A ,B ,C 均在格点上,则tanA 的值为 15.如下图所示,已知点E ,F 分别是△ABC 的边AC ,AB 的中点,BE ,CF 相交于点G ,FG =1,则CF 的长为___________.16.如上图,反比例函数ky x=(x >0)图象上一点A ,连结OA ,作AB 丄x 轴于点B ,作BC ∥OA 交反比例函数图象于点C ,作CD 丄x 轴于点D,若点A 、点C 横坐标分别为m 、n ,则m :n 的值为 .(第15题)DCB AO(第16题)yx(第14题)三、解答题 :(本题共9小题,共86分).17. (本小题满分8分)计算:211882+-18. (本小题满分8分)解方程:2340x x +-=19. (本小题满分8分) 先化简,再求值:)3()2)(2(a a a a -++-,其中2-=a .20.(本小题满分8分)计算:︒︒+︒︒-︒45tan 30sin 60tan )30cos 30(tan21.(本小题满分10分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,泉州市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同. (1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?请说明理由。
2012年九年级第一学期数学期中考试卷

2012年九年级第一学期数学期中考试卷2012~2013学年秋学期期中试卷初三数学注意事项:1、本试卷满分100分考试时间:120分钟2、试卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、精心选一选:(本大题共10题,每小题3分,满分30分.)1.在下列二次根式中,与3是同类二次根式的是………………………………()A.18B.24C.27D.302.下列方程中,是关于x的一元二次方程的是…………………………………()A.ax2+bx+c=0B.x2=x(x+1)C.D.4x2=93.下列运算正确的是………………………………………………………………()A.2+23=35B.8=42C.27÷3=3D.25=±54.关于x的一元二次方程(m-1)x2+x+m2-1=0的一个根是0,则m 的值为…()A.1B.-1C.1或-1D.0.55.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么这组数据的标准差是…()A.10B.C.2D.6.某地为执行“两免一补”政策,2010年投入教育经费2500万元,预计2012年投入3600万元.设这两年投入教育经费的年平均增长率为,则下列方程正确的是().A.2500(1+x)2=3600B.2500x2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=36007.已知两个同心圆的圆心为O,半径分别是2和3,且2<OP<3,那么点P在()A.小圆内B.大圆内C.小圆外大圆内D.大圆外8.现给出以下几个命题:(1)长度相等的两条弧是等弧;(2)相等的弧所对的弦相等;(3)圆中90°的角所对的弦是直径;(4)矩形的四个顶点必在同一个圆上;(5)在同圆中,相等的弦所对的圆周角相等.其中真命题的个数为…………………()A.1B.2C.3D.49.半径为2的圆中,弦AB、AC的长分别2和22,则∠BAC的度数是…………()A.15°B.15°或45°C.15°或75°D.15°或105°10.如图正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为……………………………………()A.B.C.D.二、细心填一填:(本大题共8小题,10空,每空2分,共20分.)11.当x时,二次根式在实数范围内有意义.12.在实数范围内因式分解:.13.将一元二次方程5x(x-3)=1化成一般形式为,常数项是_______. 14.数据-1,0,1,2,3的极差是,方差是_______.15.实数a、b、c在数轴上对应点的位置如图所示,化简=.16.如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D 是BAC︵上一点,则∠D=°.17.已知△ABC的一边长为10,另两边长分别是方程的两个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是.18.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t(s)(0≤t<6),连接EF,当△BEF是直角三角形时,t的值为.三、解答题(共80分)19.计算(每小题4分共12分)(1)(2)(3)20.解方程:(每小题4分共12分)(1)3x2=4x(2)m2-3m+1=0(3)9(x-1)2-(x+2)2=0.21.(本题6分)先化简,再求值:(a-2+5a+2)÷(a2+1),其中a=3-2. 22.(本题7分)在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.23.(本题6分)某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军)。
2012年泉州中考数学试卷(word文字正版)

2012年福建省泉州市初中毕业、升学考试数 学 试 题(满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡的相应的位置上,答在本试卷一律无效.毕业学校_________________姓名___________考生号_________一、选择题(每小题3分,共21分) 1.﹣7的相反数是( ) A . ﹣7B . 7C .﹣D .2.(a 2)4等于( ) A . 2a 4 B . 4a 2 C . a 8 D . a 6 3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是( ) A .B .C .D .4.如图是两个长方体堆成的物体,则这一物体的正视图是( )A .B .C .D .5.若y=kx ﹣4的函数值y 随x 的增大而增大,则k 的值可能是下列的( ) A . ﹣4B .﹣C . 0D . 36.下列图形中,有且只有两条对称轴的中心对称图形是( ) A . 正三角形B . 正方形C . 圆D . 菱形7.如图,O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别交E 、F ,则( )A . EF >AE+BFB . EF <AE+BFC . EF=AE+BFD . EF ≤AE+BF二、填空题(每小题4分,共40分). 8.比较大小:﹣5 _________ 0.9.分解因式:x 2﹣5x= _________ . 10.光的速度大约是300 000 000米/秒,将300 000 000用科学记数法表示为 _________ .11.某校初一年段举行科技创新比赛活动,各班选送的学生数分别为3、2、2、6、6、5,则这组数据的平均数是_________.12.n边形的内角和为900°,则n=_________.13.计算:=_________.14.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________.15.如图,在△ABC中,∠A=60°,∠B=40°,点D、E分别在BC、AC的延长线上,则∠1= _________°.16.如图,在矩形ABCD中,AB=1,AD=2,AD绕着点A顺时针旋转,当点D落在BC 上点D′时,则AD′=_________,∠AD′B=_________°.17.在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有_________条;(2)如图②,∠C=90°,∠B=30°,当=_________时,P(l x)截得的三角形面积为△ABC 面积的.三、解答题(共89分).18.(9分)计算:×+|﹣4|﹣9×3﹣1﹣20120.19.(9分)先化简,再求值:(x+3)2+(2+x)(2﹣x),其中x=﹣2.20.(9分)在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出1子,则提出白子的概率是多少?(2)随机地从盒中提出1子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.21.(9分)如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F.求证:∠DAE=∠BCF.22.(9分)为了了解参与“泉州市非物质文化进校园”活动的情况,某校就报名参加花灯、南音、高甲戏、闽南语四个兴趣小组的学生进行抽样调查,下面是根据收集的数据进行绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了_________名同学,扇形统计图中“闽南语”部分的圆心角是_________度,请你把这个条形统计图补充完整;(2)如果每位老师最多只能辅导同一兴趣小组的学生20名,现该校共有1200名学生报名参加这4个兴趣小组,请你估计学校至少安排多少名高甲戏兴趣小组的教师.23.(9分)如图,在方格纸中(小正方形的边长为1),反比例函数y=与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)分别写出点A、B的坐标后,把直线AB向右平移5个单位,再向上平移5个单位,画出平移后的直线A′B′;(2)若点C在函数y=的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.24.(9分)国家推行“节能减排,低碳经济”政策后,某企业推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)y0、y1(单位:元)与正常运营时x(单位:天)之间分别满足关系式:y0=ax、y1=b+50x,如图所示.试根据图象解决下列问题:(1)每辆车改装前每天的燃料费a=_________元;每辆车的改装费b=_________元,正常营运_________天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元?25.(12分)已知:A、B、C三点不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图①,当∠A=45°,R=1时,求∠BOC的度数和BC的长;ii)如图②,当∠A为锐角时,求证:sinA=;(2)若定长线段BC的两个端点分别在∠MAN的两边AM、AN(B、C均与A不重合)滑动,如图③,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为P,试探索在整个滑动过程中,P、A两点间的距离是否保持不变?请说明理由.26.(14分)如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ 是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.四、附加题27.(1)方程x﹣5=0的解是_________.(2)如图,点A、O、B在同一直线上,已知∠BOC=50°,则∠AOC=_________°.2012年福建省泉州市初中毕业、升学考试数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分. (三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.B ;2.C ;3.B ;4.A ;5.D ;6.D ; 7.C .二、填空题(每小题4分,共40分)8.<; 9.)5(-x x ; 10.8103⨯; 11.4; 12.7; 13.1; 14.3; 15. 80; 16.2,30; 17.(1)1; (2)21或43或43.三、解答题(共89分)18.解:原式 =1346--+ ……………………………………………………………… 8分= 6 ………………………………………………………………………… 9分19.解:原式=22496x x x -+++ ……………………………………………………… 4分 =136+x …………………………………………………………………… 6分当2-=x 时,原式=13)2(6+-⨯ ………………………………………… 7分=1 ……………………………………………………… 9分20.解:(1)P (白子)=41………………………………………………………………4分 (2)方法一:所有等可能的结果,画树状图如下:∴ P (一黑一白)=21126= …………………………………………………… 9分 方法二:所有等可能的结果,列表如下:∴ P (一黑一白)=21126= …………………………………………………… 9分 21. 证明:在□ABCD 中,AD = BC ,AD ∥BC ………………………………… 3分∴ ∠ADB =∠CBD ………………………………… 5分 ∵ AE ⊥BD ,CF ⊥BD∴ ∠AED =∠CFB = 90° …………………………… 6分 ∴ △ADE ≌△CBF ………………………………… 7分∴ ∠DAE =∠BCF …………………………………………………………… 9分22.解:(1)100名,90条形统计图,见上图 ……………………………………………………………6分白 黑1黑2黑3黑1 黑2 黑3白 黑2 黑3白 黑1 黑3 白 黑1 黑2第一次 第二次………………………………………………………………………… 8分白白 黑1 黑1黑2 黑2黑3黑3(黑2,白) (黑1,白)(黑3,白) (白,黑2) (白,黑1) (白,黑3)(黑1,黑2) (黑2,黑1)(黑1,黑3) (黑3,黑1)(黑3,黑2) (黑2,黑3)………………………………………………………………… 8 分ABCDE F(2)解:920100151200=÷⨯(名) ∴ 学校至少应安排9名高甲戏兴趣小组的教师. ………………………………9分23解:(1)A (1-,4-)、B (4-,1-),平移后的直线A ′B ′见右图 …………………………………… 6分 (2)C 点的坐标为C 1(2-,2-)或C 2(2,2) ……… 9分 24. 解:(1)90=a ;4000=b ,100 …………………………… 6分 (2)解法一:依题意及图象得: 4000100400000)5090(100⨯+=-⨯x 解得:200=x答:200天后共节省燃料费40万元. ………………… 9分解法二:依题意,可得:200100)5090(100400000=+-÷(天) 答:200天后共节省燃料费40万元. ………………… 9分O AByxA ′B ′25.(本小题12分)已知:A 、B 、C 三点不在同直线上. (1)若点A 、B 、C 均在半径为R 有⊙O 上.ⅰ)如图①,当∠A = 45°,R = 1时,求∠BOC 的度数和BC 的长; ⅱ)如图②,当∠A 为锐角时,求证:RBCA 2sin =; (2)若定长线段....BC 的两上端点分别在∠MAN 的两边AM 、AN (B 、C 均与A 不重合)滑动,如图③,当∠MAN = 60°,BC = 2时,分别作BP ⊥AM ,CP ⊥AN ,交点为P ,试探索:在整个滑动过程中,P 、A 两点的距离是否保持不变?请说明理由.解:(1)ⅰ)∵ 点A 、B 、C 均在⊙O 上∴ ∠BOC = 2∠A = 2×45° = 90° ……………………3分 ∵ OB = OC = 1,∴ BC =2. …………………………………………5分注:也可延长BO 或过O 点作BC 的垂线构造直角三角形求得BC . ⅱ)证法一:如图,作直径CE ,则∠E =∠A ,CE = 2R∴ ∠EBC = 90°∴ RBCE A 2sin sin == …………………………………… 8分证法二:如图,连结OB 、OC ,作OH ⊥BC 于点H 则∠A =21∠BOC =∠BOH ,BH = 21BC ∴ RBCR BCOB BH BOH A ===∠=21sin sin …………… 8分 (2)解法一:如图,连结AP ,取AP 的中点K ,连结BK 、CK 在Rt △APC 中,CK = 21AP = AK = PK ,同理得:BK = AK = PK ∴ CK = BK = AK = PK∴ 点A 、B 、P 、C 都在⊙K 上 …………………………… 8分∴ 由(1)ⅱ)可知,APBC=︒60sin∴ 33460sin 2=︒=AP故在整个滑动过程中,P 、A 两点间的距离保持不变.… 12分解法二:如图,连结AP ,并延长BP 交AN 于点QOABC ABC P MNKO ABCEOAB CH∵ BP ⊥AM ,CP ⊥AN ∴ PQCQAQ BQ AQB ==∠cos ∵ ∠AQP =∠BQC∴ △BCQ ≌△APQ ……………………………………… 8分 ∴PQ CQ AP BC = ∴ A Q BBCAP ∠=cos ∵ ∠QAB = 60° ∴ ∠AQB = 30° ∴ 334=AP (定值) 故在整个滑动过程中,P 、A 两点间的距离保持不变.… 12分I 注:解法一中,由点A 、B 、P 、C 都在⊙K 上 ……………………………10分 可得∠QAP =∠QBC ∴ △QAP ≌△QBC …………………………… 8分 ∴ AP BC AQ BQ ==︒60sin ∴ 33460sin =︒=BC AP (定值)得证 …………12分 26.(本小题14分)如图,O 为坐标原点.直线l 绕着点A (0,2)旋转,与经过点C (0,1)的二次函数h x y +=241的图象交于不同..的两点P 、Q . (1)求h 的值;(2)通过操作、观察,算出△POQ 面积的最小值(不必说理);(3)过点P 、C 作直线,与x 轴交于点B ,试问:在直线l 的旋转过程中,四边形AOBQ 是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.解:(1)∵ 抛物线h x y +=241经过点C (0,1), ∴10412=+⨯h , ………………………………………………………… 2分 解得:1=h .………………………………………………………………… 3分 (2)操作、观察知:PQ ∥x 轴时,△POQ 的面积最小,令(1)1412+=x y 中,2=y 解得:2±=x . ∴ 点P (2-,2)、Q (2,2)∴ △POQ 的面积最小值4.…………………………………………… 6分 (3)解法一:若l 与x 轴不平行(如图),即PQ 与x 轴不平行AB CPMN Q依题意,设抛物线1412+=x y 上的点P (a ,1412+a )、Q (b ,1412+a ) (b a <<0)直线BC :11+=x k y 过点P , …………… 8分 ∴114112+=+ak a ,得a k 411=, 即 141+=ax y , 令0=y 得ax B 4-= …(*) ………………………………………………… 10分 同理,过点A 的直线l :2+=kx y 经过点P 、Q ∴21412+=+ak a … ①; 21412+=+bk b …②………………………11分 ①×b —②×a 得:)(2)(4122a b a b a b b a -=-+- 化简得:ab 4-=……… 12分 ∴ 点B 与Q 的横坐标相同, ∴ BQ ∥y 轴,即BQ ∥OA ,又AQ 与OB 不平行, ∴四边形AOBQ 是梯形. ………………………………… 13分 据抛物线的对称性可得(b a >>0)结论相同.故在直线l 旋转过程中:当l 与x 轴不平行时,四边形AOBQ 是梯形;当l 与x 轴平行时,四边形AOBQ是正方形. …………………………………………………………………… 14分解法二:如图,作直线BM ∥y 轴与直线PA 交于点M ,作PP 1⊥x 轴于点P 1,作MN ⊥PP 1于点N ,交y 轴于点H ,易证:△BOC ∽△BP 1P ,△MHA ∽△MNP ∴P P OC B P OB 11=, NPHANM HM =.…………………8分 设P (1x ,1y ),B (0x ,0),M (0x ,2y ),(21y y >), 则11001y x x x =-… ① ,2121002y y y x x x --=- …②,M C A P Q OlxyBH P 1N又141211+=x y ,代入①得10210)141(x x x x -=+,即104x x -=…(*)…………10分由①②得22112y y y y --=, ………………………………………………………………11分∴ 21212111241411411x x x y y y +=+=-=, (*)代入上式,得141202+=x y ,………………………………………………… 12分 ∴ 点M (0x ,2y )在抛物线1412+=x y 上,即为点Q ,故QB ∥y 轴, 又AQ 与OB 不平行, ∴四边形AOBQ 是梯形. ……………………………… 13分 据抛物线的对称性可得(21y y <)结论相同.故在直线l 旋转过程中:当l 与x 轴不平行时,四边形AOBQ 是梯形;当l 与x 轴平行时,四边形AOBQ是正方形. …………………………………………………………………………… 14分四、附加题: 1.5=x2.130。
福建省泉州市九年级上学期期中考试数学试题(有答案)

一、选择题:(本大题共7个小题,每小题3分,共21分.)1.若二次根式4x -有意义,则x 的取值范围是( ).A .x <4B .x >4C .x ≥4D .x ≤42.下列各式计算错误的是( )A .235+=B .236⨯=C .632÷=D .2(22-)= 3. 下列根式是最简二次根式的是( ).A .51B .5.0C .5D .504.下列各组中的四条线段是成比例线段的是( )A .a=6,b=4,c=10,d=5B .a=3,b=7,c=2,d= 9C .a=2,b=4,c=3,d=6D .a=4,b=11,c=3,d=25.用配方法解方程2280x x +-=,下列配方结果正确的是( ).A .2(1)7x +B .2(1)9x +=C .2(1)7x -=D .2(1)9x -= 6.如图,在一块长为20m ,宽为15m 的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为546m 2,如果设小路的宽度为x m ,那么下列方程正确的是( ).A . 546)15)(20(=--x xB .546)15)(20(=++x xC .546)215)(220(=--x xD .546)215)(220(=++x x7.如图,△ABC 中,∠B =90°,AB =5,BC =12,将△ABC 沿DE 折叠,使点C 落在AB 边上的C '处,并且D C '∥BC ,则CD 的长是( ).A .25156B . 6C . 96601D . 213二、填空题:(本题共10个小题,每小题4分,共40分)8.计算:=⨯25 .9.写出7的一个同类二次根式是10.当k = 时,方程042=+-k x x 有两个相等的实数根。
11.已知关于x 的方程260x mx +-=的一个根为2,则m 的值是12. 若=+=bb a b a ,则32____________ 13.在比例尺为1:1000000的地图上,量得甲、乙两地的距离约为3厘米,则甲、乙两地的实际距离约为 千米;14、已知△ABC 与△DEF 相似且相似比为2:3,则△A BC 与△DEF 的面积比是________.15. 如图,点O 是△ABC 的重心,若1OD =,则=AD .16. 如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =, 那么BF FD= . 17.已知x 1、x 2为方程x 2+3x +1=0的两实根,则(1)=+21x x (2)2318x x ++20=__________三、解答题(共89分)18.(9分)计算: 241221348+⨯-÷19.(9分)计算:① x x 32= ② 01322=+x x —.20.(9分)先化简,再求值:)3)(3()2(2x x x -+++,其中2-=x .21. 20.(9分)已知11=x 是方程052=-+mx x 的一个根,求m 的值及方程的另一根2x .22.(9分)如图,在4×4的正方形方格中,△ABC 和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,∠DEF= °,BC= , DE= ;(2)判断:△ABC 与△DEF 是否相似?并说明理由.23.(9分)如图,在梯形ABCD 中,AD ∥BC ,∠B=∠ACD. (1)证明:△ABC ∽△DCA ;(2)若AC=6,BC=9,求AD 长.24.(9分)某市为落实房地产调控政策,加快了廉租房的建设力度.第一年投资2亿元人民币建设了廉租房8万平方米,累计连续三年共.投资..9.5亿元人民币建设廉租房.设每年投资的增长率均为x .(1)求每年投资的增长率;(2)若每年建设成本不变,求第三..年.建设了多少万平方米廉租房.25.(13分)如图,在ABC ∆中,090=∠ACB ,CD ⊥AB ,(1)图中共有 对相似三角形,写出来分别为 (不需证明);(2)已知AB=10,AC=8,请你求出CD 的长;(3)在(2)的情况下,如果以AB 为x 轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如下图),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 出B 点出发,以每秒1个单位的速度沿线段BA 运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t 秒是否存在点P ,使以点B 、P 、Q 为顶点的三角形与⊿ABC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由.26.(13分)如图,在锐角三角形ABC 中,10 BC ,BC 边上的高AM=6,D ,E 分别是边AB ,AC 上的两个动点(D 不与A ,B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG . (1)因为 ,所以△ADE ∽△ABC . (2)如图1,当正方形DEFG 的边GF 在BC 上时,求正方形DEFG 的边长; (3)设DE = x ,△ABC 与正方形DEFG 重叠部分的面积为y .①如图2,当正方形DEFG 在△ABC 的内部时,求y 关于x 的函数关系式,写出x 的取值范围;②如图3,当正方形DEFG 的一部分在△ABC 的外部时,求y 关于x 的函数关系式,写出x 的取值范围; ③当x 为何值时,y 有最大值,最大值是多少?2014-2015学年惠安县第三片区九年级(上)期中考试数学试卷参考答案19、(1)解:032=-xxx(x-3)=0…………………………………………2分3,021==xx…………………………………………4分(2)解:方法一:()()0112=--xx…………………………………………2分112=-=-xx或…………………………………………4分21,121==xx…………………………………………5分方法二:∵a=2,b=-3,c=1………………………………………()11243422=⨯⨯--=-acb>0……………………2分∴()2213242⨯±--=-±-=aacbbx…………………4分21,121==xx…………………………………………5分20.(9分)解:原式=22344xxx-+++……………………4分=74+x……………………6分当2-=x时,原式=7)2(4+-⨯=78+-=1-……………………9分24、(9分)解:(1)依题意,得2+2(1+x )+2(1+x )2=9.5,……………………4分 整理得:05.3622=-+x x ,解得x 1 = 0.5=0050,x ,2 =-3.5(不合题意舍去).………6分 答:每年投资的增长率为0050;(2) 2(1+0050)2×4=18(万平方米).……………………………………………………9分 答:第三年建设了18万平方米廉租房.25、解:(1) 3 ,分别为 ⊿ABC ∽⊿ACD, ⊿ABC ∽⊿CBD , ⊿ACD ∽⊿CBD …………4分(2) 解法一:在⊿ABC 中,090=∠ACB BC==-22AC AB 6,∵S ⊿ABC=CD AB BC AC .21.21= ∴ 6×8=10.CD∴CD=4.8解法二:在⊿ABC 中,090=∠ACB BC==-22AC AB 6,由(1)可知⊿ABC ∽⊿ACD∴ABAC BC CD = ∴1086=CD ∴CD=4.8 ………………………………7分(3)存在点P ,使⊿BPQ 与⊿ABC 相似,理由如下:在⊿BOC 中,∠BOC=900,OB==-22CO BC 3.6(i ) 当∠BQP=900时,(如图)易得⊿PQB ∽⊿ABC∴BCBQ AB BP = ∴6106t t =- 解得:t=2.25即BQ=CP=2.25∴OQ=1.35,BP=3.75在⊿BPQ 中,PQ==-22BQ BP 3∴点P 的坐标为(1.35,3)……………………10分(ii ) 当∠BPQ=900时,(如图)易得⊿QPB ∽⊿ABC∴ABBQ BC BP = ∴1066t t =- 解得:t=3.75即BQ=CP=3.75,BP=2.25过点P 作PD ⊥x 轴于点D ,∵⊿QPB ∽⊿ABC∴ABBQ CO PD = ∴1075.38.4=PD ∴PD=1.8在⊿BPD 中,BD==-22BD BP 0.45∴OD=3.15∴点P 的坐标为(3.15,1.8)……………………13分综上可得:点P 的坐标为(1.35,3)或(3.15,1.8)。
【5套打包】泉州市初三九年级数学上期中考试检测试题(解析版)

新九年级(上)期中考试数学试题(含答案)一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣26.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=75007.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l508.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F 落在OA中点处,则BC的长为()A.B.2C.D.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是.12.与点P(3,4)关于原点对称的点的坐标为.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.24.(12分)如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)求a的值.(2)过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为.(3)如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S=4时,求k的值.△CMN2018-2019学年湖北省武汉市东湖高新区九年级(上)期中数学试卷参考答案与试题解析一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【分析】根据题目中的式子,将括号去掉化为一元二次方程的一般形式,从而可以解答本题.【解答】解:∵x(x+5)=0∴x2+5x=0,∴方程x(x+5)=0化成一般形式后,它的常数项是0,故选:C.【点评】本题考查一元二次方程的一般形式,形式ax2+bx+c=0(a≠0)这种形式的方程叫一元二次方程的一般形式.2.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)【分析】根据题目中抛物线的顶点式,可以直接写出它的对称轴和顶点坐标,本题得以解决.【解答】解:∵抛物线y=﹣5(x+2)2﹣6,∴该抛物线的对称轴是直线x=﹣2,顶点坐标为(﹣2,﹣6),故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形【分析】根据中心对称图形的概念结合圆、平行四边形、正三角形、正方形的特点求解.【解答】解:A、圆是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项错误;C、正三角形不是中心对称图形,故本选项正确;D、正方形是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.【解答】解:∵a=1,b=﹣4,c=9,∴△=(﹣4)2﹣4×1×9=32﹣36=﹣4<0,则方程x2﹣4x+9=0无实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=﹣x2先向上平移2个单位得到抛物线的解析式为:y=﹣x2+2,再向左平移3个单位得到解析式:y=﹣(x+3)2+2;故选:A.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律,解决本题的关键是熟记“左加右减,上加下减”.6.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=7500【分析】设年平均增长率为x,根据青山村种的水稻2016年及2018年平均每公项的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:设年平均增长率为x,根据题意得:7500(1+x)2=8500.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l50【分析】如图作圆周角∠ADB,根据圆周角定理求出∠D的度数,再根据圆内接四边形性质求出∠C即可.【解答】解:如图做圆周角∠ADB,使D在优弧上,∵∠AOB=96°,∴∠D=∠AOB=48°,∵A、D、B、C四点共圆,∴∠ACB+∠D=180°,∴∠ACB=132°,故选:C.【点评】本题考查了圆周角定理和圆内接四边形性质的应用,正确作辅助线是解此题的关键.8.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧【分析】根据垂径定理,等弧的定义,圆的性质一一判断即可;【解答】解:A、错误.需要添加此弦非直径的条件;B、错误.应该是圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴;C、正确.D、错误.长度相等弧是不一定是等弧,等弧的长度相等;故选:C.【点评】本题考查垂径定理,等弧的定义,圆的有关性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F 落在OA中点处,则BC的长为()A.B.2C.D.【分析】连接OC.由△AFC∽△ACO,推出AC2=AF•OA,可得AC=,再利用勾股定理求出BC即可解决问题;【解答】解:连接OC.由翻折不变性可知:EC=CF,∠CBE=∠CBA,∴=,∴AC=CE=CF,∴∠A=∠AFC,∵OA=OC=2,∴∠A=∠ACO,∴∠AFC=∠ACO,∵∠A=∠A,∴△AFC∽△ACO,∴AC2=AF•OA,∵AF=OF=1,∴AC2=2,∵AC>0,∴AC=,∵AB是直径,∴∠ACB=90°,∴BC===,故选:D.【点评】本题考查翻折变换,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4【分析】根据题意和函数图象,利用二次函数的性质和等腰三角形的性质,可以求得b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx+1,∴x=0时,y=1,∴点C的坐标为(0,1),∴OC=1,∵△OBC为等腰直角三角形,∴OC=OB,∴OB=1,∴抛物线y=ax2+bx+1与x轴的一个交点为(1,0),∴a+b+1=0,得a=﹣1﹣b,设抛物线y=ax2+bx+1与x轴的另一个交点A为(x1,0),∴x1×1=,∵△ABD为等腰直角三角形,∴点D的纵坐标的绝对值是AB的一半,∴,∴﹣,解得,b=﹣2或b=﹣4,当b=﹣2时,a=﹣1﹣(﹣2)=1,此时y=x2﹣2x+1=(x﹣1)2,与x轴只有一个交点,故不符合题意,当b=﹣4时,a=﹣1﹣(﹣4)=3,此时y=3x2﹣4x+1,与x轴两个交点,符合题意,故选:D.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是4.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,知x=2是方程的根,代入方程即可求解.【解答】解:∵x=2是方程的根,由一元二次方程的根的定义代入可得,4﹣c=0,∴c=4.故答案为:4.【点评】本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题.12.与点P(3,4)关于原点对称的点的坐标为(﹣3,﹣4).【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:点P(3,4)关于中心对称的点的坐标为(﹣3,﹣4).【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为m≠1.【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:(m﹣1)x2+2x﹣3=0是一元二次方程,得m≠1,故答案为:m≠1.【点评】此题主要考查了一元二次方程的定义,要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.【分析】根据二次函数的解析式可得出汽车刹车时的初速度以及刹车时的加速度,由“刹车时间=初速度÷刹车加速度”求出刹车后汽车行驶的时间.【解答】解:∵汽车刹车后行驶的距离s关于行驶的时间t的函数解析式是s=15t﹣6t2,∴刹车前的初速度为15m/s,刹车的加速度为﹣12m/s2,∴汽车刹车后行驶的时间为:15÷12=s,故答案为:.【点评】本题考查了二次函数的应用,根据二次函数关系式找出刹车的初速度以及加速度后计算出刹车时间是解题的关键.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为4或﹣2.【分析】根据二次函数图象的开口方向知道,当x=0或x=4时,函数值的最小值是4,结合函数图象得到当x≤0或x≥4时,符合题意.【解答】解:∵二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,=4.∴当x=0或x=4时,y最小值=4.如图,当x≤0或x≥4时,y最小值∵2﹣a≤x≤4﹣a,∴a=4或a=﹣2.故答案是:4或﹣2.【点评】考查了二次函数的最值,解题时,采用了“数形结合”的数学思想,使问题变得直观化.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为2.【分析】如图,在DO上取一点H,使得DH=CD.设AH交BC于点K.只要证明△ACH ≌△BCD(SAS),推出∠CAH=∠CBD,AH=BD,由∠AKC=∠BKH,推出∠KHB=∠ACB=60°,求出AH即可解决问题;【解答】解:如图,在DO上取一点H,使得DH=CD.设AH交BC于点K.∵BA=BC,∠ABC=60°,∴△ABC是等边三角形,∵DC=DH,∠CDH=60°,∴△CDH是等边三角形,∴CA=CB,CH=CD,∠ACB=∠HCD=60°,∴∠ACH=∠BCD,∴△ACH≌△BCD(SAS),∴∠CAH=∠CBD,AH=BD,∵∠AKC=∠BKH,∴∠KHB=∠ACB=60°,在Rt△AOH中,∵OA=3,∴AH==2,∴BD=AH=2.故答案为2.【点评】本题考查坐标与图形变化﹣旋转,等边三角形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)【分析】移项后两边配上一次项系数一半的平方后求解可得.【解答】解:∵x2﹣4x=4,∴x2﹣4x+4=4+4,即(x﹣2)2=8,∴x﹣2=±2,则x=2±2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.【分析】根据角的和差得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS).【点评】本题考查了全等三角形的判定,熟练全等三角形的判定定理是解题的关键.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.【分析】设所围矩形ABCD的长AB为x米,则宽AD为(20﹣x)米,根据矩形面积的计算方法列出方程求解.【解答】解:设矩形与墙平行的一边长为xm,则另一边长为(20﹣x)m.根据题意,得(20﹣x)x=50,解方程,得x=10.当x=10时,(20﹣x)=5.答:矩形的长为10m,宽为5m.【点评】此题不仅是一道实际问题,考查了一元二次方程的应用,解答此题要注意以下问题:(1)矩形的一边为墙,且墙的长度不超过45米;(2)根据矩形的面积公式列一元二次方程并根据根的判别式来判断是否两边长相等.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.【分析】(1)根据垂径定理可得,可得∠AOC=∠AOB,根据圆周角定理可得∠AOB=2∠ADC;(2)由题意可证AB=BE=5,根据勾股定理可求AH=3,即可求EH的长,根据勾股定理可得AE的长.【解答】证明:(1)如图,连接OC,∵OA⊥BC,∴,∴∠AOC=∠AOB,∵∠AOC=2∠ADC,∴∠AOB=2∠ADC(2)∵DC=DE∴∠DCE=∠DEC∵∠DCE=∠DAB,∠DEC=∠AEB,∴∠AEB=∠DAB,∴AB=BE=5∵AH2+BH2=AB2,OH2+BH2=OB2,∴AB2﹣AH2=BH2=OB2﹣(AO﹣AH)2,∴25﹣AH2=﹣(﹣AH)2,∴AH=3,∴BH=4,∴EH=BE﹣BH=1,∴AE==【点评】本题考查圆的有关知识、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.【分析】(1)利用待定系数法求解可得依次函数解析式;(2)根据“总利润=每斤的利润×周销售量”可得函数解析式,再利用二次函数的性质结合x的取值范围可得答案;【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+800;(2)w=(x﹣400)(﹣x+500)=﹣x2+1200x﹣320000,令w=30000得:30000=﹣x2+1200x﹣320000,解得:x=500或x=700,∵a=﹣1<0,∴500≤x≤700时w不小于30000,∵x﹣400≤400×40%,∴x≤560,∴500≤x≤560.【点评】本题主要考查一次函数的应用及一元二次方程的应用的知识,解题的关键是掌握待定系数法求函数解析式、理解题意找到相等关系并列出函数解析式.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为2.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.【分析】(1)由旋转的性质可得:AB=AC,∠BAC=60°,即可证△ABC为等边三角形;(2)过点E作EG⊥直线a,延长GE交直线c于点H,可得GH=7,AD=2,由旋转的性质可得AD=AE=2,∠DAE=60°,可求GE=1,EH=6,由锐角三角函数可求CE=4,根据勾股定理可求等边△ABC的边AC的长;(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,根据特殊三角函数值可求AH =4,通过证明△OBC≌△HCA,可求AH=OC=4,CE=1,根据勾股定理可求△ABC 的边AC的长.【解答】解:(1)∵将△AEC绕点A顺时针旋转60°得到△ADB,∴AB=AC,∠BAC=60°,∴△ABC为等边三角形.(2)过点E作EG⊥直线a,延长GE交直线c于点H,∵a∥b∥c,∴EH⊥直线c,∵直线a、c之间的距离为7,∴GH=7∵将△AEC绕点A顺时针旋转60°得到△ADB,∴AD=AE,∠ADB=∠AEC=90°,∠DAE=60°,∵直线a、b之间的距离为2,∴AD=2=AE,∵∠GAE=∠GAD﹣∠DAE=90°﹣60°=30°,∴GE=AE=1,∠AEG=60°,∴EH=7﹣1=6,∵∠CEH=180°﹣∠AEC﹣∠AEG,∴∠CEH=30°,∴cos∠CEH=∴CE=4在Rt△ACE中,AC===2,故答案为:2(3)过点A作∠AHO=60°,交OQ于点G,交OP于点H,∵AE⊥OP,∠AHO=60°∴sin∠AHO=∴AH=4∵△ABC是等边三角形,∴AB=AC=BC,∠ACB=60°=∠POQ,∵∠POQ+∠OBC+∠OCB=180°,∠ACB+∠OCB+∠ACH=180°,∴∠ACH=∠OBC,且BC=AC,∠O=∠AHC=60°,∴△OBC≌△HCA(AAS)∴AH=OC=4,∴CE=OE﹣OC=5﹣4=1,在Rt△ACE中,AC===,∴△ABC的边长为.【点评】本题是几何变换综合题,考查等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,本题的关键是添加恰当的辅助线构造全等三角形.24.(12分)如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)求a的值.(2)过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为x=3或y=4x﹣12.(3)如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S△CMN=4时,求k的值.【分析】(1)把(3,0)代入y=ax2﹣2x﹣3,即可求解;(2)当直线与y轴平行时,直线l的解析式为:x=﹣3;当直线与y轴不平行时,设:直线1的解析式为:y=kx+b,由△=0即可求解;(3)联立得:x2﹣(2+k)x+4=0,由S△CMN =|S△CFN﹣S△CFM|=×CF×|x M﹣x N|=4,即可求解.【解答】解:(1)把(3,0)代入y=ax2﹣2x﹣3,得:0=9a﹣6﹣3,∴a=1;(2)当直线与y轴平行时,直线l的解析式为:x=﹣3当直线与y轴不平行时,设:直线1的解析式为:y=kx+b,将点B坐标代入上式,解得:b=﹣3k则直线的表达式为:y=kx﹣3k…①,抛物线的表达式为:y=x2﹣2x﹣3…②,联立①②并整理得:x2﹣(k+2)x+(3k﹣3)=0,△=b2﹣4ac=(k+2)2﹣4(3k﹣3)=0,解得:k =4,故:直线的表达式为:x =3或y =4x ﹣12; (3)联立得:x 2﹣(2+k )x +4=0,x M +x N =k +2,x M •x N =4,∵S △CMN =|S △CFN ﹣S △CFM |=×CF ×|x M ﹣x N |=4, ∴×4×=4,即:(k +2)2=20, 解得:k =﹣2±2.【点评】本题考查的是二次函数综合应用,涉及到一次函数、根的判别式、三角新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( ) A .3,6,1 B .3,6,-1 C .3,-6,1 D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6 B .-6 C .5 D .-5 5.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( )A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( )第5题图第7题图ABCA 'B 'A第8题图A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+2x)+ 20(1+x)2=28.8 7.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt △A′B′C′,点A在B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°8.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°9.抛物线y=ax2-2ax-3a上有A(-0.5,y1),B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1,y2,y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y2<y1<y3D.y1<y2<y310.某学习小组在研究函数y=16x3-2x的图象和性质时,已列表、描点并画出了图象的一部分,则方程16x3-2x=1实数根的个数为()A.1 B.2 C.3 D.4二、填空题(每小题3分,共18分)11.一元二次方程x2-9=0的解是.12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有个班级参赛.13.抛物线y=12x2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是.第10题图14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t -1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .三、解答题(本大题共8小题,共72分) 17.(本题8分)解方程x 2-3x +1=018.(本题8分)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题: (1)直接写出方程ax 2+bx +c =2的根; (2)直接写出不等式ax 2+bx +c <0的解集.19.(本题8分) 关于x 的一元二次方程x 2+(2m -1)x +m 2=0有实数根. (1)求m 的取值范围;(2)若两根为x 1、x 2且x 12+x 22=7,求m 的值.20.(本题8分) 如图,△ABC 是等边三角形. (1)作△ABC 的外接圆;(2)在劣弧BC 上取点D ,分别连接BD ,CD ,并将△ABD 绕A 点逆时针旋转60°;第16题图第15题图第18题图第20题图ABC(3)若AD =4,直接写出四边形ABDC 的面积.21.(本题8分) 如图,AB 为⊙O 的直径,且AB =10,C 为⊙O 上一点,AC 平分∠DAB 交⊙O 于点E ,AE =6,,AD ⊥CD 于D ,F 为半圆弧AB 的中点,EF 交AC 于点G . (1)求CD 的长; (2)求EG 的长.22.(本题10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D .(1)如图1,已知矩形菜园的一边靠墙,且AD ≤MN ,设AD =x 米.①若a =20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; ②求矩形菜园ABCD 面积的最大值;(2)如图2,若a =20,则旧墙和木栏能围成的矩形菜园ABCD 面积的最大值是 米2.23.(本题10分) 如图,在等腰Rt △ABC 中,∠ACB =90°,点P 是△ABC 内一点,连接PA ,PB ,PC ,且PA,设∠APB =α,∠CPB =β.(1)如图1,若∠ACP =45°,将△PBC 绕点C 顺时针旋转90°至△DAC ,连结新九年级上学期期中考试数学试题(答案)一、选择题(每小题3分,共30分)1.一元二次方程3x 2-6x -1=0的二次项系数、一次项系数、常数项分别是( )第21题图AB A BCDMN NM DC BA第22题图2第22题图1A .3,6,1B .3,6,-1C .3,-6,1D .3,-6,-12.用配方法解方程x 2-4x +2=0,配方正确的是( ) A .(x -2)2=2 B .(x +2)2=2C .(x -2)2=-2D . (x -2)2=63.下列手机手势解锁图案中,是中心对称图形的是( )A .B .C .D . 4.已知x 1,x 2是一元二次方程x 2-6x -5=0的两个根,则x 1+x 2的值是( ) A .6 B .-6 C .5 D .-5 5.如图,⊙O 的直径为10,弦AB =8,P 是AB 上一个动点,则OP 的最小值为( )A .2B .3C .4D .56.某市“赏花节”观赏人数逐年增加,据有关部门统计,2016年约为20万人次,2018年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+2x )+ 20(1+x )2=28.87.如图,在Rt △ABC 中,∠BAC =90°,将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ′,点A 在B ′C 上,则∠B ′的大小为( ) A .42° B .48° C .52° D .58° 8.如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为( ) A .35°B .45°C .55°D .65°9.抛物线y =ax 2-2ax -3a 上有A (-0.5,y 1),B (2,y 2)和C (3,y 3)三点,若抛物线与y 轴的交点在正半轴上,则y 1,y 2,y 3的大小关系为( ) A .y 3<y 1<y 2 B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 1<y 2<y 310.某学习小组在研究函数y =16x 3-2x的图象和性质时,已列表、描点并画出了图象的一第5题图第7题图ABCA 'B 'A第8题图部分,则方程16x 3-2x =1实数根的个数为( )A .1B .2C .3D .4二、填空题(每小题3分,共18分)11.一元二次方程x 2-9=0的解是 .12.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛.13.抛物线y =12x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是 .14.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t -1.5t 2,飞机着陆后滑行 m 才能停下来.15.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AB 上的一动点,则∠APB 的大小是 度.16.如图,⊙O 的半径是1,AB 为⊙O 的弦,将弦AB 绕点A 逆时针旋转120°,得到AC ,连OC ,则OC 的最大值为 .三、解答题(本大题共8小题,共72分) 17.(本题8分)解方程x 2-3x +1=0第10题图第16题图第15题图18.(本题8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)直接写出方程ax2+bx+c=2的根;(2)直接写出不等式ax2+bx+c<0的解集.19.(本题8分) 关于x的一元二次方程x2+(2m-1)x+m2=0有实数根. (1)求m的取值范围;(2)若两根为x1、x2且x12+x22=7,求m的值.20.(本题8分) 如图,△ABC是等边三角形.(1)作△ABC的外接圆;(2)在劣弧BC上取点D,分别连接BD,CD,并将△ABD绕A点逆时针旋转60°;(3)若AD=4,直接写出四边形ABDC的面积.21.(本题8分) 如图,AB为⊙O的直径,且AB=10,C为⊙O上一点,AC平分∠DAB交⊙O于点E,AE=6,,AD⊥CD于D,F为半圆弧AB的中点,EF交AC于点G.(1)求CD的长;(2)求EG的长.第18题图第20题图AB C第21题图A B22.(本题10分)如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和100米长的木栏围成一个矩形菜园ABC D .(1)如图1,已知矩形菜园的一边靠墙,且AD ≤MN ,设AD =x 米.①若a =20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长; ②求矩形菜园ABCD 面积的最大值;(2)如图2,若a =20,则旧墙和木栏能围成的矩形菜园ABCD 面积的最大值是 米2.23.(本题10分) 如图,在等腰Rt △ABC 中,∠ACB =90°,点P 是△ABC 内一点,连接PA ,PB ,PC ,且PA,设∠APB =α,∠CPB =β.(1)如图1,若∠ACP =45°,将△PBC 绕点C 顺时针旋转90°至△DAC ,连结新九年级(上)数学期中考试题(答案)一、选择题(每小题4分,共30分) 1.下列二次根式中,最简二次根式为( ) A .B .C .D .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是. 解:A 、被开方数含分母,故A 错误;B 、被开方数不含分母;被开方数中不含能开得尽方的因数或因式,故B 正确;C 、被开方数中含能开得尽方的因数或因式,故C 错误;D 、被开方数中含能开得尽方的因数或因式,故D 错误; 故选:B .【点评】本题考查了最简二次根式,规律总结:满足下列两个条件的二次根式,叫做最简二次根式.被开方数不含分母;被开方数中不含能开得尽方的因数或因式.A BCDMN NM DC BA第22题图2第22题图1。
泉州市九年级上学期期中数学试卷

泉州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知一元二次方程x2+px+3=0的一个根为-3,则p的值为()A . 1B . 2C . 3D . 42. (2分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A . 4B . 3C . 2D . 13. (2分)(2017·邵阳模拟) 在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A . 3B . 2C . 1D . 04. (2分)如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A . 40°B . 70°C . 80°D . 140°5. (2分)抛物线y=ax2+bx+c向右平移5个单位,再向上平移1个单位,得到的抛物线的解析式为y=-3(x-1)2+4,则抛物线y=ax2+bx+c的顶点坐标是()A . (6,3)B . (6,5)C . (-4,3)D . (-4,5)6. (2分) (2019九上·黄埔期末) 如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A . 4B . 5C . 6D . 87. (2分)已知二次函数y=2 x2+9x+34,当自变量x取两个不同的值x1、x2时,函数值相等,则当自变量x取x1+x2时的函数值与()A . x=1时的函数值相等B . x=0时的函数值相等C . x=时的函数值相等D . x=-时的函数值相等8. (2分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A .B .C .D . R9. (2分) (2018九上·富顺期中) 如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0,其中正确的命题是()A . ①②③B . ①③C . ①④D . ①③④10. (2分)如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共6题;共7分)11. (2分)方程(x﹣1)2=4的根是________;方程x2=x的根是________.12. (1分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),那么代数式a2﹣a+2016的值为________.13. (1分) (2019九上·秀洲期末) 如图,点E是正方形ABCD内一点,点E到点A,B和D的距离分别为1,2 ,,将△ADE绕点A旋转至△ABG,连接AE,并延长AE与BC相交于点F,连接GF,则△BGF的面积为________.14. (1分)两个数的和为6,这两个数的积最大可以达到________.15. (1分) (2016九上·嵊州期中) 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度________.16. (1分)已知梯形ABCD中,AD∥BC,AB=15,CD=13,AD=8,∠B是锐角,∠B的正弦值为,那么BC 的长为________ .三、三.解答题 (共9题;共102分)17. (10分)(2017·石城模拟) 根据题意解答(1)计算:|﹣ |+(π﹣3)0+()﹣1﹣2cos45°(2)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,求方程的另一个根.18. (5分)关于x,y的方程组与有相同的解,求a,b的值.19. (5分)如图所示,污水处理公司为某楼房建一座周长为30米的三级污水处理池,平面图为矩形ABCD,AB=x米,中间两条隔墙分别为EF、GH,池墙的厚度不考虑.(1)用含的代数式表示外围墙AD的长度;(2)如果设计时要求矩形水池ABCD恰好被隔墙分成三个全等的矩形,且它们均与矩形ABCD相似,求此时AB的长;(3)如果设计时要求矩形水池ABCD恰好被隔墙分成三个全等的正方形.已知池的外围墙建造单价为每米400元,中间两条隔墙建造单价每米300元,池底建造的单价为每平方米100元.试计算此项工程的总造价.(结果精确到1元)20. (10分)已知关于x的方程x2+ax+a﹣1=0.(1)若该方程的一个根为2,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有实数根.21. (15分)大学生自主创业,集资5万元开品牌专卖店,已知该品牌商品成本为每件a元,市场调查发现日销售量y(件)与销售价x(元/件)之间存在一次函数关系如表:…销售价x(元/件) (110115*********)…销售量y(件) (5045403530)若该店某天的销售价定为110元/件,雇有3名员工,则当天正好收支平衡(其中支出=商品成本+员工工资+应支付其它费用):已知员工的工资为每人每天100元,每天还应支付其它费用为200元(不包括集资款).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)该店现有2名员工,试求每件服装的销售价定为多少元时,该服装店每天的毛利润最大:(毛利润═销售收入一商品成本一员工工资一应支付其他费用)(3)在(2)的条件下,若每天毛利润全部积累用于一次性还款,而集资款每天应按其万分之二的利率支付利息,则该店最少需要多少天(取整数)才能还清集资款?22. (15分) (2018九下·新田期中) 如图,在△ABC中,∠ACB= ,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF,交⊙A于点F,连接AF,BF,DF.(1)求证:BF是⊙A的切线;(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给与证明.(3)若EF=1,AE=2,求cos∠CBA的值.23. (17分)(2019·毕节) 已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.(1)抛物线的解析式为________,抛物线的顶点坐标为________;(2)如图1,连接OP交BC于点D,当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,﹣1),点G为x轴负半轴上的一点,∠OGE=15°,连接PE,若∠PEG=2∠OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由.24. (10分) (2019八下·长沙期中) 如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:DABE@DDAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.25. (15分)(2017·日照) 如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、三.解答题 (共9题;共102分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、25-3、。
福建省九年级上学期期中数学试卷及答案

福建省九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2 3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣124.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤16.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm27.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.108.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是个.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是时,有y1>y2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.24.(12分)如图,点A是反比例函数y1=(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2=(k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2=(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.福建省九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形【解答】解:A、是必然事件,故A符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:A.2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【解答】解:A、y=x2对称轴为x=0,此选项不符合题意;B、y=x2+1对称轴为x=0,此选项不符合题意;C、y=(x﹣1)2对称轴为x=1,此选项符合题意;D、y=(x+1)2对称轴为x=﹣1,此选项不符合题意;故选:C.3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣12【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选:A.4.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤1【解答】解:根据题意得△=(﹣2)2﹣4m≥0,解得m≤1.故选:D.6.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:C.7.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选:B.8.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S=BC•AE=AB2,菱形ABCDS阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选:A.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选:B.10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3【解答】解:方程x2+2x﹣1=0的实数根可以看作函数y=x+2和y=的交点.函数大体图象如图所示:A.由图可得,第三象限内图象交点的横坐标小于﹣2,故﹣1<x0<0错误;B.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故0<x0<1正确;C.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故1<x0<2错误;D.当x=2时,y1=2+2=4,y2=,而4>,根据函数的增减性可知,第一象限内的交点的横坐标小于2,故2<x0<3错误.故选:B.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.【解答】解:∵从数﹣2,﹣1,2,5,8中任取一个数记作k,有5种情况,其中使反比例函数的图象经过第二、四象限的k值只有2种,即k=﹣1和k=﹣2,∴满足条件的概率为.故答案为:.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是12个.【解答】解:根据题意得:20×(1﹣0.1﹣0.3)=12(个),答:袋中白色球的个数很可能是12个;故答案为:12.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=,故答案是:.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为7.5.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为5,∴AB=OA=OB=5,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:5×2=10,∴GE+FH的最大值为:10﹣=7.5.故答案为:7.5.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.【解答】解:设这个反比例函数的解析式为y=(k≠0),依题意得:﹣2=,∴k=﹣8,这个反比例函数解析式为y=﹣.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.【解答】解:连接OC,如图∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.【解答】解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是﹣1<x<0或x>2时,有y1>y2.【解答】解:(1)∵M、N在反比例函数的图象上,∴m==2,﹣4=,解得n=﹣1,∴m的值为2,n的值为﹣1;(2)当y1>y2时,即一次函数图象在反比例函数图象的上方,结合图象可知﹣1<x<0或x>2,故答案为:﹣1<x<0或x>2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.【解答】(1)证明:连接OC,如图,∵DE为切线,∴OC⊥DE,而AD⊥EF,∴OC∥AD,∴∠OCA=∠CAD,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠CAD;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵∠B=30°,∴AC=AB=×12=6.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥B D.∵△ABC是等边三角形,∴DC =BC =×6=3,FC =AC =3.∵∠EDC =30°,∴EC =DC =.∴FE =FC ﹣EC =3﹣=1.5.24.(12分)如图,点A 是反比例函数y 1=(x >0)图象上的任意一点,过点A 作 AB ∥x轴,交另一个比例函数y 2=(k <0,x <0)的图象于点B . (1)若S △AOB 的面积等于3,则k 是= ﹣4 ;(2)当k =﹣8时,若点A 的横坐标是1,求∠AOB 的度数; (3)若不论点A 在何处,反比例函数y 2=(k <0,x <0)图象上总存在一点D ,使得四边形AOBD 为平行四边形,求k 的值.【解答】解:(1)如图1,设AB交y轴于点C,∵点A是反比例函数y1=(x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC=×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;(2)∵点A的横坐标是1,∴y==2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA==,OB==2,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2=上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC=,∴BE=OC=a,DE=AC=,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=|﹣|=a,即﹣=a,∴k=﹣4.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.【解答】解:(1)当m=t=0时,y=﹣nx2+nx﹣n,△=n2﹣4×n×(﹣n)=﹣n2,当n=0时,△=0,该函数图象与x轴有1个交点;当n≠0时,△<0,该函数图象与x轴没有交点;(2)若n=t=3m,抛物线的解析式为:y=(m﹣3m)x2+3mx=﹣mx2+3mx=﹣m(x﹣)2+,当﹣m>0,即m<0时,所以当x=时,函数有最小值为,当﹣m<0,即m>0时,所以当x=时,函数有最大值为;(3)y=(m﹣n)x2+nx+t﹣n,△=n2﹣4×(m﹣n)(t﹣n)=﹣n2+2(m+t)n﹣2mt,设w=﹣n2+2(m+t)n﹣2mt,∵该函数图象和x轴有交点,∴w≥0,∵n的最大值和最小值分别为8和4,∴新二次函数w与n轴有两个交点为(4,0)和(8,0),则w=﹣(n﹣4)(n﹣8)=﹣n2+12n﹣32,∴,,此方程组无实数解,∴不存在实数m和t,使该函数图象和x轴有交点.。
福建省泉州九年级上学期期中教学质量检测数学试题有答案

秋九年级上册期中质量检测数 学 试 题(考试时间:120分钟 总分:150分)一、选择题(每题3分,共21分)1.x 的取值范围是( ) A .2x ≠ B .2x ≥ C .2x ≤ D . 任何实数 2. 下列计算正确的是( ) A= B= C4= D=3. 方程03422=--x x 的二次项系数、一次项系数、常数项分别为( ) A .2、4、-3 B .2、-4、3 C .2、-4、-3 D .-2、4、-34. 用配方法解方程0462=+-x x ,下列配方正确的是( ) A .()1332=-x B .()1332=+x C .()532=-x D .()532=+x5. 若则下列各式中不正确的是( ) A 、B、C 、D 、6. 顺次连结矩形形各边的中点所得的四边形是( )A .矩形B .菱形C .正方形D . 不能确定7. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )二、填空题(每题4分,共40分)8. a = . 9. 若2(2)0x +=,则xy = .10. 已知1是关于x 的一元二次方程022=+-k x x 的一个根,那么=k .CDABACBED CBA ABD 第14题图 11.已知1x 、2x 是方程0242=+-x x 的两个实数根,则=+21x x ______12.关于x 的一元二次方程032=--k x x 有两个不相等的实数根,则k 的取值范围是_______13. 某款手机连续两次降价,售价由原来的1100元降到了891元.设平均每次降价 的百分率为x ,则可列出方程___________________________________ 14. 如图,在ABC ∆中,点D 是AB 的中点,点G 为ABC ∆的重心,2=GD , 则=CD .15. 如图,已知△AB C ∽△ADE ,若AD=2,AB=5,AE=4,则AC =____ 16.小芳和爸爸正在散步,爸爸的身高为1.8m ,他在地面上的影长为2.1m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上学期期中考试试题(满分:150分;考试时间:120分钟) 班级 姓名 座号一、选择题(每小题3分,共21分):每小题有四个答案,其中有且只有一个答案是正确的.请在答题卷上相应题目的答题区域内作答,答对的得3分,答错、不答或答案超过一个的一律得0分.1是同类二次根式的是( )ABCD .2.在比例尺为1∶5000的地图上,量得甲、乙两地的距离为5cm ,则甲、乙两地的实际距离是( )A .250kmB .25kmC .2.5kmD .0.25km3.将点A (3,2)向.右.平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(5,2)B .(3,4)C .(1,2)D .(3,0)4.已知关于x 的方程230x kx --=的一个根为3,则k 的值为( )A .1B .1-C .2D .2-5.若相似△ABC 与△DEF 的相似比为1 :3,则△ABC 与△DEF 的面积比为( )A .1 :3B .1 :9C .3 :1D .1 :36.将方程2410x x +-=配方后,原方程变形为( )A .2(2)5x +=B .2(4)5x +=C .2(2)5x -=D .2(2)5x +=-7.如图,在△ABC 中,点D 、E 分别是边AB 、AC 的中点,BE 与CD 相交于 点G ,则DG :GC 的值为( ) A .3 :4B .2 :3C .1 :2D .1 :3二、填空题(每小题4分,共40分):在答题卷上相应题目的答题区域内作答.8.当x ________ 9.若23a b =,则aa b+的值为________. 11.已知方程2740x x -+=的两个根分别为1x 、2x ,则12x x ⋅的值为________. 12.梯形的上底长为6,下底长为10,则它的中位线长为________.13.如图,在同一时刻,小明测得他的影长为1米,距他不远处的一棵槟榔树的影长为 5米,已知小明的身高为1.5米,则这棵槟榔树的高是________米.(第7题图)14|2|0n +=,则m n +的值为________.15.若关于x 的一元二次方程022=+-m x x 有两个不相等...的实数根,则m 的取值范围是________. 16.如图,一根竹子,原来高9米,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离2米,原处还有________米高的竹子.三、解答题(共89分):在答题卷上相应题目的答题区域内作答. 18.(12分)计算 (1)(2011)(2π+++19.(6分)解方程:2260x x --=21.(9分)如图,在等边..三角形ABC 中,D 、E 分别在AC 、AB 上,且13AD AC =,12AE AB =. 试说明:△ADE ∽△CDBA DE(第21题图)(第16题图)2米(第14题图)22.(9分)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2; (1)将△ABC 向左平移4个单位,得到△A 1B 1C 1;(2)以图中的O 为位似中心,将△ABC 作位似变换且放大到原来的两倍,得到△A 2B 2C 2.23.(9分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资4亿元人民币建设了廉租房16万平方米,预计2012年将投资9亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共累计...建设了多少万平方米廉租房.25.(12分)如图,已知//AD BC ,点E 在AC 上且3AE EC =,连结DE 并延长它,交BC 于点F ,交AB 的延长线于点G .(1)试说明:△ADE ∽△CFE ; (2)当2EF =时,①求ADCF的值和DE 的长; ②当点F 恰好是BC 的中点时,求GF 的长; (3)当CF BF 的值为多少时,9GDGF=.请简单说明理由.(第22题图)26.(14分)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=4c m,BC=2cm,AB=3cm.从初始时刻开始,动点P、Q分别从点A、B同时出发,运动速度均为1 cm/s,动点P沿A→B→C→E的方向运动,到点E停止;动点Q沿B→C→E→D的方向运动,到点D停止.设运动时间为x s,∆PAQ的面积为y cm2.(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x= 2 s时,y=________cm2;当x= 52s时,y=________cm2;(2)当动点P在线段BC上运动,即3 ≤ x ≤ 5时,求y与x之间的函数关系式,并求出 2.5y=时x 的值;(3)当动点P在线段CE上运动,即5 < x ≤ 8 时,求y与x之间的函数关系式;(4)直接写出在整个..运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.数学试卷答案一、选择题(每小题3分,共21分) BDACBAC二、填空题(每小题4分,共40分) 8.1x ≥9.2510.3711.4 12.813.7.5 14.115.1m <16.7718 17.75三、解答题(共89分)22.(9分) 解:(1)作出△A 1B 1C 1 (4分) (2)作出△A 2B 2C 2 ··························· (9分)25.(12分)解:(1)∵//AD BC ,∴D EFC ∠=∠,DAE C ∠=∠, ················· (2分) ∴ADE CFE ∆∆∽. ······················· (3分)(2)① ∵ADE CFE ∆∆∽,∴AD DE AECF FE CE ==. ······················· (4分) ∵3AE EC =, ∴3AE CE =, ∴3AD CF=,3326DE FE ==⨯=. ················· (6分) ② ∵点F 是BC 的中点, ∴BF CF =.∵3ADCF =, ∴3AD BF=. ···························· (7分) ∵//AD BC ,∴AGD BGF ∆∆∽, ∴3GD AD GF BF == ∴2FD GF=. ···························· (8分) 由①可知:268FD FE ED =+=+=,∴4GF =. ···························· (9分)26.(14分) 解:(1)2;52. ···························· (2分) (2)当3≤x ≤5时,ABP CPQ ABCQ y S S S ∆∆=--梯形 ···················· (3分)()()()()1113223352222x x x x =⨯+-⨯-⨯----⎡⎤⎣⎦ ········ (4分) 2121422x x =-+.························ (5分) 当25y .=时,212142522x x .-+= ······················ (6分) ()240x -=解得 124x x ==∴当x =4时, 2.5y =. ······················ (7分)说明:不画草图或草图不正确,可不扣分四、附加题(共10分)1.121,1x x ==- 2.1。