广西玉林市、防城港市、崇左市中考数学真题试题(扫描版,无答案)

合集下载

广西玉林市、防城港市中考数学真题试题

广西玉林市、防城港市中考数学真题试题

一、选择题:本大题共12小题,每小题3分,共36分,只有一个选项是正确的.1. 计算:22=()A.1B. 2C. 4D.82.如图,a // b, c 与a ,b都相交,∠1=50°,则∠2=A.40°B.50°C. 100°D.130°3.计算:2-23A. 3B.2C.22D.424.下列基本几何体中,三视图都是相同图形的是()5.正六边形的每个内角都是()A. 60°B. 80°C. 100°D.120°6.市农科所收集统计了甲、乙两种甜玉米各10块试验田的亩产量后,得到其方差分别是002.02=甲s、01.02=乙s,则()A. 甲比乙的亩产量稳定B.乙比甲的亩产量稳定C.甲、乙的亩产量的稳定性相同D.无法确定哪一种的亩产量更稳定7.一次函数1-+=mmxy的图象过点(0,2),且y随x的增大而增大,则m=()A. -1B. 3C. 1D.-1或38.如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B. 6对.C.8对D.10对9.如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切与点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为()ODCBAC圆柱A三棱柱B球C长方体D第8题图第9题图第10题图第11题图A. rB.23r C.2r D. 25r 10.如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC=23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( ) A.61 B. 31 C. 21 D. 32 11.二次函数c bx ax y ++=2(a ≠0)的图像如图所示,其对称轴为x =1,有如下结论:① c <1 ②2a +b =0 ③2b <4ac ④若方程02=++c bx ax 的两个根为1x ,2x ,则1x +2x =2.则结论正确的是( )A. ①②B. ①③C. ②④D. ③④12.一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.随机摸出一个小球(不放回)其数字记为P ,再随机摸出另一个小球其数字记为q ,则满足关于的方程02=++q Px x 有实数根的概率是( ) A.21 B. 31 C. 32 D. 65二、填空题:本大题共6小题,每小题3分,共18分,13.既不是正数也不是负数的数是 .14.某种原子直径为1.2×10-2纳米,把这个数化为小数是 纳米. 15.在平面直角坐标系中,一青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A ′处,则点A ′的坐标为 .16.如图,矩形OABC 内接于扇形MON ,当CN=CO 时,∠NMB 的度数是 .17.如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B 逆时针旋转到△A′BC′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D= . 18.二次函数()492-2+-=x y 的图像与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有 个(提示:必要时可利用下面的备用图画出图像来分析).C B C/A/D A yx三、解答题本大题共8小题,满分66分. 19.(6分)计算:()()1422-+-a a .20.(6分)求不等式组⎪⎪⎩⎪⎪⎨⎧≤-≥-21211121x x 的整数解.21.(6分)已知等腰△ABC 的顶角∠A=36°(如图).(1)作底角∠ABC 的平分线BD,交AC 于点D (用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)通过计算说明△ABD 和△BDC 都是等腰三角形.22.(8分)某奶品生产企业,2010年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2中所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2011年酸牛奶的生产量比2010年增长20%,按照这样的增长速度,请你估算2012年酸牛奶的生产量是多少万吨?23.(8分)如图,已知点O 为Rt△ABC 斜边上一点,以点O 为圆心,OA 长为半径的⊙O 与BC 相切于点E ,与AC 相交于点D ,连接AE. (1)求证:AE 平分∠CAB;(2)探求图中∠1与∠C 的数量关系,并求当AE=EC 时tanC 的值.C BA 12040生产量(万吨)品种牛奶牛奶牛奶012010080604020 纯牛奶50%第16题图 第17题图 第18题备用图第21题图 第22题图 图1图224.(10分)一工地计划租用甲、乙两辆车清理淤泥,从运输量来估算:若租两车合运,10天可以完成任务;若单独租用乙车完成任务则比单独租用甲车完成任务多用15天. (1)甲、乙两车单独完成任务分别需要多少天?(2)已知两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元,试问:租甲乙两车、单独租甲车、单独租乙车这三种租车方案中,哪一种租金最少?请说明理由.25.(10分)如图,在平面直角坐标系x O y 中,梯形AOBC 的边OB 在x 轴的正半轴上,AC//OB,BC⊥OB,过点A 的双曲线xky =的一支在第一象限交梯形对角线OC 于点D,交边BC 于点E. (1)填空:双曲线的另一支在第 象限,k 的取值范围是 ; (2)若点C 的坐标为(2,2),当点E 在什么位置时,阴影部分面积S 最小? (3)若21OC =OD ,S △OAC =2 ,求双曲线的解析式.x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52.(1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值.1O D C A O x yE D C B A 第23题图 第25题图(3)在(2)的条件下,t为何值时,四边形APQF是梯形?.第26题图2012年玉林市防城港市初中毕业暨升学考试参考答案数学1.C;2.B;3.C;4.C;5.D;6.A;7.B;8.C;9.C;10B;11.C;12.A;13.0;14.0.012;15.(1,2) 16.30°;17.25;18.7;19.解:原式=a 2+4-4a+4a-4 =a 2 20. 由1121≥-x 得:x≥4, 由2121≤-x 得:x≤6, 不等式组的解集为:4≤x≤6, 故整数解是:x=4,5,6.21. 解:(1)如图所示: BD 即为所求;(2)∵∠A=36°,∴∠ABC=∠C=(180°-36°)÷2=72°, ∵BD 平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°, ∴∠CDB=180°-36°-72°=72°, ∵∠A=∠ABD=36°,∠C=∠CDB=72°, ∴AD=DB,BD=BC ,∴△ABD 和△BDC 都是等腰三角形. 22.解:(1)牛奶总产量=120÷50%=240吨, 酸牛奶产量=240-40-120=80吨,酸牛奶在图2所对应的圆心角度数为80240×360°=120°.答:2012年酸牛奶的生产量是115.2万吨.23. 证明:连接OE , ∵⊙O 与BC 相切于点E , ∴OE⊥BC, ∵AB⊥BC, ∴AB∥OE, ∴∠2=∠AEO, ∵OA=OE,∴∠1=∠AEO,∴∠1=∠2,即AE 平分∠CAB;(2)解:2∠1+∠C=90°,tanC=33 ∵∠EOC 是△AOE 的外角, ∴∠1+∠AEO=∠EOC,∵∠1=∠AEO,∠OEC=90°, ∴2∠1+∠C=90°, 当AE=CE 时,∠1=∠C, ∵2∠1+∠C=90°∴3∠C=90°,∠C=30°∴tanC=tan30°=33 24. 设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫ ⎝⎛+1511110x y y x ; 解得:x=15;y=30即甲车单独完成需要15天,乙车单独完成需要30天;(2)设甲车租金为a ,乙车租金为y ,则根据两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得: 10a+10b=65000;a-b=1500, 解得:a=4000;b=2500,①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元; ③单独租乙车需要的费用为:30×2500=75000元; 综上可得,单独租甲车租金最少.25. (1)三,k >0,(2)∵梯形AOBC 的边OB 在x 轴的正半轴上,AC∥OB,BC⊥OB, 而点C 的坐标标为(2,2),∴A 点的纵坐标为2,E 点的横坐标为2,B 点坐标为(2,0),把y=2代入y=k x得x=2k ;把x=2代入y=k x 得y=2k∴A 点的坐标为(2k ,2),E 点的坐标为(2,2k),∴S 阴影部分=S △ACE +S △OBE =21×(2-2k )×(2-2k )+21×2×2k =81k 2-21k+2=81(k-2)2+1.5 当k-2=0,即k=2时,S 阴影部分最小,最小值为1.5;∴E 点的坐标为(2,1),即E 点为BC 的中点, ∴当点E 在BC 的中点时,阴影部分的面积S 最小; (3)设D 点坐标为(a ,k a), ∵OD:OC=1:2,∴OD=DC,即D 点为OC 的中点, ∴C 点坐标为(2a ,ak2), ∴A 点的纵坐标为ak 2, 把y=ak 2代入y=x 得x=2a,∴A 点坐标为(2a ,ak2),∵S △OAC =2,∴21×(2a-2a )×a k 2=2, ∴k=34。

广西玉林市、崇左市中考数学真题试题(含解析)

广西玉林市、崇左市中考数学真题试题(含解析)

广西玉林市、崇左市2017年中考数学真题试题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个数中最大的数是( )A.0B.1-C.2-D.3-【答案】A.【解析】试题分析:比较各项数字大小即可.∵0>﹣1>﹣2>﹣3,∴最大的数是0,故选A.考点:有理数大小比较.2.如图,直线,a b被c所截,则1∠和2∠是( )A.同位角B.内错角C.同旁内角D.邻补角【答案】B.【解析】考点:同位角;内错角;同旁内角;对顶角;邻补角.3.一天时间为86400秒,用科学记数法表示这一数字是( )A.2´ D.50.86410´8.6410´ C.486410´ B.386.410【答案】C.【解析】试题分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.86400=8.64×104.故选:C.考点:科学记数法—表示较大的数.4.一组数据:6,3,4,5,7的平均数和中位数分别是 ( )A.5,5B.5,6C.6,5D.6,6【答案】A.【解析】考点:中位数;算术平均数.5.下列运算正确的是( )A.()235= B.235a a321-=? D.22a aa a aa a a? C.623【答案】B.【解析】试题分析:根据同底数幂的乘法、除法法则、幂乘方的运算法则,合并同类项法则一一判断即可.A、错误.(a3)2=a6.B、正确.a2•a3=a5.C、错误.a6÷a2=a4.D、错误.3a2﹣2a2=a2,故选B.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.6.如图所示的几何体的俯视图是( )ABCD【答案】D. 【解析】考点:简单几何体的三视图. 7.五星红旗上的每一个五角星 ( )A.是轴对称图形,但不是中心对称图形B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形【答案】A. 【解析】试题分析:根据轴对称与中心对称图形的性质即可得出结论. ∵五星红旗上的五角星是等腰三角形,∴五星红旗上的每一个五角星是轴对称图形,但不是中心对称图形. 故选A .考点:中心对称图形;轴对称图形.8.对于函数()22y x m =--的图象,下列说法不正确的是( ) A.开口向下B.对称轴是x m =C.最大值为0D.与y 轴不相交【答案】D. 【解析】试题分析:根据二次函数的性质即可一一判断.对于函数y=﹣2(x ﹣m )2的图象,∵a=﹣2<0,∴开口向下,对称轴x=m ,顶点坐标为(m ,0),函数有最大值0, 故A 、B 、C 正确, 故选D .考点:二次函数的性质;二次函数的最值.9.如图,在矩形ABCD 中,AB BC >,点,,,E F G H 分别是边,,,DA AB BC CD 的中点,连接,EG HF ,则图中矩形的个数共有( )A.5个B.8个C.9个D.11个【答案】C. 【解析】则图中四个小四边形是矩形,故图中矩形的个数共有9个,故选C . 考点:中点四边形;矩形的判定与性质.10.如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( )A.153海里B.30海里C.45海里D.303海里【答案】B. 【解析】试题分析:作CD ⊥AB ,垂足为D .构建直角三角形后,根据30°的角对的直角边是斜边的一半,求出BP . 作BD ⊥AP ,垂足为D.根据题意,得∠BAD=30°,BD=15海里,∴∠PBD=60°,则∠DPB=30°,BP=15×2=30(海里), 故选B .考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.11.如图,大小不同的两个磁块,其截面都是等边三角形,小三角形边长是大三角形边长的一半,点O 是小三角形的内心,现将小三角形沿着大三角形的边缘顺时针滚动,当由①位置滚动到④位置时,线段OA 绕点O 顺时针转过的角度是( )A.240°B.360°C.480°D.540°【答案】C. 【解析】考点:三角形的内切圆与内心;等边三角形的性质;旋转的性质.12.如图,AB 是O ⊙的直径,,AC BC 分别与O ⊙相交于点,D E ,连接DE ,现给出两个命题: ①若AC AB =,则DE CE =;②若45C =∠°,记CDE △的面积为1S ,四边形DABE 的面积为2S ,则12S S =,那么( )A.①是真命题,②是假命题B.①是假命题,②是真命题C.①是假命题,②是假命题D.①是真命题,②是真命题【答案】D.【解析】故选D.考点:命题与定理;圆内接四边形的性质;等腰三角形的性质;相似三角形的判定和性质.二、填空题(每题6分,满分18分,将答案填在答题纸上)13.计算:1-=.【答案】1. 【解析】试题分析:计算绝对值要根据绝对值定义去掉这个绝对值的符号. |﹣1|=1.故答案为1. 考点:绝对值.14.若2214n a b +与3m a b 是同类项,则m n += . 【答案】3. 【解析】 试题分析:∵4a 2b2n+1与a m b 3是同类项,∴2,213m n =⎧⎨+=⎩,∴2,1m n =⎧⎨=⎩,∴m+n=3,故答案为3. 考点:同类项.15.分解因式:32a ab -= . 【答案】a (a+b )(a ﹣b ). 【解析】考点:提公因式法与公式法的综合运用.16.如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是 人.【答案】10. 【解析】试题分析:根据喜爱新闻类电视节目的人数和所占的百分比,即可求出总人数;根据总人数和喜爱动画类电视节目所占的百分比,求出喜爱动画类电视节目的人数,进一步利用减法可求喜爱“体育”节目的人数. 5÷10%=50(人), 50×30%=15(人), 50﹣5﹣15﹣20=10(人). 故答案为10.考点:条形统计图;扇形统计图.17.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD ,则四边形ABCD 的周长是.【答案】8+82. 【解析】故答案为:2 考点:正多边形和圆.18.已知抛物线:()20y ax bx c a =++>经过()1,1A -,()2,4B 两点,顶点坐标为(),m n ,有下列结论:①1b <;②2c <;③102m <<;④1n £.则所有正确结论的序号是.【答案】①②④. 【解析】试题分析:根据点A 、B 的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a >0,可得出b <1、c <2,即结论①②正确;由抛物线顶点的横坐标m=﹣2b a ,可得出m=12﹣12a ,即m <12,结论③不正确;由抛物线y=ax 2+bx+c (a >0)经过A (﹣1,1),可得出n ≤1,结论④正确.综上即可得出结论.∴n ≤1,结论④正确.综上所述:正确的结论有①②④. 故答案为:①②④.考点:二次函数图象与系数的关系.三、解答题 (本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.) 19.计算:()03201782tan 45p -°. 【答案】1. 【解析】试题分析:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 试题解析:()03201782tan 45°p -=1+2﹣2×1=1 考点:实数的运算;零指数幂;特殊角的三角函数值.20.化简:321122a a a a 骣-琪+-?琪--桫,然后给a 从1,2,3中选取一个合适的数代入求值. 【答案】10. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=()()()()()()()11321222122241212a a a a a a a a a a a a +---+--⨯=⨯=+=+----,当a=3时,原式=6+4=10. 考点:分式的化简求值.21.已知关于x 的一元二次方程:()2120x t x t --+-=. (1)求证:对于任意实数t ,方程都有实数根;(2)当t 为何值时,方程的两个根互为相反数?请说明理由. 【答案】(1)见解析;(2)1,理由见解析. 【解析】∴当t=1时,方程的两个根互为相反数. 考点:根与系数的关系;根的判别式.22.在一个不透明的袋子中有一个黑球a 和两个白球,b c (除颜色外其他均相同).用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球,则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?【答案】(1)13;(2)49.【解析】试题分析:(1)列举出所有情况,看小丽两次都摸到白球的情况数占总情况数的多少即可; (2)列举出所有情况,看小强第二次摸到白球的情况数占总情况数的多少即可.试题解析:(1)如图,共6种情况,两次都摸出白球的情况数有2种,所以概率为13;(2)共8种情况,第一次摸到白球的可能性为23,如果第一次摸到白球,那么第二次又摸到白球的概率是2 3,那么两次摸到白球的概率是224339⨯=.考点:列表法与树状图法.23.如图,AB是O⊙的直径,AC是上半圆的弦,过点C作O⊙的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与O⊙交于点F,设DAC∠,CEA∠的度数分别是,a b.(1)用含a的代数式表示b,并直接写出a的取值范围;(2)连接OF与AC交于点'O,当点'O是AC的中点时,求a,b的值.【答案】(1)β=90°-2α(0°<α<45°);(2)α=β=30°.【解析】∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°(0°<α<45°),即β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.考点:切线的性质;垂径定理;菱形的判定;等边三角形的判定和性质;等腰三角形的判定和性质. 24.某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了,A B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用?【答案】(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】根据题意,得:100,501008000x yx y+=⎧⎨+=⎩,解得:40,60xy=⎧⎨=⎩,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.25.如图,在等腰直角三角形ABC中,90==,D是AB的中点,E,F分别是AC,AC BC∠°,4ACB==,连接EF并取EF的中点O,连接DO并延长至点G,BC上的点(点E不与端点,A C重合),且AE CF使GO ODDE DF GE GF.=,连接,,,(1)求证:四边形EDFG是正方形;(2)当点E在什么位置是,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.【答案】(1)见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】试题解析:(1)证明:连接CD,如图1所示.∵△ABC 为等腰直角三角形,∠ACB=90°,D 是AB 的中点,∴2≤DE <22(点E 与点E′重合时取等号).∴4≤S 四边形EDFG =DE 2<8.∴当点E 为线段AC 的中点时,四边形EDFG 的面积最小,该最小值为4.考点:正方形的判定与性质;二次函数的最值;全等三角形的判定与性质;等腰直角三角形.26.如图,一次函数()1150y k x k =+<的图象与坐标轴交于,A B 两点,与反比例函数()220k y k x =>的图象交于,M N 两点,过点M 作MC y ^轴于点C ,已知1CM =.(1)求21k k -的值;(2)若14AM AN =,求反比例函数的解析式; (3)在(2)的条件下,设点P 是x 轴(除原点O 外)上一点,将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由.【答案】(1)k 2﹣k 1=5;(2)4y x =;(3)点Q 的坐标为(2+22,﹣2+22)或(2﹣22,﹣2﹣22)或(﹣2,﹣2).【解析】试题分析:(1)根据点M 的坐标代入反比例关系2k y x=中,可得结论;∴M 的横坐标为1,当x=1时,y=k 1+5,∴M (1,k 1+5),∵M 在反比例函数的图象上,∴1×(k 1+5)=k 2,∴k 2﹣k 1=5;(2)如图1,过N 作ND ⊥y 轴于D ,∴CM∥DN,∴△ACM∽△ADN,∴14 AM CMAN DN==,∵CM=1,∴DN=4,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式4yx =;当x=1时,y=4,∴M(1,4),∴OC=PH=4,设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±22,当x=﹣2+22时,x+4=2+22,如图2,Q(2+22,﹣2+22);当x=﹣2﹣22时,x+4=2﹣22,如图3,Q(2﹣22,﹣2﹣22);考点:反比例函数;一次函数;三角形全等的判定与性质;三角形相似的判定与性质;分类讨论.。

2009年玉林市、防城港市中考数学试题(扫描版)

2009年玉林市、防城港市中考数学试题(扫描版)
八、本大题共1小题,满分12分.
26.(本小题满分12分)如图12,在平面直角坐标系,直线 与 轴、 轴分别相交于 、 两点,点 在 轴上,现将 沿 翻折 ,使点 刚好落在直线 的点 处.
(1)求 的长.
(2)设点 是线段 上的一个动点(与点 、 不重合), 当点 运动到什么位置时, 的值最大,并求出此时点 的坐标.
四、本大题共2小题,满分共17分.
21.(本小题满分8分)如图6,矩形 中,点 、 分别在 、 上, 为等腰直角三角形, 求 的长.
22.(本小题满分9分)如图7, 的半径为2,直径 经过弦 的中点 ,若 的长等于圆周长的 .
(1)填空: =____________;
(2)求 的值.
五、本大题共1小题,满分10分.
∴GD=OD-OG=2- .8分
∴ =2- .9分
解法二:连结OA、OB.则有OA=OB=2.3分
∵ 的长等于圆周长的 ,
∴∠AOB=360°× =60°.4分
∵直径CD经过弦AB的中点G,∴CD⊥AB.
∴∠BOG= ∠AOB=30°. 5分
∴GB=1,OG= = .7分
∴GD=OD-OG=2- .8分
(3)在 轴上是否存在点 ,使 为直角三角形?若存在,请写出所有符合条件的点 的坐标,并选择一个写出其求解过程;若不存在,简述理由.
2009年玉林市、防城港市初中毕业升学考试
数学试题参考答案及评分标准
一、填空题:(每小题2分,共20分)
1.-32.03.(2a-1)(2a+1)4.答案不唯一.如AB=CD,∠A=∠D,∠B=∠C等5.y=x+406.②7.503
∵△BAC是直角三角形,∴当点M与点B重合时,△MAC是直角三角形.

广西崇左市中考数学试卷

广西崇左市中考数学试卷

广西崇左市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·深圳模拟) 的倒数是()A . ﹣2B .C . 2D .2. (2分) (2019七下·茂名期中) 下面四个图形中,∠1与∠2是对顶角的是()A .B .C .D .3. (2分) (2018八下·深圳期中) 下列各式其中分式共有()个A . 2B . 3C . 4D . 54. (2分)(2018·娄底模拟) 起重机将质量为6.5t的货物沿竖直方向提升了2m,则起重机提升货物所做的功用科学记数法表示为()(g=10N/kg)A . 1.3×106JB . 13×105JC . 13×104JD . 1.3×105J5. (2分)已知甲乙两组数据的平均数都是5,甲组数据的方差S甲2=2.1 ,乙组数据的方差S乙2=1.2 ,则()A . 甲组数据比乙组数据的波动大B . 乙组数据比甲组数据的波动大C . 甲组数据与乙组数据的波动一样大D . 甲乙两组数据的波动大小不能比较6. (2分) (2018九上·点军期中) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .7. (2分)(2018·固镇模拟) 如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A . DE=1B . tan∠AFO=C . AF=D . 四边形AFCE的面积为8. (2分)在阳光下摆弄一个矩形,它的影子不可能是()A . 线段B . 矩形C . 等腰梯形D . 平行四边形9. (2分) (2019七下·邓州期中) 不等式组的解集在数轴上表示为()A .B .C .D .10. (2分)(2018·株洲) 已知二次函数的图像如下图,则下列哪个选项表示的点有可能在反比例函数的图象上()A . (-1,2)B . (1,-2)C . (2,3)D . (2,-3)11. (2分)(2018·阿城模拟) 下列四个图形中既是轴对称图形,又是中心称图形的是()A .B .C .D .12. (2分)观察后面的一组单项式:a,-2a2 , 4a3 , -8a4 ,…,根据你发现的规律,则第6个式子是()A . a6B . 12aC . -32a6D . 32a6二、填空题 (共6题;共6分)13. (1分)若式子在实数范围内有意义,则x的取值范围是________ .14. (1分)调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用________(填“普查”或“抽样调查”).15. (1分)(2017·东莞模拟) 分解因式:2a2﹣4a+2=________.16. (1分)(2019·五华模拟) 如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC 顺时针旋转,当点B落在AB上点D处时,点A的对应点为E,则阴影部分面积为________.17. (1分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x 轴的另一个交点为(3,0);④abc>0.其中正确的结论是________ (填写序号).18. (1分)如图,把△ABC绕点B逆时针旋转26°得到△EBF,若EF正好经过A点,则∠BAC=1 .三、解答题 (共8题;共70分)19. (5分)计算:﹣4sin45°+(﹣2016)0 .20. (5分)(2016·海曙模拟) 先化简,后求值:,其中x=3.21. (10分)小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果(2)此游戏的规则,对小明、小芳公平吗?试说明理由.22. (5分)(2017·黔东南模拟) 为缓解“停车难”的问题,某单位拟造地下停车库,建筑设计师提供了该地下停车库的设计示意图如图所示,已知该坡道的水平距离AB的长为9m,坡面AD与AB的夹角∠BAD=18°,石柱BC=0.5m,按规定,地下停车库坡道上方BC处要张贴限高标志,以便告知停车人车辆能否安全驶入.请你帮设计师计算一下CE的高度,以便张贴限高标志,结果精确到0.1m.(参考数值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23. (5分) (2018八上·番禺期末) 甲乙两人同时同地沿同一路线开始攀登一座600米高的山,甲的攀登速度是乙的1.2倍,他比乙早20分钟到达顶峰.甲乙两人的攀登速度各是多少?如果山高为米,甲的攀登速度是乙的倍,并比乙早分钟到达顶峰,则两人的攀登速度各是多少?24. (15分) (2019九下·未央月考) 如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在轴下方的动点,过M作MN∥y轴交直线BC于点N.求线段MN的最大值;(3) E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.25. (10分) (2019九上·交城期中) 如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.26. (15分)(2017·七里河模拟) 如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、20-1、21-1、21-2、22-1、23-1、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

广西玉林、防城港2019中考试题-数学

广西玉林、防城港2019中考试题-数学

广西玉林、防城港2019中考试题-数学【一】选择题:本大题共12小题,每题3分,共36分,只有一个选项是正确的.1. 计算:22=〔〕A.1B.2C.4D.82.如图,a//b ,c 与a ,b 都相交,∠1=50°,那么∠2=() A.40°B.50°C.100°D.130°3.计算:2-23 A.3B.2C.22D.424.以下差不多几何体中,三视图基本上相同图形的是〔〕5.正六边形的每个内角基本上〔〕A.60°B.80°C.100°D.120°6.市农科所收集统计了甲、乙两种甜玉米各10块试验田的亩产量后,得到其方差分别是002.02=甲s 、01.02=乙s ,那么〔〕A.甲比乙的亩产量稳定B.乙比甲的亩产量稳定C.甲、乙的亩产量的稳定性相同D.无法确定哪一种的亩产量更稳定7.一次函数1-+=m mx y 的图象过点〔0,2〕,且y 随x 的增大而增大,那么m=〔〕A.-1B.3C.1D.-1或38.如图,在菱形ABCD 中,对角线AC,BD 相交于点O ,且AC ≠BD ,那么图中全等三角形有〔〕A.4对B.6对.C.8对D.10对9.如图,Rt △ABCD 、E,过劣弧DE 〔不包括端点D ,E 〕上任一点P M ,N ,假设⊙O 的半径为r ,那么Rt △MBN A.rB.2310.如图,正方形x 轴、y 轴的正半轴上,正方形A ′B ′C ′D AC=23,假设点A ′的坐标为〔1,2〕,那么正方形A ′B ′C ′D ′与正方形ABCD 的相似比是〔〕A.61B.31C.21D.32 11.二次函数c bx ax y ++=2〔a ≠0〕的图像如下图,其对称轴为x =1,有如下结论: ①c <1②2a +b =0③2b <4a c ④假设方程02=++c bx ax 的两个根为1x ,2x ,那么1x +2x =2.C那么结论正确的选项是〔〕A. ①②B.①③C.②④D.③④12.一个盒子里有完全相同的三个小球,球上分别标有数字-1、1、2.随机摸出一个小球〔不放回〕其数字记为P ,再随机摸出另一个小球其数字记为q ,那么满足关于的方程02=++q Px x 有实数根的概率是〔〕 A.21B.31C.32D.6522、 °、〔2〕2018年酸牛奶的生产量为80×〔1+20%〕=115.2吨、答:2018年酸牛奶的生产量是115.2万吨、23.证明:连接OE ,∵⊙O 与BC 相切于点E ,∴OE ⊥BC ,∵AB ⊥BC ,∴AB ∥OE ,∴∠2=∠AEO ,∵OA=OE ,∴∠1=∠AEO ,∴∠1=∠2,即AE 平分∠CAB ;〔2〕解:2∠1+∠C=90°,tanC=33∵∠EOC 是△AOE 的外角,∴∠1+∠AEO=∠EOC ,∵∠1=∠AEO ,∠OEC=90°,∴2∠1+∠C=90°,当AE=CE 时,∠1=∠C ,∵2∠1+∠C=90°∴3∠C=90°,∠C=30°∴tanC=tan30°=3324.设甲车单独完成任务需要x 天,乙单独完成需要y 天,由题意可得:⎪⎩⎪⎨⎧=-=⎪⎪⎭⎫ ⎝⎛+1511110x y y x ;解得:x=15;y=30即甲车单独完成需要15天,乙车单独完成需要30天;〔2〕设甲车租金为a ,乙车租金为y ,那么依照两车合运共需租金65000元,甲车每天的租金比乙车每天的租金多1500元可得: 10a+10b=65000;a-b=1500,解得:a=4000;b=2500,①租甲乙两车需要费用为:65000元;②单独租甲车的费用为:15×4000=60000元;③单独租乙车需要的费用为:30×2500=75000元;综上可得,单独租甲车租金最少、25.〔1〕三,k >0,〔2〕∵梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,而点C 的坐标标为〔2,2〕,∴A 点的纵坐标为2,E 点的横坐标为2,B 点坐标为〔2,0〕,把y=2代入y=k x 得x=k ;把x=2代入y=kx 得y=k∴S 阴影部分=S △ACE +S △OBE =21×〔2-2k 〕×〔2-2k 〕+21×2×2k =81k 2-21k+2=81〔k-2〕2+1.5当k-2=0,即k=2时,S 阴影部分最小,最小值为1.5;∴E 点的坐标为〔2,1〕,即E 点为BC 的中点,∴当点E 在BC 的中点时,阴影部分的面积S 最小;〔3〕设D 点坐标为〔a ,ka 〕,把y=a k 2代入y=kx 得x=2a ,∴A 点坐标为〔2a ,ak 2〕,∵S △OAC =2,∴21×〔2a-2a 〕×ak 2=2,∴k=34。

2024年广西中考数学真题卷含答案解析

2024年广西中考数学真题卷含答案解析

2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是( )A. B. C. D.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )A. 1B. 13 C. 12 D. 236. 如图,2时整,钟表的时针和分针所成的锐角为( )A. 20︒B. 40︒C. 60︒D. 80︒7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0B. ()0,2C. ()3,2D. ()1,28. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 911. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A 1 B. 2 C. 5 D. 10二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.14.__.15. 八桂大地孕育了丰富药用植物.某县药材站把当地药市交易的400种药用植物按“草.的本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.16. 不等式7551x x +<+的解集为______.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19 计算:()()2342-⨯+-20. 解方程组:2321x y x y +=⎧⎨-=⎩21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:.进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.23 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?.【(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.【答案】A【解析】【分析】本题考查了温度的比较以及正负数的概念,熟悉掌握概念是解决本题的关键.0℃以下记为负数,0℃以上记为正数,温度都小于0℃时,绝对值最大的,温度最低.【详解】解:∵ 4.6 4.6-=, 3.2 3.2-=,4.6 3.2>,∴ 4.6 3.2 5.88.1-<-<<,∴气温最低的是北京.故选:A .2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A .不是轴对称图形,故不符合题意;B .是轴对称图形,故符合题意;C .不是轴对称图形,故不符合题意;D .不是轴对称图形,故不符合题意;故你:B .3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯【答案】B【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,n a a n ⨯≤<为整数,进行表示即可.【详解】解:88490000008.4910=⨯;故选B .4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A. 1B. 13C. 12D.23【答案】D【解析】【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有213+=种等可能的结果,其中取出白球的情况有2种,∴23P=;故选D.6. 如图,2时整,钟表的时针和分针所成的锐角为()A. 20︒B. 40︒C. 60︒D. 80︒【答案】C【解析】【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0 B. ()0,2 C. ()3,2 D. ()1,2【答案】C【解析】【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 坐标为()3,2,故选:C .8. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M反的射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯【答案】A【解析】【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:55131031022d t t =⨯⨯=⨯⋅,故选:A .9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<【答案】A【解析】【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点()11,M x y ,()22,N x y 在反比例函数图象上,则满足关系式2y x =,横纵坐标的积等于2,结合120x x <<即可得出答案.【详解】解: 点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,∴ 112x y =,222x y =,120x x <<,∴ 10y <,20y >,∴ 120y y <<.故选:A .10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 9【答案】D【解析】【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=【答案】B【解析】【分析】本题考查了一元一次方程的应用,根据“第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱”列方程即可.【详解】解:根据题意,得100345x x x ++=,故选:B .12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10【答案】C【解析】【分析】先证明四边形AECG 是平行四边形,得出AG CE ∥,同理AF BH ∥,则可证四边形MNPQ 是平行四边形,利用平行线分线段成比例可得出DQ PQ =,AM QM =,证明()SAS ADG BAH ≌得出DAG ABH ∠=∠,则可得出90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,得出平行四边形MNPQ 是矩形,证明()AAS ADQ BAM ≌,得出DQ AM =,进而得出DQ AM PQ QM ===,得出矩形MNPQ 是正方形,在Rt ADQ △中,利用勾股定理求出25QM =,然后利用正方形的面积公式求解即可.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD DA ===,AB CD ∥,AD BC ∥,90DAB ABC BCD CDA ∠=∠=∠=∠=︒,∵E ,F ,G ,H 分别为各边中点,∴12CG DG CD AH ===,12AE AB =,∴DG CG AE ==,∴四边形AECG 是平行四边形,∴AG CE ∥,同理DF BH ,∴四边形MNPQ 是平行四边形,∵AG CE ∥,∴1DQ DG PQ CG==,∴DQ PQ =,同理AM QM =,∵DG AH =,90ADG BAH ∠=∠=︒,AD BA =,∴()SAS ADG BAH ≌,∴DAG ABH ∠=∠,∵90DAG GAB ∠+∠=︒,∴90ABH GAB ∠+∠=︒,∴90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =,∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C .【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.【答案】35【解析】【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14.__.【答案】2(答案不唯一)【解析】【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.大小,再找出符合条件的整数即可.【详解】解:134<<,12∴<<,∴符合条件的数可以是:2(答案不唯一).故答案为:2.15. 八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.【答案】80【解析】【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16. 不等式7551x x +<+的解集为______.【答案】<2x -【解析】的【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .【答案】【解析】【分析】本题考查了平行四边形的判定,菱形的判定和性质,菱形的周长,过点A 作AM BC ⊥于M ,AN CD ⊥于N ,由题意易得四边形ABCD 是平行四边形,进而由平行四边形的面积可得AM AN =,即可得到四边形ABCD 是菱形,再解Rt ADN △可得sin 60AN AD ==︒,即可求解,得出四边形ABCD 是菱形是解题的关键.【详解】解:过点A 作AM BC ⊥于M ,AN CD ⊥于N ,则90AND ∠=︒,∵两张纸条的对边平行,∴AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,又∵两张纸条的宽度相等,∴AM AN =,∵··ABCD S BC AM CD AN == ,∴BC CD =,∴四边形ABCD 是菱形,在Rt ADN △中,60ADN ∠=︒,3cm AN =,∴sin 60AN AD ===︒,∴四边形ABCD的周长为4=,故答案为:18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .【答案】353【解析】【分析】本题考查的是二次函数的实际应用,设抛物线为()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭,代入即可求出解析式;当0y =时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭代入得:72544a +=,解得:9100a =-,∴抛物线解析式为:()2954100y x =--+;当0y =时,()29540100x --+=,解得,153x =-(舍去),2353x =,即此次实心球被推出的水平距离OM 为35m 3.故答案为:353三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19. 计算:()()2342-⨯+-【答案】8-【解析】【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20. 解方程组:2321x y x y +=⎧⎨-=⎩【答案】212x y =⎧⎪⎨=⎪⎩【解析】【分析】本题考查的是二元一次方程组的解法,直接利用加减消元法解方程组即可.【详解】解:2321x y x y +=⎧⎨-=⎩①②,+①②得:24=x ,解得:2x =,把2x =代入①得:12y =,∴方程组的解为:212x y =⎧⎪⎨=⎪⎩.21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.【答案】(1)众数为1、中位数为2、平均数为1.9(2)估计为“优秀”等级的女生约为50人【解析】【分析】(1)根据平均数、中位数、众数的定义求解即可;(2)算出样本的优秀率,再估计总体的优秀人数.【小问1详解】解:女生进球数的平均数为()1011826334151 1.920⨯⨯+⨯+⨯+⨯+⨯+⨯=(个),女生进球数的中位数是第10个和第11个成绩的平均数,即2222+=(个),女生进球个数为1个人最多,故众数是1个;【小问2详解】解:3112005020++⨯=(人),答:估计为“优秀”等级的女生约为50人.的【点睛】本题考查了中位数,众数,平均数,用样本件估计总体,掌握中位数,平均数、众数的定义以及优秀率的求法是解题的关键.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.【答案】(1)见详解(2)【解析】【分析】(1)分别以A 、B 为圆心,大于12AB 为半径画弧,分别交AB ,AC 于点D ,E ,作直线DE ,则直线l 即为所求.(2)连接BE ,由线段垂直平分线的性质可得出BE AE =,由等边对等角可得出45EBA A ∠=∠=︒,由三角形内角和得出90BEA ∠=︒,则得出ABE 为等腰直角三角形,再根据正弦的定义即可求出BE 的长.小问1详解】解:如下直线l 即为所求.【小问2详解】连接BE如下图:【∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,∴sin BE A AB ==∴8BE AB ===【点睛】本题主要考查了作线段的垂线平分线,线段的垂线平分线的性质,等腰三角形的性质,三角形内角和定理以及正弦的定义.掌握线段的垂直平分线的性质是解题的关键.23. 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水. (2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【解析】【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把0.01%d =后,0.2%d =前代入0.50.5d d w =+前后, 再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【小问1详解】解:把0.01%d =后,0.2%d =前代入0.50.5d d w=+前后得.0.50.2%0.01%05w =+⨯,解得9.5w =.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.【小问2详解】解:第一次漂洗:把2kg w =,0.2%d =前代入0.50.5d d w =+前后,∴0.50.2%0.04%0.52d ⨯==+后,第二次漂洗:把2kg w =,0.04%d =前代入0.50.5d d w =+前后,∴0.50.04%0.008%0.52d ⨯==+后,而0.008%0.01%<,∴进行两次漂洗,能达到洗衣目标;【小问3详解】解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.【答案】(1)证明见解析 (2)证明见解析(3)10【解析】【分析】(1)先证明BD CD =,DE EF =,再证明AEF CED △≌△,可得AF CD =,F EDC ∠=∠,再进一步解答即可;(2)如图,连接AD ,证明AD BC ⊥,可得AD 过圆心,结合∥A F B D ,证明AF AD ⊥,从而可得结论;(3)如图,过B 作BQ AC ⊥于Q ,连接OB ,设BQ 3x =,则4AQ x =,可得CQ AC AQ x =-=,求解x ==5AB x ==18AD ==,设O 半径为r ,可得18OD r =-,再利用勾股定理求解即可.【小问1详解】证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;【小问2详解】证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;【小问3详解】解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQAQ =,设BQ 3x =,则4AQ x =,∴5AC AB x ===,∴CQ AC AQ x =-=,∴BC ==,12=,∴x ==,∴5AB x ==∵AB AC =,12BC =,AD BC ⊥,∴6BD CD ==,∴18AD ==,设O 半径为r ,∴18OD r =-,∴()222186r r =-+,解得:10r =,∴O 的半径为10.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.【答案】(1)①287y x x =--;②当4x =时,y 有最小值为23-(2)见解析(3)正确,114-【解析】【分析】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键:(1)①把4a =-代入解析式,写出函数解析式即可;②将一般式转化为顶点式,进行求解即可;(2)将一般式转化为顶点式,根据二次函数的性质进行解释即可;(3)将一般式转化为顶点式,表示出y 的最大值,再利用二次函数求最值即可.【详解】解:(1)①把4a =-代入223y x ax a =++-,得:()()22244387y x x x x =+⋅-+--=--;∴287y x x =--;②∵()2287423y x x x =--=--,∴当4x =时,y 有最小值为23-;(2)∵()222233y x ax a x a a a =+-+-=++-,∵抛物线的开口向上,∴当x a =-时,y 有最小值;∴甲的说法合理;(3)正确;∵()222233y x ax a x a a a =+-+-=++-,∴当x a =-时,y 有最小值为23a a -+-,即:22min 111324y a a a ⎛⎫=-+-=--- ⎪⎝⎭,∴当12a =时,min y 有最大值,114-.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.为(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.【答案】(1)见解析(2)①180α=︒;②120︒或240︒【解析】【分析】(1)利用线段垂直平分线的性质得出OA OC =,利用等边对等角得出A ACO ∠=∠,结合角平分线定义可得出A ACO OCB ∠=∠=∠,最后根据相似三角形的判定即可得证;(2)先求出30A ACO OCB ∠=∠=∠=︒,然后利用含30︒的直角三角形性质求出2BO =,4AO =,2MO =,利用勾股定理求出AM =AC =A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,则OM A C '''⊥,A C AC ''==,2OM OM '==,根据点到直线的距离,垂线段最短知MN MM '≤,三角形三边关系得出MN OM OM '≤+,故当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,最后根据三角形面积公式求解即可;②先利用三角形三边关系判断出MC A C '''<,MA A C '''<,则当A MC ''△为直角三角形时,只有90A MC ''∠=︒,然后分A 和C '重合,A '和C 重合,两种情况讨论即可.【小问1详解】证明:∵MO 垂直平分AC ,∴OA OC =,∴A ACO ∠=∠,∵CO 平分ACB∠∴ACO OCB ∠=∠,∴A OCB ∠=∠,又B B ∠=∠;∴ABC CBO △∽△;【小问2详解】解:①∵90B Ð=°,∴90A ACO OCB ∠+∠+∠=︒,∴30A ACO OCB ∠=∠=∠=︒,∴1122BO CO AO ==,又6AB AO BO =+=,∴2BO =,4AO =,∵MO 垂直平分AC ,∴122OM AO ==,2AC AM =,∴AM ==,∴AC =,取A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,∴OM A C '''⊥,A C AC ''==,2OM OM '==,根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,∴A MC ''△面积的最大值为142⨯=;②∵246MC MO OC ''≤+=+=,A C ''=,∴MC A C '''<,同理MA A C '''<∴A MC ''△为直角三角形时,只有90A MC ''∠=︒,当A 和C '重合时,如图,∵AOC A OA'≌∴30A CAO '∠=∠=︒,30OAA OCA '∠=∠=︒,∴120A OA '∠=︒,∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。

2021年广西玉林市防城港市中考数学试卷

2021年广西玉林市防城港市中考数学试卷

2021年广西玉林市防城港市中考数学试卷2021年广西玉林市、防城港市中考数学试卷初中数学复习教材是精心编写的,推荐用于呕血。

如果他们有用,请给他们奖励和支持。

非常感谢你!广西玉林市、防城港市2021年中考数学试卷一、单选题(共12个子题,每个子题3分,满分36分)1.(3分)(2021?玉林)下面的数中,与2的和为0的是()a.2测试点:有理数的加法。

分析:如果数字为x,则根据问题的意义可得到方程x+(2)=0,然后可求解方程。

解决方案:如果数字是x,问题的含义可以是:x+(2)=0,X2=0,x=2,因此选择:A.注释:这个问题主要研究有理数的加法。

解决这个问题的关键是理解问题的含义,并根据问题的含义列出方程式2.(3分)(2021?玉林)将6.18×103化为小数的是()a.0.000618测试地点:科学记数法-原始数字。

分析:科学符号的标准形式是a×10N(1)≤| a |<10,n是一个整数)。

这个问题将数据“6.18”×103中6.18的小数点可以通过向左移动3位来获得×将103中6.18的小数点向左移动3位来获得0.00618。

因此选择B.注释:检查并写出用科学记数法表示的原始数字×由10N表示的数字“减少”为通常表示的数字,即将a的小数点向左移动N位得到的数字。

以科学记数法的形式表示一个数字和科学记数法的简化是两个相互逆的过程,这也可以作为检查科学记数法是否正确的一种方法3.(3分)(2021?玉林)计算(2a2)3的结果是()a.2a6b.6a6c.8a6d.8a5b.0.00618c.0.0618d.0.618b.2c.d.测试点:电源的功率和产品的功率。

分析:利用幂的幂和乘积的幂的性质可以得到答案。

解决方案:解决方案:(2A2)3=8A6。

所以选择C.评论:这个问题考察了权力和产品权力的性质。

这个问题相对简单。

关注指标的变化是解决这一问题的关键4.(3分)(2021?玉林)下面的多项式在实数范围内能因式分解的是(a.x2+y2b.x2yc.x2+x+1测试点:在实数范围内分解因子。

2022年广西北部湾经济区六市(南宁、北海、钦州、防城港、玉林、崇左)中考数学试题(含答案)

2022年广西北部湾经济区六市(南宁、北海、钦州、防城港、玉林、崇左)中考数学试题(含答案)

广西北部湾经济区六市(南宁、北海、钦州、防城港、玉林、崇左)2022年初中学业水平考试数学(考试时间120分钟,满分120分)注意:本试卷分试题卷和答题卡两部分,答案一律填写在答题卡上,在试题卷上作答无效.........。

不能使用计算器;考试结束后,将本试题卷和答题卡........一并交回。

第Ⅰ卷一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡...上对应题目的答案标号涂黑.)1.﹣的相反数是A.B.﹣C.3D.﹣32.2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神.下列的四个图中,能由如图所示的会徽经过平移得到的是A B C D3.空气由多种气体混合而成,为了直观介绍空气中各成分的百分比,最适合使用的统计图是A.条形图B.折线图C.扇形图D.直方图4.如图,数轴上的点A表示的数是﹣1,则点A关于原点对称的点表示的数是A.﹣2B.0C.1D.25.不等式2x﹣4<10的解集是()A.x<3B.x<7C.x>3D.x>76.如图,直线a∥b,∠1=55°,则∠2的度数是A.35°B.45°C.55°D.125°7.下列事件是必然事件的是A.三角形内角和是180°B.端午节赛龙舟,红队获得冠军C.掷一枚均匀骰子,点数是6的一面朝上D.打开电视,正在播放神舟十四号载人飞船发射实况8.如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是A.12sinα米B.12cosα米C.米D.米9.下列运算正确的是A.a+a2=a3B.a•a2=a3C.a6÷a2=a3D.(a﹣1)3=a310.《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边衬的宽度应是多少米?设边衬的宽度为x米,根据题意可列方程A.=B.=C.=D.=11.如图,在△ABC中,CA=CB=4,∠BAC=α,将△ABC绕点A逆时针旋转2α,得到△AB′C′,连接B′C并延长交AB于点D,当B′D⊥AB时,的长是A.πB.πC.πD.π12.已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是A B C D第Ⅱ卷二、填空题(本大题共6小题,每小题2分,共12分.)13.化简:=.14.当x=时,分式的值为零.15.如图,一个质地均匀的正五边形转盘,指针的位置固定,当转盘自由转动停止后,观察指针指向区域内的数(若指针正好指向分界线,则重新转一次),这个数是一个奇数的概率是.16.古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.17.阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.18.如图,在正方形ABCD中,AB=4,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分6分)计算:(﹣1+2)×3+22÷(﹣4).20.(本题满分6分)先化简,再求值:(x+y)(x﹣y)+(xy2﹣2xy)÷x,其中x=1,y=.21.(本题满分10分)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.22.(本题满分10分)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.【实践发现】同学们随机收集芒果树、荔枝树的树叶各1片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶的长宽比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0荔枝树叶的长宽比 2.0 2.020 2.4 1.819 1.8 2.0 1.3 1.9【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比 3.74m 4.00.0424荔枝树叶的长宽比 1.91 2.0n0.0669【问题解决】(1)上述表格中:m=,n=;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是(填序号);(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.23.(本题满分10分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.24.(本题满分10分)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.延长BA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若=,AF=10,求⊙O的半径.25.(本题满分10分)已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).(1)求点A,点B的坐标;(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接P A,PC,设点P的纵坐标为m,当P A=PC时,求m的值;(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.26.(本题满分10分)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.(1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;(2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;(3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.数学试题参考答案一、选择题(共12小题,每小题3分,共36分)1.A2.D3.C4.C5.B6.C 7.A8.A9.B10.D11.B12.D 二、填空题(本大题共6小题,每小题2分,共12分)13.2√214.015.616.13417.1418.5 + √5三、解答题(本大题共8小题,共72分)19.(本题满分6分)220.(本题满分6分)21.(本题满分10分)(1)∵四边形ABCD是平行四边形∴AB = CD, AD = BC, ∠A = ∠C∴△ABD ≌△ CDB(SAS)(2)如右图(3)∵EF是垂直平分线∴BD = DE,∴∠DBE = ∠EDB = 25°∴∠AEB = ∠DBE + ∠EDB = 25° + 25° = 50°22.(本题满分10分)综合与实践(1)3.75 2.0(2)②(3)荔枝树叶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档