泰勒公式数学论文
(整理)数学论文泰勒公式

本科生毕业论文题目: 泰勒公式及其应用研究专业代码: 070101作者姓名: 范文朝学号: 2008200665单位: 2008级1班指导教师: 刘保政2012年5 月20 日精品文档原创性声明本人郑重声明: 所提交的学位论文是本人在导师指导下, 独立进行研究取得的成果. 除文中已经注明引用的内容外, 论文中不含其他人已经发表或撰写过的研究成果, 也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料. 对本文的研究做出重要贡献的个人和集体, 均已在文中以明确方式标明。
本人承担本声明的相应责任。
学位论文作者签名: 日期指导教师签名: 日期目录摘要 (Ⅰ)Abstract (Ⅱ)1.引言 (1)2.泰勒公式的形式........................................... (1)2.1 带有佩亚诺型余项的泰勒公式.............................. .. (1)2.2 具有拉格朗日余项的泰勒公式 (2)2.3 带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (2)3.泰勒公式的应用...... ....................... . (2)3.1利用泰勒公式求不定式的极限 (3)3.2利用泰勒公式估算误差 (5)3.3用泰勒公式判断级数的敛散性....................... . (9)3.3.1数项级数的敛散性判断............. .............. ........ ..93.3.2函数项级数的敛散性判断............... .............. .. (10)3.4利用泰勒公式证明中值问题.............. ............. (12)3.5利用泰勒公式证明不等式和等式............. .............. .. (13)3.5.1利用泰勒公式证明积分不等式或积分等式................ .. (13)3.5.2利用泰勒公式证明导数不等式.............. ............. (15)3.5.3利用泰勒公式证明代数不等式............... . (16)结束语 (19)参考文献 (20)致谢 (21)摘要泰勒公式是数学分析中重要的公式,它的基本思想是用多项式来逼近已知函数,而这个多项式的系数由给定函数的各阶导数确定.阐述了泰勒公式的定义及其各种形式,着重对泰勒公式在极限计算、误差估计、敛散性的判断、中值问题以及等式与不等式的证明这五个方面中的应用进行了研究论述.泰勒公式在多方面的应用可以提高我们对泰勒公式的认识,有利于把泰勒公式的研究推向更深处.关键词:泰勒公式; 不定式的极限;误差估计; 级数的敛散性;不等式证明AbstractTaylor formula is a important formula in the mathematical analysis. Its basic idea is that the known function with a polynomial approximation determines the coefficients of the polynomial by the first derivative of the given function. The definition and its various forms of the Taylor formula are elaborated. The applications of Taylor formula in five aspects are studied and discussed, such as the limit calculation, error estimation, the judgment of convergence and divergence, median problems, as well as equality and inequality proof. Taylor formula in many applications can improve our understanding of the Taylor formula , and it benefit to push the research of Taylor formula to deeper.Key words:Taylor formula; the infinitive limits; error estimates; convergence and divergence of the series; Proof of Inequality泰勒公式及其应用研究1. 引言泰勒公式是数学分析中一个非常重要的内容,几个微分中值定理中一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
泰勒公式的应用范文

泰勒公式的应用范文泰勒公式是一种在微积分中用来近似计算函数值的方法。
它将一个函数表示为一个无穷级数的形式,使得我们可以通过计算级数中的有限项来近似计算函数的值。
泰勒公式广泛应用于数学、物理学、工程学和计算机科学等领域,并对数值计算和数学建模等重要任务具有重要意义。
以下将介绍泰勒公式在这些领域的一些应用。
一、在数学领域的应用:1.函数近似:泰勒公式可用于近似计算一个函数在其中一点的函数值,特别是在点附近的小区间内。
这对于无法直接计算的复杂函数或含有未知变量的函数是非常有用的。
2.导数和高阶导数的计算:泰勒公式可以通过计算级数中的有限项来近似计算一个函数在其中一点的导数。
这对于无法直接计算导数或高阶导数的函数是非常有用的。
3.极限计算:泰勒公式提供了一种计算函数在一个点的极限的方法,特别是对于无法直接计算的函数或复杂函数而言。
二、在物理学领域的应用:1.运动学和动力学:泰勒公式可用于近似计算运动学和动力学中各种物理量的变化率,如速度、加速度和力。
2.波动学:泰勒公式可以近似计算波函数随时间和位置的变化,从而帮助解决波动学相关的问题,如声波、光波和电磁波等。
3.热力学:泰勒公式可用于计算物体在热力学过程中的温度、能量和熵等的变化。
三、在工程学领域的应用:1.信号处理:泰勒公式可以用于近似表示信号在时间域和频域中的变化,从而帮助处理和分析各种类型的信号。
2.控制理论:泰勒公式可用于近似表示控制系统中各种变量的变化,从而帮助设计和优化控制器,以实现稳定和可靠的系统性能。
3.电路分析:泰勒公式可用于近似计算电路中各种元件的电压、电流和功率等的变化,特别是在非线性电路和非稳态电路的分析中。
四、在计算机科学领域的应用:1.数值计算:泰勒公式可用于近似计算各种数学函数的值,从而帮助实现高效和准确的数值计算方法,如数值积分、数值微分和数值优化等。
2.图像处理:泰勒公式可以用于近似表示图像中各个像素值的变化,从而帮助实现图像增强、图像压缩和图像恢复等处理算法。
泰勒公式的应用论文

泰勒公式的应用论文泰勒公式是一个非常重要的数学工具,在物理、工程和其他科学领域都有广泛的应用。
本文将介绍一篇关于泰勒公式应用的论文,通过该论文的介绍,读者可以了解泰勒公式的具体应用以及其在该领域的重要性。
题目:《利用泰勒公式对非线性方程进行求解的数值方法研究》摘要:本文研究了一种利用泰勒公式对非线性方程进行求解的数值方法。
通过将非线性方程展开成泰勒级数的形式,可以近似地求解非线性方程,并得到更加精确的解。
本文通过对该数值方法进行理论推导和实验证明,证明了该方法的有效性和准确性。
引言:非线性方程是很多科学问题中常见的数学模型,然而求解非线性方程通常比线性方程复杂得多。
泰勒公式是一种在求解非线性方程时常用的近似方法。
通过将非线性方程进行泰勒级数展开,可以将非线性方程转化为线性方程或更简单的形式,从而得到近似的解。
方法:本文首先对泰勒公式进行了简要的介绍和推导。
然后,根据泰勒公式的展开形式,将非线性方程的各阶导数代入泰勒级数中,得到更简单的形式。
接下来,研究了如何选取适当的展开点和截断误差来提高近似解的精确性。
最后,利用MATLAB编写了求解非线性方程的数值算法,并通过多个实例进行了验证。
结果与讨论:通过对多个不同类型的非线性方程进行求解,得到了较好的结果。
与传统的数值方法相比,利用泰勒公式进行求解的方法具有更高的精确性和更快的收敛速度。
此外,通过调整展开点和增加泰勒级数的项数,还可以进一步提高解的精确度。
结论:本文研究了一种利用泰勒公式求解非线性方程的数值方法,并通过理论推导和实验证明了该方法的有效性和准确性。
该方法可以准确地求解非线性方程,并且具有更高的精确性和更快的收敛速度。
因此,该方法在实际应用中具有很大的潜力,可以应用于物理、工程和其他科学领域中。
展望:虽然本文对利用泰勒公式求解非线性方程的数值方法进行了研究和验证,但仍然有一些问题需要进一步探讨。
例如,如何选择展开点和确定截断误差的更准确方法,以及将该方法应用于更复杂的非线性方程等。
Taylor公式的发展及其应用论文文档

Taylor 公式的发展及其应用摘要:数学中Taylor 公式是分析和探究相关数学问题的有力工具。
本文将简要介绍Taylor 公式的概念,发展,基本内容式及其简单的应用。
关键词:Taylor 公式发展余项应用一、基本概念在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。
如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
我们在学习导数和微分概念时已经知道,如果函数f(x)在0x 可导,则有)())((')()(0000x x o x x x f x f x f -+-+=即在点0x 附近,用一次多项式))((')()(000x x x f x f x f -+=逼近函数)(x f 时,其误差为)(0x x -的高阶无穷小量。
然而在很多场合,取一次多项式逼近是不够的,往往需要用二次或高于二次的多项式去逼近,并要求误差为n x x o )(0-,其中n 为多项式的次数。
为此,我们考察任一n 次多项式n n n x x a x x a x x a a x p )(.......)()()(02020100-++-+-+=逐次求它在点0x 处的各阶导数,得到00)(a x p n =,10)('a x p n =,20!2)(''a x p n =,……()n n n a n x p !)(0=由此可见,多项式)(0x p n 的各项系数都由其在0x 的各阶到数值唯一确定。
对于一般函数f(x),设它在点0x 存在直到n 阶的导数,有这些导数构造一个n 次多项式n n n x x n x f x x x f x x x f x f T )(!)(........)(!2)('')(!1)(')(00)(200000-++-+-+=称为函数f (x )在点0x 处的Taylor 多项式,)(n x T 的各项系数!)(0)(k x fk (k=1,2……n )称为Taylor 系数。
探讨泰勒公式在高等数学中的应用

探讨泰勒公式在高等数学中的应用泰勒公式是一项非常重要的数学工具,在高等数学中有广泛的应用。
它基于函数展开的概念,可以通过一个已知的函数在其中一点的信息来推导附近的函数近似值。
泰勒公式的使用范围包括但不限于数值计算、微积分、物理学和工程学。
在数值计算中,泰勒公式的应用十分广泛。
由于许多函数难以直接计算,我们常常需要找到函数的近似值。
例如,当我们需要计算一个复杂数学模型的函数表达式时,可以使用泰勒公式将其转化为一个多项式近似,从而简化计算过程。
此外,泰勒公式还可以进行数值微分和数值积分,来近似计算函数的导数和积分,这对于模拟和优化等问题非常重要。
在微积分中,泰勒公式是一个基本的工具。
它可以用来求解复合函数的导数。
通过将函数展开成泰勒级数,并取得适当的截断,我们可以获得一个函数的多项式逼近,从而求解其任意阶导数。
这在研究函数的行为和性质时非常有用,例如求解临界点、拐点等。
泰勒公式在物理学中的应用也非常广泛。
物理学中的许多重要方程往往是非线性的,难以求解。
然而,通过使用泰勒公式,我们可以将这些方程转化为一个线性近似问题。
这不仅可以简化计算过程,还可以提供物理现象的近似解析解。
在工程学中,泰勒公式可以用来评估工程设计的稳定性和性能。
当我们需要评估一个复杂系统的响应时,可以使用泰勒公式将其近似为一个线性系统,从而简化分析。
此外,泰勒公式还可以用于数值模拟和仿真,通过近似计算来提供系统的性能预测。
除了以上应用外,泰勒公式还具有其他一些特殊用途。
例如,它可以用来证明函数的连续性和可导性。
通过将函数用泰勒级数展开,并证明级数的收敛性可以推导出函数的性质。
此外,泰勒公式还可以用于研究特殊函数的性质,例如三角函数、指数函数和对数函数等。
总之,泰勒公式是高等数学中一项重要的工具,具有广泛的应用。
它可以用于数值计算、微积分、物理学和工程学等领域。
通过使用泰勒公式,我们可以从复杂的函数中获得近似解析解,并简化计算和分析的过程。
关于泰勒公式的论文

关于泰勒公式的论文
泰勒公式是一个强大的数学工具,可以用来计算函数在其中一点的极
限或求解微分方程。
它最初由英国数学家约翰·泰勒于1715年发明,已
经被广泛使用了近300年。
从统计学、物理学和控制工程到经济学、医学
研究,泰勒公式都可以起到巨大的作用。
由于泰勒公式的重要性,关于它的研究也越来越多。
从1825年以来,论文和文章就一直在研究该公式和它的应用,以便更好地理解它背后的原理。
今天,有关泰勒公式的文献有数不清,可以用来帮助研究者们更好地
理解该公式。
首先,1825年,英国数学家兼物理学家莱斯利·卡罗尔发表了他的
论文“泰勒公式:一种新的数学理论”,该论文发表在英国物理学家詹姆斯·牛顿的《英国科学院学报》上。
这是关于泰勒公式的最早研究,主要
介绍了泰勒公式的原理,以及如何使用这一理论来解决复杂的数学问题。
随后,1945年,美国数学家蒂姆·麦克法兰发表了他的论文“基于
泰勒公式的信号分析技术”,该论文发表在《应用数学评论》上。
麦克法
兰的论文主要讨论了使用泰勒公式来进行信号分析的新技术,从而为计算
信号波形提供了一种新的方法。
此外,2024年,美国数学家胡安·德鲁伊斯·戈麦斯发表了他的论
文“泰勒公式在理论物理学中的应用”。
泰勒公式及其应用论文)

泰勒公式及其应用摘 要 文章主要对泰勒公式在近似计算、求极限、证明不等式、外推、求曲线的渐近线方程和判断级数收敛性,对函数凹凸性及拐点判断、广义积分敛散性中的应用关于界的估计、和泰勒公式展开的唯一性问题做了简单系统的介绍和分析,从而体现泰勒公式式在微分学中占有很重要的地位.关键词 泰勒公式; 佩亚诺余项; 拉格朗日余项; 不等式; 根的唯一存在性; 极值; 近似计算.一.引言近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.我们都知道,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可缺少的数学工具,集中体现了微积分“逼近法”的精髓。
在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.这篇主要在于探索泰勒公式及其应用的新方法,借助泰勒公式的广泛应用,将泰勒公式的知识应用到数学解题的各个方面和领域中去,得出泰勒公式在数学各方面的应用和解求方法的简便性.二.预备知识2.1泰勒公式的定义定义2.1]1[ 若函数()f x 在0x 存在n 阶导数,则有'''200000()()()()()()1!2!f x f x f x f x x x x x =+-+-+()00()()(),!n n n f x x x r x n +-+ (1)其中 0()()(())n n n r x r x o x x =-满足 上述公式称为()f x 在点0x x =处带有佩亚诺余项的的泰勒公式.当0x =0时,(1)式变成)(!)0(!2)0(!1)0()0()()(2'''n nn x o x n f x f x f f x f +++++= ,称此式为(带有佩亚诺余项的)麦克劳林公式.定义2.2]2[ 若函数 ()f x 在0x 某邻域内为存在直至 1+n 阶的连续导数,则''()'20000000()()()()()()()...()()2!!n n n f x f x f x f x f x x x x x x x r x n =+-+-++-+, (2)这里()n r x 为拉格朗日余项(1)10()()()(1)!n n n f r x x x n ξ++=-+,其中ξ在x 与0x 之间,称(2)为f 在0x 的泰勒公式.当0x =0时,(2)式变成''()'2(0)(0)()(0)(0)...()2!!n nn f f f x f f x x x r x n =+++++ 称此式为(带有拉格朗日余项的)麦克劳林公式.常见函数的展开式:12)!1(!!21+++++++=n xn xx n e n x x x e θ .)()!12()1(!5!3sin 221253++++-+-+-=n n n x o n x x x x x . 24622cos 1(1)()2!4!6!(2)!nnn x x x x x o x n =-+-++-+.2311ln(1)(1)()231n nn x x x x x o x n +++=-+-+-++.)(1112n n x o x x x x+++++=- , +-++=+2!2)1(1)1(x m m mx x m 定理 2.1]3[(介值定理) 设函数 f 在闭区间 ],[b a 上连续,且 )()(b f a f ≠,若0μ为介于 )(a f 与)(b f 之间的任何实数,则至少存在一点0x ),(b a ∈,使得00)(μ=x f .2.2泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数()f x .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()(())n n R x o x x =-组成,我们来详细讨论它们.当n =1时,有 1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高. 2.3泰勒公式余项的类型泰勒公式的余项分为两类,一类佩亚诺型余项0(())n o x x -,一类是拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+,它们的本质相同,但性质各异.佩亚诺型余项0(())n o x x -是定性的余项,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+是定量的余项(ξ也可以写成00()x x x θ+-).定量的余项一般用于函数值的计算与函数形态的研究.三.泰勒公式的应用3.1 .利用泰勒公式求极限简化极限运算,就可用某项的泰勒展开式来代替该项,使得原来函数的极限转化为类似多项式有理式的极限.例1. 求极限sin 2lim sin cos x x xe x xx x x →0-1--- .分析 : 此为00型极限,若用罗比达法求解,则很麻烦,这时可将cos x 和sin x , xe 分别用泰勒展开式代替,则可简化此比式.解: 由1sin 2xx e x x ---=233331()())2626x x x x x o x x x o x ++++-1--(-+=34333()()6126x x x o x o x ++=+, 3233sin cos ()(1())62x x x x x x o x x o x -=-+--+=33()3x o x + 于是1sin 2lim sin cos xx x e x x x x x →0----3333()162()3x o x x o x +==+,3. 2 利用泰勒公式证明不等式当所要证明的不等式是含有多项式和初等函数的混合物,不妨作一个辅助函数并用泰勒公式代替,往往使证明方便简捷.例1. 当0x ≥时,证明31sin 6x x x ≥-.证明 取31()sin 6f x x x x =-+,00x =,则 '''''''''(0)0,(0)0,(0)0,()1cos ,(0)0.f f f f x x f ====-≥带入泰勒公式,其中n =3,得31cos ()0003!x f x x θ-=+++,其中10<<θ. 故当0x ≥时,31sin 6x x x ≥-.例2. 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-,(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+-, 所以21112()2(1)(1)f x x ξξ-''=-<<,当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.3.3 利用泰勒公式判断广义积分的敛散性当级数的通项表达式是由不同类型函数式构成的繁难形式时,就可以利用泰勒公式将级数通项简化成统一形式,以便利用判敛准则.在判定广义积()a f x dx +∞⎰敛散性时, 通常选取广义积分1(0)p a dx p x +∞>⎰进行比较, 在此通过研究无穷小量()()f x x →+∞的阶来有效地选1pa dx x +∞⎰中的p 值,从而简单地判定()af x dx +∞⎰的敛散性(注意到:如果()af x dx +∞⎰得收敛,则()af x dx +∞⎰得收敛). 例 1.研究广义积分4dx +∞⎰的敛散性. 解 : 22(1)(1)1()2!x x x o x αααα-+=+++()f x =112233)(1)2x x=++--22223191131911())(1())22828o o x x x x x x =+⋅-⋅++-⋅-⋅+-3/23/2911()4o x x=-⋅+ ,因此,3/2()9lim14x f x x →+∞=,即()0f x →是1()x x →+∞的32阶,而3/241dx x +∞⎰收敛,故4()f x dx +∞⎰收敛,从而4dx +∞⎰.例2.讨论级数1n∞=∑的敛散性.注意到11ln ln(1)nn n+=+,若将其泰勒展开为1n的幂的形式,开二次方后恰与,会使判敛易进行.解:因为2341111111ln ln(1)234nn nn n n n n+=+=-+-+<,所以<所以nu=>,故该级数是正项级数.又因为3212n =>=-,所以332211)22nun n=-=.因为31212n n∞=∑收敛,所以由正项级数比较判别法知原级数收敛.3.4 利用泰勒公式判断函数的凸凹性及拐点例 1. 设()f x 在[a,b]上连续在(a,b)上具有一阶和二阶导数,若在(a,b)内 ()0f x ´´>()f x 在[a,b]上是凹向的. 12x x 证明:设c <d 为[a,b]内任意两点,且[c,d]足够小.<为[c,d]中的任意两点,1202x x =+记x 由定理条件得泰勒公式: 2000000()()()()()()((-))2n x x f x f x f x x x f x o x x ´´´-=+-++!,22102012001002000()()()()()()()()()()()22x x x x f x f x f x f x x x f x x x f x f x ´´´´´´--+=2+-+-++!!221020())())o x x o x x +(-+(-212()n x x x x 因为余项为-的高阶无穷小,[,]又为足够小,202000()()())()2x x f x o x x f x ´´´´-所以泰勒公式中+(-的符号与相同。
本科毕业设计论文--泰勒公式

目录一、泰勒公式简介 0(一)泰勒公式的基本形式 0(二)泰勒公式余项类型 (1)(三)泰勒公式的定理 (4)二、泰勒公式的证明 (5)(一)泰勒公式证明初探 (5)(二)证明泰勒公式 (5)三、泰勒公式的应用 (6)(一)利用泰勒公式求极限 (7)(二)利用泰勒公式判断函数的极值 (8)(三)利用泰勒公式判定广义积分敛散性 (9)(四)利用泰勒公式证明中值定理 (10)(五)利用泰勒公式求行列式的值 (12)(六)泰勒公式在关于界的估计的应用 (13)谢辞................................................ 错误!未定义书签。
参考文献 (16)摘要泰勒公式是高等数学中一个非常重要的内容,它将一些复杂函数近似地表示为简单的多项式函数,这种化繁为简的功能,使它成为分析和研究其他数学问题的有力杠杆。
但一般高数教材中仅介绍了如何用泰勒公式展开函数,而对泰勒公式的应用方法并未深入讨论,在教学过程中学生常因学用脱离而难以理解。
本文论述了泰勒公式的一些基本内容,并着重介绍了它在数学分析中的一些应用。
泰勒公式是数学分析中的重要知识,在某些题目中运用泰勒公式会达到快速解题的目的。
本文主要从不同的方面对泰勒公式进行综合论述:利用泰勒公式求极限,求无穷远处极限,证明中值公式,中值点的极限,证明不等式,导数的中值,关于界的估计,方程中的应用,用泰勒公式巧解行列式。
对于泰勒公式如何更广泛的应用于高等代数中这一问题,还在进一步的研究中。
关键字:泰勒公式极限函数不等式函数方程ABSTRACTTaylor formula is a very important concept in advanced mathematics. It divides complicated functions into polynomial functions. It have became a powerful leverage when we analysis and research other mathematics problem because of its simplicity. However, normal advanced mathematic textbooks only introduce how to use Taylor formula to expand the functions and never get into the applications of Taylor formula, The students are always hard to use it because we teach it detached from use in teaching process . This paper discusses some of Taylor's formula for the basic content, and focused on mathematical analysis in some applications. Taylor's formula is the mathematical analysis of the important knowledge, the use of certain topics in Taylor formula to reach the purpose of solving problems quickly. In this paper, different aspects from the Taylor formula for a comprehensive discussion: the use of Taylor's formula for the limit, for infinite distance limit, the proof of the value of the formula in the limit point to prove that inequality in the value of derivatives, it is estimated that the estimates on the sector, equations, using Taylor formula determinant clever solution.Taylor formula for how the wider use of Advanced Algebra with the problem, still further study.Key Words:Taylor formula limit function inequality function equation一、泰勒公式简介随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泰勒公式的几点应用理学院 数学082本 岑燕丹 指导老师:杨征摘要:泰勒公式是非常重要的数学工具,在各类数学问题的解决中有着广泛应用。
高等数学教材中对泰勒公式的理论部分已进行了较详细的介绍,但对于泰勒公式的应用涉及的相对较少。
所以本文主要通过实例对泰勒公式的应用进行探讨。
文中在对泰勒公式系统总结下,主要论述了一元函数泰勒公式在求极限、求极值与拐点及求近似值等的常规应用,还列举了其在判断敛散性、求行列式及解微分方程等的应用,更进一步证明了欧拉公式。
文中还将一元函数的泰勒公式推广到二元函数的泰勒公式,以便将高等数学中泰勒公式的内容系统化,便于其研究内容的进一步发展。
关键词;泰勒公式;应用;极限;行列式;微分方程;二元函数0 引言泰勒公式是数学分析中一个非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,并在微积分的各个方面都有重要的应用。
它还建立了函数的增量、自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
我们还可以使用泰勒公式来很好的解决某些问题,如求某些极限,确定无穷小的阶,证明等式和不等式,判断收敛性,判断函数的拐点以及解决中值问题等。
1 泰勒公式的引入设给定了一个函数()f x ,我们要找到一个在指定点0x x =附近与()f x 很近似的多项式。
我们的目的是希望找到一个关于()0x x -的n 次多项式()()()()2010200nn P x a a x x a x x o x x =+-+-++- (1.1)来近似表示()f x ,并使当0x x →时,其误差()()n f x P x -是较()0nx x -高阶的无穷小。
我们把()()()()000f x f x f x x x '≈+-,与一次多项式()()1010P x a a x x =+-,对照一下,可知应该取()()0010,a f x a f x '==,而01,a a 的这两个数值可以由等式()()()()100100,P x f x P x f x ''==,分别求得。
事实上,()()()()01001001001001x x P x a a x x P x a a x x a ==+-''=+-=⎡⎤⎣⎦由此不难推想,为了确定n 次多项式()n P x 的全部系数,我们应该假定()f x 在点0x 附近具有直到n+1阶的导数,别且满足下列条件:()()()()()()()()()()00000000,,,,n n n n n n P x f x P x f x P x f x P x f x ''''''====(1.2)由(1.1)计算()n P x 在0x 点的各阶导数值,代入上面等式(1.2),得()()()()()0010200,,2!,,!n n a f x a f x a f x n a f x '''====,即 ()()()()()0000102,,,,2!!n n f x f x a f x a f x a a n '''====,代入(1.1)式则得()()()()()()()()()200000002!!n nn f x f x P x f x f x x x x x x x n '''=+-+-++- (1.3)这就是我们找的关于()0x x -的n 次多项式,称为()f x 在0x 点的n 次泰勒多项式。
它的各项系数是以()f x 在0x 点的各阶导数表出的。
因此我们得到泰勒定理]1[:如果函数()f x 在0x 点的附近有直到n +1阶的导数,则对于0x 点附近的x ,()f x 可表示为()0x x -的n 次多项式与余项()n r x 的和()()()()()()20000012!f x f x f x x x f x x x '''=+-+-+()()()()001!nn n f x x x r x n +-+ (1.4) 其中 ()()()()()11011!n n n r x f x x n ξ++=-+ (ξ在0x 与x 之间)定理中的(1.4)式称为具有拉格朗日型余项的泰勒公式。
特别地,当0n =时,泰勒公式(1.4)式变为()()()()00f x f x f x x ξ'=+-, 这就是拉格朗日中值公式。
可见泰勒公式是拉格朗日公式的推广。
如果,在泰勒公式(1.4)式中,令00x =,则得()()()()()()()()21100002!!n n n f x f f x f x f x r x n '''=+++++ (1.5) 其中 ()()()()()11011!n n n r x f x x n ξ++=-+ (ξ在0x 与x 之间)公式(1.5)是()f x 在原点的泰勒公式,也称为麦克劳林公式。
2 泰勒公式的余项类型泰勒公式的余项一般分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异。
定性的余项如佩亚诺型余项0(())n o x x -,表示余项是比0()nx x -(当0x x →时)高阶的无穷小。
定量的余项如拉格朗日型余项)1(0)1())(()!1(1++-+n n x x f n ζ(ζ也可以写成)(00x x x -+θ)。
泰勒多项式表示()f x 时所产生的误差()()()n n r x f x P x =-,当0x x →时,它是比()0nx x -高阶的无穷小,其中()n r x 称为n 阶余项。
上面我们已经引入了带有拉格朗日余项的泰勒公式,下面就简要介绍一下其他三种不同余项类型的泰勒公式。
2.1 带有皮亚诺型余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少∃一个ξ使得:()()()()()()20000012!f x f x f x x x f x x x '''=+-+-+()()()()001!nn n f x x x r x n +-+,其中))(()(0n n x x o x r -=, 则称此式为带有皮亚诺型余项的泰勒公式]3[。
2.2 带有积分型余项的泰勒公式如果函数f 在点0x 的某邻域()0x U 内具有n+1阶导数,令x ∈()0x U ,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少∃一个t 使得:()()()()()()()()()dt t x t f n x x n x f x x x f x f x f n x x n nn -+-⋅⋅⋅⋅⋅⋅+-+=⎰+010000'0!1!)(其中()()()dt t x t fn nx x n -⎰+01!1就是泰勒公式的积分型余项]3[。
2.3 带有柯西型余项的泰勒公式如果函数f 在点0x 的某邻域()0x U 内具有n+1阶导数,令x ∈()0x U ,则对该邻域内异于0x 的任意点x 有:()()()()()()()x R x x n x f x x x f x f x f n n n 0000'0!)(+-⋅⋅⋅⋅⋅⋅+-+=,10≤≤θ, 其中1000)1()()1))(((!1)(++---+=n n n n x x x x x f n x R θθ就是柯西型余项]3[, 当00=x 时,又有()x R n =10,)1)((!11)1(≤≤-++θθθn n n x x fn 。
3 一元函数泰勒公式的应用3.1 利用泰勒公式求未定式的极限未定式是指呈∞∞∞⋅∞-∞∞∞1000000,,,,,,等形式的极限,一般是用洛必达法则求解,当分子分母的阶数都是较高阶的无穷小的话,必须进行多次洛比达法则,或是分子分母都是带根号项的话,越微分会越复杂,此时若使用泰勒公式解决,会更简单明了。
例1 求极限0lim →x (221sin 1xx -). 分析:此为00-0型极限,若用罗比达法求解,则很麻烦。
解:0lim →x (221sin 1x x -)=0lim →x xx x 2222sin sin x -。
又22cos 1sin 2x x -=,将cos2x 用泰勒公式展开:cos2x=()442!416!2x 41x x ο++-。
则0lim →x ⎪⎪⎭⎫⎝⎛-x x x 2222sin sin x =0lim →x ()4443x x x ο+=31。
假如细心思考,这一题目的结果可以引起我们的兴趣。
当0x →时,x x ~sin ,易知n n x x N ~sin ,n ∈∀。
两个互为等价无穷小的函数,它们倒数之差的极限为31。
为什么是31?是什么因素造成31这一结果?如果是0lim →x (nx x 1sin 1n -),情况会怎么样? 当0→x ,+∈N n 时,有: (1)当n ≥3时,nxx 1sin 1n -是关于x 的(n-2)阶无穷大;(2)当n=2时,221sin 1x x -31→; (3)当n=1时,x x 1sin 1-是关于x 的一阶无穷小;(4)当n=0时,001sin 1xx -=0。
证明:(2)在上题已经证明了,(4)是显然成立的,这里只证明(1)、(3),先证明(3): 当n=1时,0lim →x (x x 1sin 1-)x 1=0lim →x x x sin x sin x 2-=0lim →x 3sin x x x-。
在这里,利用洛必达法则可以解出这个极限,但用泰勒公式则更便捷。
因为我们知道:N k x k x x x x x k k k ∈+--+⋅⋅⋅-+-=---),()!12()1(!5!3sin 2212153ο,即lim 0→x (x x 1sin 1-)x 1=lim 0→x ()333!3x x x ο+=61。
再证明(1):当n ≥3时,lim 0→x (n x x 1sin 1n -)2x -n =lim 0→x =-x x x n n n sin sin x 2lim 0→x 2sin x +-n n n x x =lim 0→x (11213sin sin x sin x ----⋅⋅⋅++⋅-n n n n x xx x x x ) =lim 0→x 3sin x x x-lim 0→x (661)sin sin 111n n x x x x n n =⋅=⋅⋅⋅++--,命题得证。