泰勒公式及其应用开题报告
《高等数学》课程中泰勒公式的应用

《高等数学》课程中泰勒公式的应用泰勒公式是数学中的一种重要工具,它可以将一个可导函数在某个点附近展开成一个无限项的多项式,从而方便于研究函数的性质和行为。
在《高等数学》课程中,泰勒公式的应用非常广泛,涉及到数值逼近、极限计算、函数性质的研究等方面。
泰勒公式可以用于数值逼近。
我们知道,实际中很多函数的精确计算是非常困难的,特别是在计算机上进行数值计算时。
我们常常使用泰勒公式来近似计算函数的值。
泰勒公式展开后的多项式可以截断成一定项数,从而得到函数在某个点的近似值。
这样的逼近方法在实际应用中非常重要,比如在科学计算、工程设计、物理模拟等方面都有广泛的应用。
泰勒公式还可以用于函数的极限计算。
我们可以将一个函数在某个点附近进行泰勒展开,然后通过取极限的方式来研究函数在该点处的性质。
我们可以利用泰勒公式来求解不定形式的极限,如0/0、∞/∞、1^∞等形式的极限。
通过适当的泰勒展开和计算,我们可以得到这些极限的具体值或者给出它们的一些性质。
泰勒公式还可以用于研究函数的性质。
我们知道,泰勒公式展开后的多项式包含了函数的各阶导数信息,通过研究这些导数可以得到函数的一些特征。
通过观察函数的高阶导数可以判断函数的单调性、凹凸性、拐点等性质。
泰勒公式还可以用于研究函数的最值,通过求取泰勒多项式的导数信息,可以确定函数的最大值或最小值,并找到最值点的坐标。
泰勒公式还有一些特殊的应用。
在微积分学中,我们常常遇到一些复杂的函数,难以直接进行求导或积分。
而泰勒公式则可以将这些函数近似表示成一个多项式,从而使得计算和研究变得简便。
泰勒公式还可以用于构造一些特殊的函数,比如常用的三角函数、指数函数、对数函数等。
泰勒公式在《高等数学》课程中有着广泛的应用。
它不仅可以用于数值逼近和极限计算,还可以用于研究函数的性质和解决一些数学问题。
对于学习数学的学生来说,理解和掌握泰勒公式的应用,对于深入理解和掌握微积分学的基本原理和方法具有重要意义。
浅谈泰勒公式及其应用

浅谈泰勒公式及其应用摘要:大学泰勒公式在数学分析中是极其重要的公式,并且在经济领域中也占有一席之地。
泰勒公式是研究函数极限和估计误差等方面不可或缺的数学工具,在近似计算上有着独特的优势,在微积分的各个方面有着重要的应用。
本文主要对泰勒公式在求极限、估计误差、证明求解积分、经济学计算等几个方面的应用给予举例说明进行研究。
关键词:泰勒公式 求极限 不等式 行列式泰勒公式的应用1、利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具。
利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项。
当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限。
例1 求2240cos limx x x e x -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单。
解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+-441()12x o x =-+ 故2442441()cos 112limlim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x ex-→-解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可。
24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x →-+=112=-带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单。
(完整版)泰勒公式及其应用(数学考研)

第2章 预备知识前面一章我们介绍了一下泰勒和他的成就,那他的主要杰作泰勒公式究竟在数学中有多大的用处呢?那么从这一章开始我们就要来学习一下所谓的泰勒公式,首先来了解一下它是在什么样的背景下产生的.给定一个函数)(x f 在点0x 处可微,则有:)()()()(000x x x f x f x x f ∆+∆'+=∆+ο这样当1<<∆x 时可得近似公式x x f x f x x f ∆'+≈∆+)()()(000或))(()()(000x x x f x f x f -'+=,10<<-x x即在0x 点附近,可以用一个x 的线形函数(一次多项式)去逼近函数f ,但这时有两个问题没有解决:(1) 近似的程度不好,精确度不高.因为我们只是用一个简单的函数—一次多项式去替代可能是十分复杂的函数f .(2)近似所产生的误差不能具体估计,只知道舍掉的是一个高阶无穷小量)(0x x -ο,如果要求误差不得超过410-,用))(()(000x x x f x f -'+去替代)(x f 行吗?因此就需要用新的逼近方法去替代函数.在下面这一节我们就来设法解决这两个问题.2.1 Taylor 公式首先看第一个问题,为了提高近似的精确程度,我们可以设想用一个x 的n 次多项式在0x 附近去逼近f ,即令n n x x a x x a a x f )(...)()(0010-++-+= (2.1)从几何上看,这表示不满足在0x 附近用一条直线(曲线)(x f y =在点))(,(00x f x 的切线)去替代)(x f y =,而是想用一条n 次抛物线n n x x a x x a a x f )(...)()(0010-++-+=去替代它.我们猜想在点))(,(00x f x 附近这两条曲线可能会拟合的更好些.那么系数0a ,1a …n a 如何确定呢?假设f 本身就是一个n 次多项式,显然,要用一个n 次多项式去替代它,最好莫过它自身了,因此应当有n n x x a x x a a x f )(...)()(0010-++-+=于是得:)(00x f a =第2章 预备知识2求一次导数可得:)(01x f a '= 又求一次导数可得:!2)(02x f a ''= 这样进行下去可得:!3)(03x f a '''=,!4)(0)4(4x f a =,… ,!)(0)(n x f a n n = 因此当f 是一个n 次多项式时,它就可以表成:k nk k nn x x k x f x x n x fx x x f x f x f )(!)()(!)(...))(()()(000)(00)(000-=-++-'+=∑= (2.2) 即0x 附近的点x 处的函数值)(x f 可以通过0x 点的函数值和各级导数值去计算.通过这个特殊的情形,我们得到一个启示,对于一般的函数f ,只要它在0x 点存在直到n 阶的导数,由这些导数构成一个n 次多项式n n n x x n x f x x x f x x x f x f x T )(!)(...)(!2)())(()()(00)(200000-++-''+-'+=称为函数)(x f 在点0x 处的泰勒多项式,)(x T n 的各项系数!)(0)(k x fk ),...,3,2,1(n k = ,称为泰勒系数.因而n 次多项式的n 次泰勒多项式就是它本身.2.2 Taylor 公式的各种余项对于一般的函数,其n 次Taylor 多项式与函数本身又有什么关系呢?函数在某点0x 附近能近似地用它在0x 点的n 次泰勒多项式去替代吗?如果可以,那怎样估计误差呢?下面的Taylor 定理就是回答这个问题的.定理1]10[ (带拉格朗日型余项的Taylor 公式)假设函数)(x f 在h x x ≤-||0上存在直至1+n 阶的连续导函数,则对任一],[00h x h x x +-∈,泰勒公式的余项为10)1()()!1()()(++-+=n n n x x n f x R ξ其中)(00x x x -+=θξ为0x 与x 间的一个值.即有10)1(00)(000)()!1()()(!)(...))(()()(++-++-++-'+=n n nn x x n f x x n x fx x x f x f x f ξ (2.3) 推论1]10[ 当0=n ,(2.3)式即为拉格朗日中值公式:))(()()(00x x f x f x f -'=-ξ所以,泰勒定理也可以看作是拉格朗日中值定理的推广. 推论2]10[ 在定理1中,若令)0()()1(!)()(101)1(>--⋅=+-++p x x n p fx R n p n n n θξ则称)(x R n 为一般形式的余项公式, 其中0x x x --=ξθ.在上式中,1+=n p 即为拉格朗日型余项.若令1=p ,则得)0()()1(!)()(10)1(>--=++p x x n f x R n n n n θξ,此式称为柯西余项公式.当00=x ,得到泰勒公式:11)(2)!1()(!)0(...!2)0()0()0()(++++++''+'+=n n n n x n x f x n f x f x f f x f θ)(,)10(<<θ (2.4)则(2.4)式称为带有拉格朗日型余项的麦克劳林公式.定理2]10[ (带皮亚诺型的余项的Taylor 公式) 若函数f 在点0x 处存在直至n 阶导数,则有∑=-=nk k k n x x k x fx P 000)()(!)()(, )()()(x P x f x R n n -=.则当0x x →时,))(()(0n n x x x R -=ο.即有))(()(!)(...))(()()(000)(000n n n x x x x n x f x x x f x f x f -+-++-'+=ο (2.5)定理3所证的(2.5)公式称为函数)(x f 在点0x 处的泰勒公式,)()()(x P x f x R n n -=, 称为泰勒公式的余项的,形如))((0n x x -ο的余项称为皮亚诺型余项,所以(2.5)式又称为带有皮亚诺型余项的泰勒公式当(2.5)式中00=x 时,可得到)(!)0(...!2)0()0()0()()(2n nn x x n f x f x f f x f ο+++''+'+= (2.6)(2.6)式称为带有皮亚诺型余项的麦克劳林公式,此展开式在一些求极限的题目中有重要应用.由于))(()(0n n x x x R -=ο,函数的各阶泰勒公式事实上是函数无穷小的一种精细分析,也是在无穷小领域将超越运算转化为整幂运算的手段.这一手段使得我们可能将无理的或超越函数的极限,转化为有理式的极限,从而使得由超越函数所带来的极限式的奇性或不定性,得以有效的约除,这就极大的简化了极限的运算.这在后面的应用中给以介绍.第2章 预备知识4定理3 设0>h ,函数)(x f 在);(0h x U 内具有2+n 阶连续导数,且0)(0)2(≠+x f n ,)(x f 在);(0h x U 内的泰勒公式为10,)!1()(!)(...)()()(10)1(0)(000<<+++++'+=+++θθn n n n h n h x fh n x fh x f x f h x f (2.7)则21lim 0+=→n h θ. 证明:)(x f 在);(0h x U 内的带皮亚诺型余项的泰勒公式:)()!2()()!1()(!)(...)()()(220)2(10)1(0)(000++++++++++++'+=+n n n n n n n h h n x f h n x f h n x f h x f x f h x f ο将上式与(2.7)式两边分别相减,可得出)()!2()()!1()(-)(220)2(10)1(0)1(++++++++=++n n n n n n h h n x fhn x fh x fοθ,从而220)2(0)1(0)1()()!2()()()()!1(+++++++=-+⋅+n n n n n h h n x f h x f h x fn οθθθ,令0→h ,得)!2()()(lim )!1(10)2(0)2(0+=⋅⋅+++→n x fx f n n n h θ,故21lim 0+=→n h θ. 由上面的证明我们可以看得出,当n 趋近于无穷大时,泰勒公式的近似效果越好,拟合程度也越好.第3章 泰勒公式的应用由于泰勒公式涉及到的是某一定点0x 及0x 处函数)(0x f 及n 阶导数值:)(0x f ',)(0x f '',…,)(0)(x fn ,以及用这些值表示动点x 处的函数值)(x f ,本章研究泰勒公式的具体应用,比如近似计算,证明中值公式,求极限等中的应用.3.1 应用Taylor 公式证明等式例3.1.1 设)(x f 在[]b a ,上三次可导,试证: ),(b a c ∈∃,使得3))((241))(2()()(a b c f a b b a f a f b f -'''+-+'+= 证明: (利用待定系数法)设k 为使下列式子成立的实数:0)(241))(2()()(3=---+'--a b k a b b a f a f b f (3.1) 这时,我们的问题归为证明:),(b a c ∈∃,使得:)(c f k '''=令3)(241))(2()()()(a x k a x x a f a f x f x g ---+'--=,则0)()(==b g a g . 根据罗尔定理,),(b a ∈∃ξ,使得0)(='ξg ,即:0)(82)()2()2()(2=---+''-+'-'a k a a f a f f ξξξξξ 这是关于k 的方程,注意到)(ξf '在点2ξ+a 处的泰勒公式:2))((812)()2()2()(a c f a a f a f f -'''+-+''++'='ξξξξξ 其中),(b a c ∈∃,比较可得原命题成立.例3.1.2 设)(x f 在[]b a ,上有二阶导数,试证:),(b a c ∈∃,使得3))((241)2()()(a b c f b a f a b dx x f ba-''++-=⎰. (3.2) 证明:记20ba x +=,则)(x f 在0x 处泰勒公式展开式为: 20000)(2)())(()()(x x f x x x f x f x f -''+-'+=ξ (3.3)对(3.3)式两端同时取[]b a ,上的积分,注意右端第二项积分为0,对于第三项的积分,由于导数有介值性,第一积分中值定理成立:),(b a c ∈∃,使得第3章 泰勒公式的应用632020))((121)()())((a b c f dx x x c f dx x x f baba-''=-''=-''⎰⎰ξ 因此原命题式成立.因此可以从上述两个例子中得出泰勒公式可以用来证明一些恒等式,既可以证明微分中值等式,也可以证明积分中值等式.以后在遇到一些等式的证明时,不妨可以尝试用泰勒公式来证明.证明等式后我们在思考,它能否用来证明不等式呢?经研究是可以的,下面我们通过几个例子来说明一下.3.2 应用Taylor 公式证明不等式例3.4设)(x f 在[]b a ,上二次可微,0)(<''x f ,试证:b x x x a n ≤<<≤≤∀...21,0≥i k ,11=∑=n i i k ,∑∑==>ni i i n i i i x f k x k f 11)()(.证明:取∑==ni i i x k x 10,将)(i x f 在0x x =处展开))(()()(2)())(()()(00020000x x x f x f x x f x x x f x f x f i i i i i -'+<-''+-'+=ξ 其中()n i ,...,3,2,1=.以i k 乘此式两端,然后n 个不等式相加,注意11=∑=ni i k()00110=-=-∑∑==x x k x xk ni i i ni ii得:)()()(101∑∑===<ni i i ni i ix k f x f x f k.例3.2.2 设)(x f 在[]1,0上有二阶导数,当10≤≤x 时,1)(≤x f ,2)(<''x f .试证:当10≤≤x 时,3)(≤'x f .证明:)(t f 在x 处的泰勒展开式为:2)(!2)())(()()(x t f x t a f x f t f -''+-'+=ξ 其中将t 分别换为1=t ,0=t 可得:2)1(!2)()1)(()()1(x f x x f x f f -''+-'+=ξ (3.4) 2)(!2)())(()()0(x f x x f x f f -''+-'+=η (3.5)所以(3.4)式减(3.5)式得:22!2)()1(!2)()()0()1(x f x f x f f f ηξ''--''+'=- 从而,312)1(2)(21)1()(21)0()1()(2222=+≤+-+≤''+-''++≤'x x x f x f f f x f ηξ 例3.2.3 设)(x f 在[]b a ,上二阶可导,0)()(='='b f a f ,证明:),(b a ∈∃ξ,有|)()(|)(4|)(|2a fb f a b f --≥''ξ.证明:)(x f 在a x =,b x =处的泰勒展开式分别为:21)(!2)())(()()(a x f a x a f a f x f -''+-'+=ξ,),(1x a ∈ξ 22)(!2)())(()()(b x f b x b f b f x f -''+-'+=ξ,),(2b x ∈ξ令2ba x +=,则有 4)(!2)()()2(21a b f a f b a f -''+=+ξ,)2,(1ba a +∈ξ (3.6)4)(!2)()()2(22a b f b f b a f -''+=+ξ,),2(2b b a +∈ξ (3.7) (3.7)-(3.6)得:[]0)()(8)()()(122=''-''-+-ξξf f a b a f b f 则有[])()(8)()()(8)()()(122122ξξξξf f a b f f a b a f b f ''+''-≤''-''-=- 令{})(,)(max )(21ξξξf f f ''''='',即有|)()(|)(4|)(|2a fb f a b f --≥''ξ. 例3.2.4 设)(x f 二次可微,0)1()0(==f f ,2)(max 10=≤≤x f x ,试证:16)(min 10-≤''≤≤x f x .证明:因)(x f 在[]1,0上连续,故有最大值,最小值.又因2)(max 10=≤≤x f x ,0)1()0(==f f ,故最大值在()1,0内部达到,所以()1,00∈∃x 使得)(max )(100x f x f x ≤≤=于是)(0x f 为极大值,由费马定理有:0)(0='x f ,在0x x =处按Taylor 公式展开:)1,0(,∈∃ηξ使得:第3章 泰勒公式的应用82002)()()0(0x f x f f ξ''+==, (3.8) 200)1(2)()()1(0x f x f f -''+==η. (3.9)因此{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---=''''≤''≤≤202010)1(4,4min )(),(min )(min x x f f x f x ηξ 而⎥⎦⎤⎢⎣⎡∈1,210x 时,16)1(4)1(4,4min 202020-≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x , ⎥⎦⎤⎢⎣⎡∈21,00x 时,164)1(4,4min 202020-≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧---x x x . 所以,16)(min 10-≤''≤≤x f x .由上述几个例题可以看出泰勒公式还可以用来证明不等式,例3.2.1说明泰勒公式可以根据题目的条件来证明函数的凹凸性,例3.2.2说明可以对某些函数在一定范围内的界进行估计,例3.2.3是用泰勒公式证明中值不等式,例3.2.4与例3.2.2很相似,只不过前者是界的估计,后者是对导数的中值估计.证明不等式有很多种方法,而学习了泰勒公式后,又增添了一种方法,在以后的学习中我们要会灵活应用.但前提是要满足应用的条件,那就是泰勒公式成立的条件.3.3 应用Taylor 公式求极限例3.3.1求422cos limxex x x -→-.解:在这里我们用泰勒公式求解,考虑到极限,用带皮亚诺型余项的麦克劳林公式展开,则有)(2421cos 542x x x x ο++-=)(82154222x x x ex ο++-=-)(12cos 5422x x ex x ο+-=--所以,121)(12lim cos lim4540242-=+-=-→-→xx x xex x x x ο. 像这类函数用泰勒公式求极限就比较简单,因为使用洛毕达法则比较麻烦和复杂.例 3.3.2 设函数)(x ϕ在[)+∞,0上二次连续可微,如果)(lim x x ϕ+∞→存在,且)(x ϕ''在[)+∞,0上有界,试证:0)(lim ='+∞→x x ϕ.证明:要证明0)(lim ='+∞→x x ϕ,即要证明:0>∀ε,0>∃δ.当M x >时()εϕ<'x . 利用Taylor 公式,0>∀h ,2)(21)()()(h h x x h x ξϕϕϕϕ''+'+=+ (3.10)即[]h x h x h x )(21)()(1)(ξϕϕϕϕ''--+=' (3.11) 记)(lim x A x ϕ+∞→=,因)(x ϕ''有界,所以0>∃M ,使得M x ≤'')(ϕ, )0(≥∀x故由(3.11)知[]h x A A h x h x |)(|21)()(1)(ξϕϕϕϕ''+-+-+≤' (3.12) 0>∀ε,首先可取0>h 充分小,使得221ε<Mh , 然后将h 固定,因)(lim x A x ϕ+∞→=, 所以0>∃δ,当δ>x 时[]2)()(1εϕϕ<-+-+x A A h x h 从而由(3.12)式即得:εεεϕ=+<'22)(x .即0)(lim ='+∞→x x ϕ例3.3.3 判断下列函数的曲线是否存在渐近线,若存在的话,求出渐近线方程. (1)32)1)(2(+-=x x y ;(2))1(cos 2215x e xx y --=.解:(1)首先设所求的渐近线为 b ax y +=,并令 xu 1=,则有:第3章 泰勒公式的应用100)(1lim )()321)(321(lim )1()21(lim])1)(2([lim 003231032=+--=+--+-=--+-=--+-→→→∞→uu bu a u u bu a u u ubu a u u b ax x x u u u x οο从中解出:1=a ,0=b .所以有渐近线:x y =.(2)设b ax y +=,xu 1=,则有 0)()4221)(2421(lim cos lim ])1(cos [lim 554424205542021522=+--⋅+-+-=---=---→-→-∞→u u bu au u u u u u bu au e u b ax e x x u u u xx ο从中解出:121-=a ,0,1==b a . 所以有渐近线:x y 121-=.从上面的例子中我们可以看得出泰勒公式在判断函数渐近线时的作用,因而我们在判断函数形态时可以考虑这个方法,通过求极限来求函数的渐进线.上述三个例子都是泰勒公式在求极限的题目上的应用,例3.3.1是在具体点或者是特殊点的极限,而第二个例子是求无穷远处的极限,第三个是利用极限来求函数的渐近线,学习了数学分析,我们知道求极限的方法多种多样,但对于有些复杂的题目我们用洛必达法则或其他方法是很难求出,或者是比较复杂的,我们不妨用泰勒公式来解决.3.4 应用Taylor 公式求中值点的极限例3.4.1]4[ 设(1))(x f 在),(00δδ+-x x 内是n 阶连续可微函数,此处0>δ; (2)当)1(,...,3,2-=n k 时,有0)(0)(=x f k ,但是0)(0)(≠x f n ;(3)当δ<≠h 0时有))(()()(000h h x f hx f h x f θ+'=-+. (3.13)其中1)(0<<h θ,证明:101)(lim -→=n h nh θ. 证明:要求出)(h θ的极限必须设法解出)(h θ,因此将(3.13)式左边的)(0h x f +及右端的))((0h h x f θ+'在0x 处展开,注意条件(2),知)1,0(,21∈∃θθ使得())(!)()()(10000h x f n h x f h x f h x f n n θ++'+=+, (3.14) ))(()!1())(()())((20)(1100h h x f n h h x f h h x f n n n θθθθ+-+'=+'--, (3.15)于是(3.13)式变为=++'-)(!)(10)(10h x f n h x f n n θ))(()!1())(()(20)(110h h x f n h h x f n n n θθθ+-+'--从而120)(10)())(()()(-++=n n n h h x nf h x f h θθθθ. 因)1,0()(,,21∈h θθθ,利用)()(x f n 的连续性,由此可得101)(lim -→=n h nh θ. 这个例子可以作为定理来使用,但前提是要满足条件.以后只要遇到相关的题目就可以简单应用.3.5 应用Taylor 公式近似计算由于泰勒公式主要是用一个多项式去逼近函数,因而可用于求某些函数的近似值,或根据误差确定变量范围.特别是计算机编程上的计算.例3.5.1 求:(1)计算e 的值,使其误差不超过610-;(2)用泰勒多项式逼近正弦函数x sin ,要求误差不超过310-,以2=m 的情形讨论x 的取值范围.解:(1) 由于x e 的麦克劳林的泰勒展开式为: 10,)!1(!...!2112<<++++++=+θθn xn x x n e n x x x e 当1=x 时,有)!1(!1...!2111++++++=n e n e θ故)!1(3)!1()1(+<+=n n e R n θ. 当9=n 时,有第3章 泰勒公式的应用 12691036288003!103)1(-<<=R 从而省略)1(9R 而求得e 的近似值为: 718285.2!91...!31!2111≈+++++≈e (2) 当2=m 时, 6sin 3x x x -≈,使其误差满足: 355410!5!5cos )(-<≤=x x x x R θ 只需6543.0<x (弧度),即大约在原点左右37°29′38″范围内,上述三次多项式逼近的误差不超过310-.3.6 应用Taylor 公式求极值定理3.1 ]12[ 设f 在0x 附近有1+n 阶连续导数,且)(0x f ')(0x f ''=0)(...0)(===x f n , 0)(0)1(≠+x f n(1)如果n 为偶数,则0x 不是f 的极值点.(2)如果n 为奇数,则0x 是f 的严格极值点,且当0)(0)1(>+x fn 时,0x 是f 的严格极小值点;当0)(0)1(<+x f n 时,0x 是f 的严格极大值点.证明:将f 在0x 点处作带皮亚诺型余项的Taylor 展开,即:))(()()!1()()()(10100)1(0+++-+-++=n n n x x x x n x f x f x f ο 于是1010100)1(0)()())(()!1()()()(++++-⎥⎦⎤⎢⎣⎡--++=-n n n n x x x x x x n x f x f x f ο 由于)!1()()())(()!1()(lim 0)1(10100)1(0+=⎥⎦⎤⎢⎣⎡--++++++→n x f x x x x n x f n n n n x x ο 故0>∃δ,),(00δδ+-x x 中,10100)1()())(()!1()(+++--++n n n x x x x n x f ο与)!1()(0)1(++n x f n 同号. (1)如果n 为偶数,则由10)(+-n x x 在0x 附近变号知,)()(0x f x f -也变号,故0x 不是f 的极值点.(2)如果n 为奇数,则1+n 为偶数,于是,10)(+-n x x 在0x 附近不变号,故)()(0x f x f -与)!1()(0)1(++n x f n 同号. 若0)(0)1(>+x f n ,则)()(0x f x f >,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极小值点. 若0)(0)1(<+x f n ,则)()(0x f x f <,)(),(0,000δδ+-∈∀x x x x x ,0x 为f 的严格极大值点.例3.6.1 试求函数34)1(-x x 的极值.解:设34)1()(-=x x x f ,由于)47()1()(23--='x x x x f ,因此74,1,0=x 是函数的三个稳定点.f 的二阶导数为)287)(1(6)(22+--=''x x x x x f ,由此得,0)1()0(=''=''f f 及0)74(>''f .所以)(x f 在74=x 时取得极小值. 求三阶导数)4306035(6)(23-+-='''x x x x x f ,有0)0(='''f ,0)1(>'''f .由于31=+n ,则2=n 为偶数,由定理3.1知f 在1=x 不取极值.再求f 的四阶导数)1154535(24)(23)4(-+-=x x x x f ,有0)0()4(<f .因为41=+n ,则3=n 为奇数,由定理3.1知f 在0=x 处取得极大值.综上所述,0)0(=f 为极大值,82354369127374)74(34-=-=)()(f 为极小值. 由上面的例题我们可以了解到定理3.1也是判断极值的充分条件.3.7 应用Taylor 公式研究函数图形的局部形态定理3.2]12[ 设R X ∈为任一非空集合,X x ∈0,函数R X f →:在0x 处n 阶可导,且满足条件:)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n .(1)n 为偶数,如果)0(0)(0)(<>x f n ,则曲线)(x f y =在点))(,(00x f x 的邻近位于曲线过此点的切线的上(下)方.(2)n 为奇数,则曲线)(x f y =在点))(,(00x f x 的邻近位于该点切线的两侧,此时称曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.证明:因为f 在0x 处n 阶可导,并且)(0x f ''0)(...)(0)1(0==='''=-x f x f n ,0)(0)(≠x f n ,所以f 在0x 的开邻域 ),(0δx B 内的n 阶Taylor 公式为第3章 泰勒公式的应用 14))(()(!)())(()()(000)(000n n n x x x x n x f x x x f x f x f -+-+-'+=ο )(0x x → 于是[]⎥⎦⎤⎢⎣⎡--+-=-'+-n n n nx x x x n x f x x x x x f x f x f )())((!)()())(()()(000)(0000ο 由于!)()())((!)(lim 0)(000)(0n x f x x x x n x f n n n n x x =⎥⎦⎤⎢⎣⎡--+→ο 由此可见:0>∃δ,),(0δx B X x ∈∀,有:[]))(()()(000x x x f x f x f -'+-与n n x x n x f )(!)(00)(-同号. (1)当n 为偶数,如果0)(0)(>x f n ,则[]0))(()()(000>-'+-x x x f x f x f ,),(0δx B X x ∈∀这就表明在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上方;如果0)(0)(<x f n ,则有[]0))(()()(000<-'+-x x x f x f x f ,),(0δx B X x ∈∀因此,在点))(,(00x f x 邻近,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下方.(2)当n 为奇数,这时若)0(0)(0)(<>x f n ,则[])0(0))(()()(000<>-'+-x x x f x f x f , ),(0δx B X x+∈∀ [])0(0))(()()(000><-'+-x x x f x f x f , ),(0δx B X x-∈∀ 由此知,在0x 的右侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的上(下)方;而在0x 的左侧,曲线)(x f y =位于切线))(()(000x x x f x f y -'+=的下(上)方.因此,曲线)(x f y =在点))(,(00x f x 处与该点的切线横截相交.3.8 应用Taylor 公式研究线形插值例 3.8.1(线形插值的误差公式) 设R b a f →],[:为实一元函数,l 为两点))(,(a f a 与))(,(b f b 所决定的线形函数,即)()()(b f a b a x a f a b x b x l --+--=,l 称为f 在区间],[b a 上的线形插值.如果f 在区间],[b a 上二阶可导,f 在],[b a 上连续,那么,我们可以对这种插值法带来的误差作出估计.应用带Lagrange 型余项Taylor 公式:),(x a ∈∃ξ,),(b x ∈∃η,使得 [][])(2))(()()(2))(()()(21)()()()(21)()()()()()()()(22ζηξηξf a x x b f a b x b f a b a x a x x b f x b x f x b a b a x f x a x f x a a b x b x f b f ab a x x f a f a b x b x f x l ''--=⎥⎦⎤⎢⎣⎡''--+''----=⎥⎦⎤⎢⎣⎡''-+'---+⎥⎦⎤⎢⎣⎡''-+'---=---+---=-其中,),(b a ∈ζ,最后一个式子是由于0>--a b x b ,0>--ab a x . )}(),(max{)()())}((),(min{)}(),(min{ηξηξηξηξf f f ab x b f a b a x ab x b a b a x f f f f ''''≤''--+''--≤--+--''''='''' 以及Darboux 定理推得.如果M 为)(x f ''的上界(特别当)(x f ''在],[b a 上连续时,根据最值定理,取)(max ],[x f M b a x ''=∈),则误差估计为 M a b f a x x b x f x l 2)(|)(|2))(()()(2-≤''--≤-ζ,],[b a x ∈∀ 这表明,M 愈小线性插值的逼近效果就会愈好,当M 很小时,曲线)(x f y =的切线改变得不剧烈,这也是符合几何直观的.3.9 应用Taylor 公式研究函数表达式例3.9.1]4[ 设在内有连续三阶导数,且满足方程:)()()(h x f h x f h x f θ+'+=+,10<<θ.(θ与h 无关) (3.16)试证:)(x f 是一次或二次函数.证明:要证)(x f 是一次或二次函数,就是要证0)(≡''x f 或0)(≡'''x f .因此要将(3.16)式对h 求导,注意θ与h 无关,我们有)()()(h x f h h x f h x f θθθ+''++'=+' (3.17)从而)()()()()(h x f hh x f x f x f h x f θθθ+''=+'-'+'-+' (3.18) 令0→h ,对(3.17)式两边取极限得:)()()(x f x f x f ''=''-''θθ,即第3章 泰勒公式的应用16 )(2)(x f x f ''=''θ 若21≠θ,由此知0)(≡''x f ,)(x f 为一次函数; 若21=θ,则(3.17)式变成:)21(21)21()(h x f h h x f h x f +''++'=+'.此式两端同时对h 求导,减去)(x f '',除以h ,然后令0→h 取极限,即得0)(≡'''x f ,即)(x f 为二次函数.实际上在一定条件下证明某函数0)(≡x f 的问题,我们称之为归零问题, 因此上例实际上也是)(x f '',)(x f '''的归零。
《泰勒公式及其应用》的开题报告.doc

《泰勒公式及其应用》的开题报告《泰勒公式的验证及其应用》的关键词:泰勒公式的验证数学开题报告范文中国开题报告1.本课题的目的及研究意义目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。
泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。
研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
对泰勒公式的研究就是为了解决上述问题的。
2.本课题的研究现状数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。
泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。
对于泰勒公式在高等代数中的应用,还在研究中。
3.本课题的研究内容对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。
本课题将从以下几个方面展开研究:一、介绍泰勒公式及其证明方法二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。
三、结论。
4.本课题的实行方案、进度及预期效果实行方案:1.对泰勒公式的证明方法进行归纳;2.灵活运用公式来解决极限、级数敛散性等问题;3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。
实行进度:研究时间为第8 学期,研究周期为9周。
泰勒定理及应用

泰勒定理及应用一、主要定理回顾 1、Taylor 定理若()f x 满足:(1)在闭区间[],a b 上存在()f x 直到n 阶的连续导数;(2)在开区间(),a b 内存在()f x 的1n +阶导数;则对∀0,[,]x x a b ∈,有()()()n n f x P x R x =+,其中()20000000()()()()()()()()2!!n n n f x f x P x f x f x x x x x x x n ′′′=+−+−++−",称为Taylor多项式,()0()()nn R x x x ο=−(当0x x →),称为皮亚诺(Piano)型余项;或 (1)10()()()(1)!n n n f R x x x n ξ++=−+,称为拉格朗日(Lagrange)型余项。
2、马克劳林(Maclaurin)公式(常用)当00x =时,()()2(0)(0)()(0)(0)2!!n nn f f f x f f x x x R x n ′′′=+++++",其中()()()()()()111!n nn n n f R x o xR x x n ξ++==+或3、常用函数的Maclaurin 展开式(1)()231,2!3!!nxn x x x e x R x x R n =++++++∈" ()()()()()1,1!x nn n n e R x o xR x x n θ+==+(2)()()()()12135721sin ,1,2,3,3!5!7!21!n n n x x x x x x R x x Rn n −−−=−+−+++∈=−""()()()()2212221sin 2,21!n n n n n x R x o x R x x n θπ++⎛⎞+⎜⎟⎝⎠==+(3)()()()()2246211cos 1,1,2,3,2!4!6!2!nn n x x x x x R x x Rn n +−=−+−+++∈=""()()()()2122212122cos 2,22!n n n n n x R x o x R x x n θπ+++++⎛⎞+⎜⎟⎝⎠==+(4)()()()(]1231ln 1,1,123n n n x x x x x R x x n −−+=−++++∈−"()()()()()()111,11nnn n n n R x o xR x x n x θ++−==++ (5)()()()()()2111112!!n n n x x x x R x n ααααααα−−−++=+++++""()()()()()()()()111,1,1,11!n nn n n n R x o xR x x x x n ααααθ−−+−−==+∈−+"(6)()()2311(1),1,11n n n x x x x R x x x=−+−++−+∈−+" ()()()112(1),(1)n nn n n n R x o xR x x x θ+++−==+ 以上各式中()0,1θ∈二、典型题型解析1、应用Taylor 公式证明含有中间值的等式、不等式例1、设()f x 在[],a b 上连续, 在(),a b 内有二阶连续导数,证明:(),a b ξ∃∈,使()()()()2224b a a b f b f f a f ξ−+⎛⎞′′−+=⎜⎟⎝⎠(1)关键词:()f x 在(),a b 内有二阶连续导数 (2)分析:考虑三个已知点,,2a ba b +,在2a b +处对()f x 做二阶Taylor 展开,有 ()()212222!2f a b a b b a b a f a f f ξ′′++−−⎛⎞⎛⎞⎛⎞⎛⎞′=+−+−⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠()212222!2f a b a b b a b a f f ξ′′++−−⎛⎞⎛⎞⎛⎞′=−+⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠()()212222!2f a b a b b a b a f b f f ξ′′++−−⎛⎞⎛⎞⎛⎞′=++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,从而()()()()()()212228b a a b f a f f b f f ξξ−+⎛⎞′′′′−+=+⎜⎟⎝⎠,再利用介值定理即可。
泰勒公式在高等数学中的应用研究定稿

泰勒公式在高等数学中的应用研究曾璐数学与信息科学学院 数学与应用数学 1229S002【摘要】本文主要介绍了泰勒公式及其几个常见函数的泰勒展式在高等数学应用中的六个问题,即用泰勒公式求极限,证明不等式,进行近似计算,求高阶导数在某些点的数值、泰勒公式在常微分方程数值求解及敛散性判断中的应用。
【关键词】极限 不等式 近似计算 敛散性 高阶导数及常微分方程,。
1 引言泰勒公式是高等数学中一个重要的公式,它有带皮亚诺余项和带拉格朗日余项两种形式。
这两种形式对解决高等数学中的一些复杂的问题有很大的帮助,下面对它具体的应用进行分析,以此来说明泰勒公式的基本思想及其重要性。
2 基本知识点2.1 泰勒公式介绍由一般的函数f ,它在某点0x 存在有n 阶导数,我们把求得的各阶导数组合,则可以重新构成一个n 次多项式为:()()()()()()()()n n n x x n x f x x x f x x x f x f x T 0020000!...!2''!1'0'-++-+-+=,这个多项式称为函数f 在该点0x 处的泰勒(Taylor)多项式,其中每一项的系数()()......,...,2,1!0n k k x fk=被称为多项式的泰勒系数。
如果一般的函数f 如果在某点0x 处存在到n 阶导数,这时构成新的一个多项式: ()()()()()()()()()()n n n x x x x n x f x x x f x x x f x f x f 00020000!...!2''!1'0'-+-++-+-+=ο它为函数f 在该点0x 处的泰勒公式,而()()()x T x f x R n n -=为泰勒公式的余项。
2.2 麦克劳林公式的推导以上提到的泰勒公式是在任意点0x 处得到的,如果点0x 是一个特殊的点,那函数f 是否可得到新的一个多项式组合。
《关于泰勒公式的应用》开题报告格式范例_开题报告_

《关于泰勒公式的应用》开题报告格式范例格式范例如下文1 课题研究意义在初等函数中,多项式是最简单的函数。
因为多项式函数的运算只有加、减、乘三种运算。
如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。
那么一个函数只有什么条件才能用多项式函数近似代替呢?这个多项式函数的各项系数与这个函数有什么关系呢?用多项式函数近似代替这个函数误差又怎么样呢?通过对数学分析的学习,我感觉到泰勒公式是微积分学中的重要内容,在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明等方面,泰勒公式是有用的工具.2 文献综述为了写好文章我着重查阅参考了以下文献:人民教育出版社出版江泽坚编写的《数学分析》,这本书给出了泰勒(taylor)定理的具体定义,及其麦克劳林 (maclaurin) 公式定义. 洛阳工业高等专科学校学报王素芳和陶荣写的《泰勒公式在计算及证明中的应用》,这篇文章阐述了泰勒公式在证明不等式中应用的具体方法,具体分为三个方面:有关一般不等式的证明、有关定积分不等式的证明、有关定积分等式证明的具体方法、步骤. 天津工业学院学报张励写的《泰勒公式的应用》,这篇文章中阐述了taylor公式在计算极限中应用的几种方法.以及其他的一些书目报刊.3 主要内容我的准备阐述泰勒(taylor)公式和麦克劳林(maclaurin)公式在数学分析中几个重要的应用. 准备从这两方面写这篇文章: taylor定理的应用.taylor公式的应用1 taylor公式在计算极限中的应用对于函数多项式或有理分式的极限问题的计算是十分简单的,因此,对一些较复杂的函数可以根据泰勒公式将原来较复杂的函数极限问题转化为类似多项式或有理分式的极限问题. 满足下列情况时可考虑用泰勒公式求极限:(1)用洛比达法则时,次数较多,且求导及化简过程较繁;(2)分子或分母中有无穷小的差,且此差不容易转化为等价无穷小替代形式;(3)所遇到的函数展开为泰勒公式不难.当确定了要用泰勒公式求极限时,关键是确定展开的阶数. 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式. 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数.2 taylor公式在证明不等式中的应用有关一般不等式的证明针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题. 证明思路:(1)写出比最高阶导数低一阶的taylor公式;(2)根据所给的最高阶导数的大小或上下界对展开式进行缩放.有关定积分不等式的证明针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号.证题思路:直接写出的taylor展开式,然后根据题意对展开式进行缩放.有关定积分等式的证明针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题.证明思路:作辅助函数,将在所需点处进行taylor展开对taylor 余项作适当处理.3 taylor公式在近似计算中的应用利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计.4 研究方法为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献. 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作. 具体采用了数学归纳法、分析法、反证法、演绎法等方法.5 进度计划为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作.以上是开题报告格式范例。
【精品】泰勒公式及其应用90907

泰勒公式及其应用摘要:泰勒公式是数学分析这门课中的一个重要公式,在分析和研究数学问题中有着重要作用,使它成为分析和研究其他数学问题的有力杠杆。
它可以应用于求极限、进行近似计算、不等式证明、行列式计算、判断函数极值等方面。
我们在这里主要来说明泰勒公式及若干应用.关键词:泰勒公式;函数;极限;不等式;近似计算;证明;收敛性。
ApplicationoftheTaylorFormulaAbstract:Taylorformulaisamathematicalanalysisofthisclassinanimportantformula,TheTaylorformulaplaysanimportantpartinanalyzingandresearchingthemathproblem sandmakeinapowerfulleverinothermathematicalproblems。
Itcanbeusedinordertolimit,todeterminethefunctionextremumseekinghigher—orderderivativevaluesatsomepointtodeterminetheconvergenceofseriesandgeneral izedintegral,approximatecalculation,inequalityprovedintegralproblems,differentialequatio nproblemandsoon。
WearemainlyexplicatingtheTaylorformulasandanumberofapplications.目录1。
泰勒公式........................................... 错误!未指定书签。
1.1泰勒多项式..................................... 错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.本课题的任务、重点内容、实现途径
课题任务:介绍泰勒公式的证明方法和泰勒公式的应用
重点内容:对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。
本课题将从以下几个方面展开研究:
一、介绍泰勒公式及其证明方法
二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。
毕业设计(论文)开题报告
1.本课题的目的及意义,国内外研究现状分析
一、选题的目的及研究意义:
选题目的:了解有关泰勒公式及其应用问题,主要介绍了几种泰勒公式几种常见的应用。泰勒公式作为《数学分析》这门课的最基础最重要的内容,作为一种研究将一些复杂函数近似地表示为简单的多项式函数的有效工具,是必须要牢固掌握的,是我们学习《数学分析》的必备知识。本文将归纳的泰勒公式及其应用方法,使我们能够对泰勒公式及其应用有一个总体上的认识,这将有助于我们对泰勒公式及其应用理论的理解和掌握,从而能够帮助我们更深的理解《数学分析》这门基础课程,进而学好这门课程。
在2002年—2012年十年为时间范围,以“泰勒公式”和“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章。
在这些文献中作者在不等式或者等式的证明或者计算时都充分利用了泰勒公式的定理和性质,但方法新颖又恰到好处,值得借鉴和学习。泰勒公式的应用是非常广泛的,对于泰勒公式的研究还在进行中,我相信通过今后的不断努力研究,泰勒公式还能发挥出更多的作用。
三、结论。
实现途径:
一、对泰勒公式的证明方法进行归纳;
二、灵活运用公式来解决极限、级数敛散性等问题;
三、研究实际数学问题中有关泰勒公式应用题目,寻求解决问题题的途径 。
3.完成本课题所需工作条件(如工具书、计算机、实验、调研等)及解决办法 :
为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献. 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作. 具体采用了数学归纳法、分析法、反证法、使问题便的简单易解。
二、国内外研究现状分析:
国内外同类课题研究现状及发展趋势:泰勒公式的证明与应用方面的研究对于科研者来说一直具有强大的吸引力,许多研究者已在此领域获得许多研究成果,例如:湖南科技学院数学系的唐仁献在文章《泰勒公式的新证明及其推广》中在推广了罗尔定理的基础上重新证明了泰勒公式;洛阳工业高等专科校计算机系王素芳、陶容、张永胜在所著的文章《泰勒公式在计算及证明中的应用》中研究了泰勒公式在极限运算、等式及不等式证明中的应用,解决了用其它方法较难解决的问题,于此类似的研究成果还有湖北师范学院数学系的蔡泽林、陈琴的《定积分不等式的几种典型证法》和潍坊高等专科学校的陈晓萌所著的《泰勒公式在不等式中的应用》等等。