解一元一次应用题错题本(一)有答案

合集下载

苏科版初一数学《一元一次方程应用题》学生错题选含解析

苏科版初一数学《一元一次方程应用题》学生错题选含解析

一年级数学一元一次方程应用题学生错题选(附答案)1小明想从某网店购买计算器,经查询,某品牌A型号计算器的单价比B型号计算器的单价多10元/台,5 台 A 型号的计算器与7台B型号的计算器的价钱相同,问A、B 两种型号计算器的单价分别是多少?2.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶万亩生杜鹃花最为壮观,被誉为“天下第一杜鹃红”。

今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为人,则据此可知开幕式当天该景区游客人数饱和的时间约为几点?3.一车间原有80人,二车间原有372人,现因工作需要,要从三车间调4人到一车间,问还需从二车间调多少人去一车间,才能使二车间的人数是一车间的2倍?4.下表为深圳市居民每月用水收费标准。

(1)某用户用水10立方米,共缴水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?5.用铝片做听装易拉饮料瓶,每张铝片可制瓶身16个或瓶底43个,1个瓶身配2个瓶底,现有150张铝片,用多少张铝片制瓶身,多少张铝片制瓶底,可以正好制成成套的饮料瓶?6.某地要在规定时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?7.某行军纵队以7km/h的速度行进,队尾的通讯员以11km/h的速度赶到队伍前送一封信,送到后又立即返回船尾,共用13.2min,求这支队伍的长度。

8.甲、乙两人骑自行车,同时从相距65km的两地相向而行,甲的速度17.5千米/时,乙的速度15千米/时,经过几小时两人相距32.5km?9.整理一批图书,如果一个人单独要花60小时,现先由一部分人用1小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?10.某体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?11.根据图中信息,解答下面的问题:(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有请说明理由.12.一列火车匀速行驶经过一条长300m隧道需要20s的时间。

最新七年级一元一次方程易错题(Word版 含答案)

最新七年级一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

(1)求饮用水和蔬菜各有多少件。

(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。

已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。

(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。

该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.4.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.5.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【答案】(1)解:如果甲、乙两单位联合起来购买门票需40×102=4080(元),则比各自购买门票共可以节省:5500﹣4080=1420(元)(2)解:设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人.依题意得:50x+60×(102﹣x)=5500,解得:x=62.则乙单位人数为:102﹣x=40.答:甲单位有62人,乙单位有40人(3)解:方案一:各自购买门票需50×60+40×60=5400(元);方案二:联合购买门票需(50+40)×50=4500(元);方案三:联合购买101张门票需101×40=4040(元);综上所述:因为5400>4500>4040.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱【解析】【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独购买门票,一共应付5500元”建立方程求出其解即可;(3)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.6.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案)。

成都高新大源学校数学一元一次方程易错题(Word版 含答案)

成都高新大源学校数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。

(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。

(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。

2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.3.如图1,已知,在内,在内,.(1)从图1中的位置绕点逆时针旋转到与重合时,如图2,________ ;(2)若图1中的平分,则从图1中的位置绕点逆时针旋转到与重合时,旋转了多少度?(3)从图2中的位置绕点逆时针旋转,试问:在旋转过程中的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.【答案】(1)100(2)解:∵平分,∴,设,则,,由,得:,解得:,∴从图1中的位置绕点逆时针旋转到与重合时,旋转了12度;(3)解:不改变①当时,如图,,,∵,,∴;② 时,如图,此时,与重合,此时,;③当时,如图,,,;综上,在旋转过程中,的度数不改变,始终等于【解析】【解答】(1)解:由题意:∠EOF= ∠AOB+ ∠COD=80°+20°=100°【分析】(1)根据∠EOF=∠BOE+∠BOF计算即可;(2)设,得,,再根据列方程求解即可;(3)分三种情形分别计算即可;4.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.5.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。

一元一次方程易错题(Word版 含答案)

 一元一次方程易错题(Word版 含答案)

,试问:在旋转过程中
的度数是否改变?若不改变,请求出它的度数;若改变,请说明理由.
【答案】 (1)100
(2)解:∵ 平分










得:

解得:


从图 1 中的位置绕点 逆时针旋转到 与 重合时,旋转了 12 度;
(3)解:不改变
①当
时,如图 ,





时,如图 ,
, ,

此时 , 与 重合,
(2)解:设甲单位有退休职工 x 人,则乙单位有退休职工(102﹣x)人. 依题意得:50x+60×(102﹣x)=5500, 解得:x=62. 则乙单位人数为:102﹣x=40. 答:甲单位有 62 人,乙单位有 40 人
(3)解:方案一:各自购买门票需 50×60+40×60=5400(元); 方案二:联合购买门票需(50+40)×50=4500(元); 方案三:联合购买 101 张门票需 101×40=4040(元); 综上所述:因为 5400>4500>4040. 故应该甲乙两单位联合起来选择按 40 元一次购买 101 张门票最省钱 【解析】【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2) 设甲单位有退休职工 x 人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独 购买门票,一共应付 5500 元”建立方程求出其解即可;(3)有三种方案:方案一:各自购 买门票;方案二:联合购买门票;方案三:联合购买 101 张门票.分别求出三种方案的付 费,比较即可.
此时,

③当
时,如图 ,

中考一元一次方程易错题50题(含答案)

中考一元一次方程易错题50题(含答案)

中考一元一次方程易错题50题含答案解析一、单选题1.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( ) A .237230x x B .327230x xC .233072x xD .323072x x2.若x =1是关于x 的方程ax +2x +1=0的解,则a 的值是 A .-3B .3C .-1D .-23.根据等式的性质,下列变形中正确的是( ) A .若33m n +=-,则m n = B .若x ya a=,则x y = C .若22a x a y =,则x y =D .若382k -=,则12k =-4.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .()0.7160%36x x +=-B .()0.7160%36x x +=+C .()07160%36x x +=-.D .()0.7160%36x x +=+5.若关于x 的方程3x+2m =2的解是正数,则m 的取值范围是( ) A .m >1B .m <1C .m ≥1D .m ≤16.某商人在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中,该商人( ) A .赚10元B .赔10元C .不赚不赔D .无法确定7.已知等式a =b ,则下列变形错误的是( ) A .|a |=|b |B .a +b =0C .a 2=b 2D .2a ﹣2b =08.小淇在某月的日历中圈出相邻的三个数,算出它们的和是15,那么这三个数的位置可能是( ) A .B .C .D .9.下列说法正确的是( ) A .如果ax ay =,那么x y = B .如果a b =,那么55a b -=- c c10.假期张老师和王老师带学生乘车外出参加实践活动,甲车主说“每人8折”,乙车主说“学生9折,老师减半”,张老师计算了一下,不论坐谁的车,费用都一样,则张老师和王老师带的学生人数为( ) A .6名B .7名C .8名D .9名11.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x 名学生,则依题意所列方程正确的是( ). A .320425x x +=- B .320425x x +=+ C .320425x x -=+D .320425x x -=-12.下列判断:①若0a b c ++=,则()22a c b +=.①若0a b c ++=,且0abc ≠,则122a cb +=-.①若0a bc ++=,则1x =一定是方程0ax b c ++=的解.①若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( )A .①①①B .①①①C .①①①D .①①①①13.要使方程ax b =的解为1x =,必须满足( ) A .a b =B .0a ≠C .0b ≠D .0a b =≠.14.方程x ﹣3=2x ﹣4的解为( ) A .1B .﹣1C .7D .﹣715.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .5223-D .23-16.解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以17.将方程x ﹣3(4﹣3x )=5去括号正确的是( ) A .x ﹣12﹣6x =5B .x ﹣12﹣2x =5C .x ﹣12+9x =5D .x ﹣3+6x =518.课本习题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )A .甲、丁B .乙、丙C .甲、乙D .甲、乙、丙19.用如图(1)所示的长方形和正方形纸板做成如图(2)所示的A 、B 两种无盖长方体纸盒(拼接部分忽略不计).现有长方形纸板180张,正方形纸板60张,刚好全部用完.求做成的A 、B 两种纸盒的数量.下列结论正确的个数是( )①设A 种纸盒共有x 个,则可列方程:60431802xx -+⨯=;①设B 种纸盒共有y 个,则可列方程:18032604yy -+=;①B 种纸盒共有24个;①做A 种纸盒共用去长方形纸板144个. A .1B .2C .3D .420.α∠与∠β的度数分别是219m -和77m -,且α∠与∠β都是γ∠的补角,那么α∠与∠β的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等二、填空题21.若1x =是关于x 的方程31ax bx +=的解,则39a b +=___________. 22.如果x ﹣1=3,则x 的值是 _____.23.我国古代数学名著《孙子算经》中记载;“今有木,不知长短,引绳度之,余绳五尺;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,那么可列方程为 _____. 24.当x =___时,13x -的值是2 25.某品牌汽车为了打造更加精美的外观,特将汽车倒车镜设计为整个车身黄金分割点的位置(如图,即车尾到倒车镜的距离与车长之比为0.618),若车头与倒车镜的水平距离为1.9m ,则该车车身总长约为________m (保留整数).26.已知2230m x -+=是关于x 的一元一次方程,则m =________________. 27.若关于x 的方程()||235m m x--=是一元一次方程,则m =______.28.已知:数轴上一个点到-2的距离为5,则这个点表示的数是 ___________________29.如果一个正多边形每一个内角都等于144︒,那么这个正多边形的边数是______. 30.双层游轮的票价是上层票每张12元,下层票每张8元,现在游轮上共有游客150人,而且下层票的总票款比上层票的总票款多700元.那么这艘轮船上下两层游客的人数分别是多少设这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,可列方程组为__________.31.若关于x 的多项式()2x m -与()35+x 的乘积中,一次项系数为1,则m =____________.32.一个角的比它的余角多24°30′,则这个角的补角是_________.33.如图是一个正方体的展开图,如果正方体相对的两个面上标注的数值均互为相反数,则x 的值是_________.34.重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量.如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有___________名工人.35.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg ,李丽平均每小时采摘7kg .采摘结束后,王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?设她们采摘用了x 小时,则可列一元一次方程为_______.36.已知方程ax+12=0的解是x=3,则不等式(a+2)x<-6的解集为________. 37.已知关于x 的方程23kx a +=1+6x bk-中,a 、b 、k 为常数,若无论k 为何值,方程的解总是x =1,则a +18b 的值为 ___.38.已知点M 、N 在线段AB 上,AM MB =13,AN NB=23,且MN =2,则AB =______.39.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.三、解答题40.在ABC 中, ①A 的度数是①B 的度数的3倍,①C 比①B 大15°,求①A ,①B ,①C 的度数. 41.(1)计算:(2)计算(3)解方程:3(25)29x x --+= (4)解方程:42.据调查表明,山的高度每增加1km ,则气温大约升高-6①.(1)我省著名风景区庐山的五老峰的高度约为1500m ,当山下气温20①时,求山顶的气温;(2)若某地的地面气温为18①,高空某处的气温为-24①,求此处的高度.43.七年级学生在4名数学老师的带领下去公园游玩,公园的门票为每人20元,现有两种优惠方案,甲方案:师生都按7.5折收费.乙方案:带队老师免费,学生按8折收费.(1)如有a名学生,用代数式表示两种优惠方案各需多少元?(2)当a=50时,采用哪种方案优惠?(3)当a=120时,采用哪种方案优惠?44.汽车从甲地到乙地,用去油箱中汽油的14,由乙地到丙地用去剩下汽油的15,油箱中还剩下6升.(1)油箱中原有汽油多少升?(2)已知甲、乙两地相距22km,求乙、丙两地的距离.45.为了鼓励市民节约用水,我市居民使用自来水计费方式实施阶梯水价,具体标准见表1,表2分别是小明、小丽、小斌、小宇四家2017年的年用水量和缴纳水费情况.表1:大连市居民自来水实施阶梯水价标准情况:表2:四个家庭2017年的年用水量和缴纳水费情况:请你根据表1、表2提供的数据回答下列问题:(1)写出表1中的a,m的值;(2)小颖家2017年使用自来水共缴纳水费827元,则她家2017年的年用水量是多少立方米?46.(1)计算:﹣1×[﹣32×(﹣23)2﹣2]÷(﹣23) (2)解方程:3157146x x ---= 47.计算题(1)计算:2232113()(2)()32-⨯---÷-(2)解方程:12111263x x x --+-=- 48.已知线段12AB =个单位长度.(1)如图1,点P 沿线段AB 自点A 出发向点B 以1个单位长度每秒的速度运动,同时点Q 沿线段BA 自点B 出发向点A 以2个单位长度每秒的速度运动,几秒钟后,P 、Q 两点相遇?(2)如图1,几秒后,P 、Q 两点相距3个单位长度?(3)如图2,3AO =个单位长度,1PO =个单位长度,当点P 在AB 的上方,且60∠=︒POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿线段BA 自B 点向A 点运动,假若P 、Q 两点能相遇,求点Q 的运动速度. 49.新规定:点C 为线段AB 上一点,当3CA CB =或3CB CA =时,我们就规定C 为线段AB 的“三倍距点”.如图,在数轴上,点A 所表示的数为3-,点B 所表示的数为5. (1)确定点C 所表示的数为___________;(2)若动点P 从点B 出发,沿射线BA 方向以每秒2个单位长度的速度运动,设运动时间为t 秒.①求AP 的长度(用含t 的代数式表示);①当点A 为线段BP 的“三倍距点”时,求出t 的值.参考答案:1.D【分析】先设男生x 人,根据题意可得323072x x.【详解】设男生x 人,则女生有(30-x)人,由题意得:323072x x,故选D.【点睛】本题考查列一元一次方程,解题的关键是读懂题意,得出一元一次方程. 2.A【分析】把1x =代入方程得出关于a 的方程,解之可得答案. 【详解】将1x =代入ax +2x +1=0,得:210a ++=, 解得:3a =-, 故选:A .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的方程是解此题的关键. 3.B【分析】根据等式的性质变形得到结果,作出判断即可得.【详解】解:A 、若33m n +=-,则m n ≠,选项说法错误,不符合题意; B 、若x ya a=,则x y =,选项说法正确,符合题意; C 、若22a x a y =,20a ≠,则x y =,选项说法错误,不符合题意; D 、若382k -=,则163k =-,选项说法错误,不符合题意;故选:B .【点睛】本题考查了等式的性质,解题的关键是掌握等式的性质. 4.B【分析】设这件夹克衫的成本价是x 元,根据题意列出一元一次方程即可求解. 【详解】解:设这件夹克衫的成本价是x 元,根据题意得,()0.7160%36x x +=+,故选:B .【点睛】本题考查了一元一次方程的应用,根据题意列出一元一次方程是解题的关键. 5.B【分析】先把x 的值用m 表示出来,再根据关于x 的方程3x+2m =2的解是正数列出不等式,求出m 的取值范围即可.【详解】解:方程3x+2m=2可化为x=223m-,①x>0,①223m->0,①m<1.故选:B.【点睛】此题考查了解一元一次不等式,以及一元一次方程的解,熟练掌握运算法则是解本题的关键.6.B【分析】设进价为x元,根据售价=(1+利润率)×进价列出一元一次方程,进而求解.【详解】设赚了20%的衣服的进价是x元,则(1+20%)x=120,解得,x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1-20%)y=120,解得y=150,则实际赔了30元;①30>20,①在这次交易中,该商人是赔了30-20=10(元).故选B.【点睛】本题考查一元一次方程的应用,求出两件衣服的进价是解题的关键.7.B【分析】根据绝对值和等式的性质分别进行判定求解.【详解】解:A.根据绝对值的性质可知,若a=b,则|a|=|b|,原变形正确,故此选项不符合题意;B.根据等式性质,若a=b,则a﹣b=0,原变形错误,故此选项符合题意;C.根据等式性质,若a=b,则a2=b2,原变形正确,故此选项不符合题意;D.根据等式性质,若a=b,则2a﹣2b=0,原变形正确,故此选项不符合题意.故选:B.【点睛】本题主要考查了绝对值的性质,等式的性质,理解等式的性质是解答关键.8.C【分析】可设第一个数为x,根据日历的数的排列规律,将各数表示出来,利用方程的思想验证x是否为正整数,从而作出判断.【详解】解:设第一个数为x ,根据已知: A 、得x+x+7+x+8=15,则x=0,故本选项不可能.B 、得x+x+7+x+6=15,则x=23,不是整数,故本选项不可能. C 、得x+x+1+x+8=15,则x=2,是整数,故本选项可能. D 、得x+x+1+x+7=15,则x=73不是整数,故本选项不可能.故选C. 【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证,难度一般,要掌握日历中数的排列规律. 9.C【分析】根据等式基本性质分析即可.【详解】A. 如果ax ay =,且a≠0,那么x y =,故不能选; B. 如果a b =,那么55a b -=-,故不能选; C. 根据性质1,如果11a b +=+,那么a b = D. 如果a b =,且0a b =≠,那么c ca b=,故不能选; 故选C【点睛】考核知识点:等式基本性质.理解性质是关键. 10.A【详解】设张老师和王老师带了x 名学生, 根据题意得(x+2)×0.8=0.9x+2×12,解得x=6,故选A . 11.A【分析】设这个班有学生x 人,等量关系为图书的数量是定值,据此列方程即可.【详解】设这个班有学生x 人,由题意得,3x +20=4x−25. 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.12.A【分析】各项利用方程解的定义,以及绝对值的代数意义判断即可得到结果.【详解】解:①若0a b c ++=,则a c b +=-,①()22a c b +=,故①正确;①若0a b c ++=,则a c b +=-,且0abc ≠,则1222a cb b b +-==-,故①正确; ①若0a bc ++=,则1x =一定是方程0ax b c ++=的解,故①正确;①若0a b c ++=,且0abc ≠,当有2个负数时,0abc >;当有1个负数时<0abc ,故①不正确,故选:A .【点睛】本题考查了有理数的运算以及一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值,掌握以上知识是解题的关键.13.D【详解】试题分析:两边除以a 得:b x a=,要使方程ax b =的解为1x =,则必须满足0a b =≠.故选D .考点:一元一次方程的解.14.A【详解】移项,得x ﹣2x=﹣4+3,合并同类项,得﹣x=﹣1,系数化成1,得x=1.故选:A .15.A【分析】先解两个一元一次方程,再根据两个一元一次方程的解相同列出含m 的一元一次方程,解方程即可.【详解】解: 由243x m +=,342m x -=; 由1x m -=,解得+1x m =,因为两个方程的解相同, 所以34=12m m -+,解得: 6m =故选A.【点睛】本题主要考查一元一次方程的应用,解决本题的关键是要熟练掌握解含参数的一元一次方程的方法,并根据解相同列出方程.16.C【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项. 【详解】解:移项得,43(x-1)-13(x-1)=4+1, 合并同类项得,x-1=5,解得x=6.故选C .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.17.C【分析】方程去括号得到结果,即可作出判断.【详解】方程x ﹣3(4﹣3x )=5,去括号得:x ﹣12+9x =5,故选:C .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.B【分析】根据题意可设这种饮料的原价每瓶是x 元,则根据等量关系“九折购买的饮料数量比36元购买的一箱饮料的数量多2瓶”,或“一箱加2瓶的饮料九折后的价格是36元”;若设每箱有x 瓶,则根据“购买一箱加2瓶时,每瓶的价格和每瓶九折后的价格相等”分别列出方程即可【详解】设这种饮料的原价每瓶是x 元,则363620.9x x-=; 设这种饮料的原价每瓶是x 元,则()0.936236x ⋅+=;设每箱有x 瓶,则36360.92x x ⨯=+ 故选B【点睛】本题考查了分式方程的应用,一元一次方程的应用,根据题意找出等量关系是解题的关键.19.C【分析】若设A 种纸盒共有x 个,则有制作A 种纸盒所需长方形的个数为4x 个,正方形的个数为x 个,则B 中正方形的个数为(60-x )个,然后可判定①;若设B 种纸盒共有y 个,则有制作B 种纸盒所需正方形的个数为2y 个,长方形的个数为3y 个,则A 中长方形的个数为(180-3y )个,然后可判定①;进而求解即可判定①①.【详解】解:若设A 种纸盒共有x 个,则可列方程为60431802x x -+⨯=,解得:36x =,故①正确;若设B 种纸盒共有y 个,则可列方程:18032604y y -+=,解得:12y =,故①正确,①错误;①做A 种纸盒共用去长方形纸板为36×4=144(个),故①正确;综上所述:正确的个数有3个;故选C .【点睛】本题主要考查一元一次方程的应用,解题的关键是分析得到已知与未知之间的关系.20.D【分析】由α∠与∠β都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与∠β都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与∠β互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.21.3【分析】将方程的解代入方程后,对等式进行变形即可求解.【详解】解:将1x =代入方程可得:31a b +=,①393a b +=,故答案为:3.【点睛】本题考查了方程的解,解题关键是理解方程的解的含义,并能利用等式的性质对等式进行变形.22.4【分析】移项、合并同类项,据此求出方程的解即可.【详解】解:移项,可得:x =3+1,合并同类项,可得:x =4.故答案为:4.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.23.x +5=2(x ﹣1)【分析】根据绳子的长度不变,得出关于x 的一元一次方程,即为答案.【详解】解:依题意,得:x +5=2(x ﹣1).故答案为:x +5=2(x ﹣1).【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.24.7【分析】首先根据题意,可得:13x -=2,然后去分母、移项、合并同类项,求出方程的解是多少即可.【详解】解:根据题意,可得:13x -=2, 去分母,可得:x ﹣1=6,移项,可得:x =6+1,合并同类项,可得:x =7.故答案为:7.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.25.5【分析】设该车车身总长为x m ,利用黄金分割点的定义得到汽车倒车镜到车尾的水平距离为0.618x ,则根据题意列方程x -0.618x =1.9,然后解方程即可.【详解】解:设该车车身总长为x m ,①汽车倒车镜设计为整个车身黄金分割点的位置,①汽车倒车镜到车尾的水平距离为0.618x ,①x -0.618x =1.9,解得x ≈5,即该车车身总长约为5米.故答案为:5.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.26.3【分析】根据一元一次方程的定义,可列方程,即可求m 的值.【详解】解:①2230m x -+=是关于x 的一元一次方程,①21m -=解得:3m =故答案为:3.【点睛】本题考查了一元一次方程的定义,,利用一元一次方程的定义解决问题是本题的关键.27.3-【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).据此可得出关于m 的方程,继而可求出m 的值.【详解】①关于x 的方程()||235m m x--=是一元一次方程,①30m -≠,21m -=,解得:3m =-,故答案为3-.【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不为0,特别容易忽视的一点就是系数不为0的条件.这是这类题目考查的重点.28.-7或3【详解】试题分析:两数差的绝对值表示两点之间的距离.设这个点表示的数为=5,解得:x=3或x=-7.考点:绝对值29.10【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180144n n -⋅=,解得10n =.故答案为:10.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.30.812700150y x x y -=⎧⎨+=⎩【分析】设这艘游轮上层的游客人数为x 人,下层的游客人数为y 人,根据“游轮上共有游客150人,而且下层票的总票款是上层票的总票款多700元”列方程组求解可得.【详解】这艘邮轮上层的游客x 人,这艘油轮下层的游客y 人,由题意得812700150y x x y -=⎧⎨+=⎩. 故答案为812700150y x x y -=⎧⎨+=⎩. 【点睛】本题主要考查二元一次方程组的应用,理解题意找出题目中所蕴含的等量关系是列出方程组求解的关键.31.3【分析】先求出两个多项式的积,再根据一次项系数为1,得到关于m 的一次方程,求解即可.【详解】解:()()235x m x -+263105x mx x m =-+-()261035x m x m =--+①积的一次项系数为1,①1031m -=,解得:3m =.故答案为:3.【点睛】本题主要考查了多项式乘以多项式和解一元一次方程,掌握多项式乘多项式法则,是解决本题的关键.32.122°45′【分析】和为90度的两个角互为余角,依此根据一个角比它的余角大24°30′可求这个角的度数,再根据和为180度的两个角互为补角,即可求解.【详解】解:设这个角为x ,则x -(90°-x )=24°30′,解得x =57°15′,这个角的补角的度数为180°-57°15′=122°45′.故答案为:122°45′.【点睛】此题考查余角与补角,主要记住互为余角的两个角的和为90°;两个角互为补和为180°.利用方程思想较为简单.33.1-【分析】利用正方体及其表面展开图的特点,列出方程()()2360x x -++=解答即可.【详解】解:由题意得:()()2360x x -++=解得:=1x -故答案为:1-.【点睛】本题考查了正方体相对两个面上的文字和一元一次方程的应用.注意正方体的空间图形,从相对面入手,分析及解答问题.34.12【分析】由题可知每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据大的一片是小的一片的3倍,列出方程解答即可.【详解】解:设农场有x 名工人,每名工人每天除草量为y ,依题意有2xy +0.5xy =3(0.5xy +2×2y ),2.5xy =1.5xy +12y ,xy =12y ,x =12.故农场有12名工人.故答案为:12.【点睛】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设农场有x 名工人,每人每天除草量为y ,根据题意找到关系即可解答.35.80.2570.25x x -=+.【分析】利用采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人樱桃一样多得出等式求出答案.【详解】解:设她们采摘用了x 小时,根据题意可得:8x-0.25=7x+0.25,故答案为:8x-0.25=7x+0.25【点睛】此题主要考查了一元一次方程的应用,根据采摘的质量得出等式是解题关键. 36.3x >【分析】先将3x =代入方程120ax +=,求得a 的值;再将a 的值代入不等式,然后系数化1即可.【详解】先将3x =代入120ax +=,得3120a +=,解得4a =-;把4a =-代入不等式26a x +<-,得426x -+<-,解得:3x >;故答案为:3x >.【点睛】本题考查了解一元一次方程及解一元一次不等式,注意不等式两边除以负数,不等式要变号.37.3【分析】将1x =代入方程,然后令k 的系数为0,得到关于a b 、的二元一次方程组,求解即可.【详解】解:将1x =代入方程23kx a +=1+6x bk -得(4)270b k a ++-=由题意可得:40270b a +=⎧⎨-=⎩,解得724a b ⎧=⎪⎨⎪=-⎩ 则17171(4)382822a b +=+⨯-=-= 故答案为:3【点睛】此题考查了一元一次方程解的含义以及二元一次方程组的求解,解题的关键是理解题意,掌握二元一次方程组的求解.38.403【分析】设AM =x ,则MB =3x ,则AB =4x ,利用23AN MB =可得到85AN x =,则利用MN =35x 列方程35x =2,然后解方程求出x 即可得到AB 的长. 【详解】解:设AM =x ,则MB =3x ,①AB =AM +MB =4x , ①23AN NB =,AB =AN +NB ①AN =2855AB x =, ①MN =AN ﹣AM =8355x x -=x , ①35x =2,解得x =103, ①AB =4×103=403. 故答案为403. 【点睛】本题主要考查了比例线段,根据比例的性质用代数式表示线段的长是解答本题的关键.39.3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 40.①A=99°,①B=33°,①C=48°【分析】设①B=x ,则①A=3x ,①C=x+15,再由三角形内角和定理求出x 的值即可.【详解】解:设①B=x ,则①A=3x ,①C=x+15,①①A+①B+①C=180°,①x+3x+x+15=180,解得:x=33,①①A=99°,①B=33°,①C=48°.【点睛】本题考查三角形的内角和定义,难度不大,关键是运用方程思想进行解题. 41.(1)19;(2)10;(3);(4)14.5x =.【详解】试题分析:(1)先算乘除,再算加减即可;(2)利用分配律计算简单方便;(3)先去括号,再移项合并同类项,最后系数化为1即可;(4)先去分母,再去括号,然后移项合并同类项,最后系数化为1即可试题解析:(1)=18-6×(14-)×23 2分 =19 4分(2)= 2分=–1+8+3=10 4分(3)3(25)29x x --+=2分4分(4)3(23)4(2)12,x x --+=694812,x x ---= 2分 229,x =14.5x = 4分考点:1.有理数的混合运算;2.解一元一次方程.42.(1)11①;(2)7km【分析】(1)根据题意可直接进行列式求解;(2)设此处的高度为xkm ,然后根据题意列出方程求解即可.【详解】解:()1根据题意列得:150020(6)111000C ,答:山顶的温度为11C . ()2设此处的高度为xkm ,根据题意列得:18624x -=-解得:7x =.答:此处的高度为7km .【点睛】本题主要考查列算式计算与一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.43.(1)甲方案为:15a+60;乙方案为:16a ;(2)乙方案优惠;(3)甲方案优惠;【分析】(1)根据题意分别表示出两种方案的钱数即可;(2)把a=50代入,比较大小即可;(3)把a=120代入,比较大小即可.【详解】(1)若有a 名学生,甲方案为:(15a+60)元;乙方案为:16a 元;(2)当a=50时,甲方案需810元,乙方案需800元,此时乙方案优惠;(3)当a=120时,甲方案需1860元,乙方案需1920元,此时甲方案优惠.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键. 44.(1)油箱中原有汽油10升;(2)乙、丙两地的距离为13.2千米.【分析】(1)若设油箱中原有汽油x 升,分别表示出每次的耗油量,根据题意即可列出方程解答即可;(2)利用耗油量的比与行驶路程的比相等列出方程解答即可.【详解】解:(1)设油箱中原有汽油x 升,由题意得111()6445x x x x ---⨯= 解得:x =10答:油箱中原有汽油10升.(2)设乙、丙两地的距离为a 千米,由题意得11122::(1)445a =-⨯ 解得:a =13.2答:乙、丙两地的距离为13.2千米.【点睛】本题主要考查一元一次方程的应用,根据题意列出方程是解题的关键. 45.(1)a =3.25,m =180;(2)她家2017年的年用水量是235立方米.【分析】(1)根据小明、小丽、小斌家的年用水量和缴纳水费情况可知100<m <200,从而求出a 及m 的值;(2)由年用水量为240立方米时,共缴纳水费849元,而673<827<849,可得她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据共缴纳水费827元列出方程,求解即可.【详解】(1)由题意,可得a =325100=3.25, 根据小斌家用水200立方米(在第二阶梯),缴纳水费673元,列出方程:3.25m +4.4(200﹣m )=673,解得m =180.(2)由年用水量为240立方米时,共缴纳水费:3.25×180+4.4(240﹣180)=849(元), ①673<827<849,①她家2017年的年用水量在第二阶梯.设她家2017年的年用水量是x 立方米,根据题意,得3.25×180+4.4(x ﹣180)=827,解得x =235.答:她家2017年的年用水量是235立方米.【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,理解阶梯水价收费标准,正确求出a 及m 的值.46.(1)-9;(2)x =﹣1.【分析】(1)根据实数的混合计算解答即可;(2)根据一元一次方程的解法解答即可.【详解】(1)原式=﹣1×[﹣9×49﹣2]×(﹣32) =﹣1×[﹣4﹣2]×(﹣32) =﹣1×(﹣6)×(﹣32) =﹣9;(2)3(3x ﹣1)﹣12=2(5x ﹣7)9x ﹣3﹣12=10x ﹣149x ﹣10x =﹣14+3+12﹣x =1x =﹣1.【点睛】本题主要考查有理数的混合运算及解一元一次方程,解题的关键是熟练掌握有理数的混合运算的顺序和运算法则.47.(1)31;(2)2x =【分析】(1)按照先算乘方、再算乘除、后算加减的顺序计算即可;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)()2232113232⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭ =-9×19-(-8)÷14=-1+32=31;(2)12111263x x x --+-=-, 3(x-1)-(2x-1)=6-2(1+x),3x-3-2x+1=6-2-2x ,3x-2x+2x=6-2+3-1,。

七年级下册一元一次方程数学错题

七年级下册一元一次方程数学错题

一、单项选择题(15题,每小题1分,共15分)1.将“一个数加上7然后再乘以5”的计算结果用一元一次方程表示是________。

A.5x+7B.(x+7)x5C.x+7x5D.5(x+7)2.解方程4x-3=5x+2,得到的解为________。

A.x=5B.x=2C.x=-5D.x=-23.解方程2(x+3)+5=3(x-1),得到的解为________。

A.x=4B.x=-4C.x=3D.x=-34.解方程3(x-2)-4=x+6,得到的解为________。

A.x=-6B.x=4C.x=6D.x=-45.解方程2(x+1)-3=4(x-2),得到的解为________。

A.x=-1B.x=2C.x=5D.x=-26.用方程表示“三个数的和是20”,其中一个数是x,表示的方程是________。

A.x+3=20B.3x=20C.x+x+3=20D.x+x+x=207.用方程表示“一个数的5倍加上7等于36”,表示的方程是________。

A.5x+7=36B.5+7x=36C.x+7x=36D.5x=36+78.用方程表示“一个数的两倍减去5等于15”,表示的方程是________。

A.2x-5=15B.2+5x=15C.x+5x=15D.2x=15-59.解方程2x+3=9,得到的解为________。

A.x=3B.x=2C.x=-3D.x=-210.解方程5(x-2)+3=4x-5,得到的解为________。

A.x=5B.x=-5C.x=2D.x=-211.解方程3(2x+1)=8-(x-3),得到的解为________。

A.x=2.5C.x=-1D.x=-2.512.解方程5x-7=3x+13,得到的解为________。

A.x=15B.x=10C.x=-15D.x=-1013.解方程3(2x-1)+4=5x-2,得到的解为________。

A.x=4B.x=3C.x=-4D.x=-314.解方程4x+5=6x+3,得到的解为________。

北京第三十九中学数学一元一次方程易错题(Word版 含答案)

北京第三十九中学数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

深圳深圳市田东中学数学一元一次方程易错题(Word版 含答案)

深圳深圳市田东中学数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解方程应用题(错题整理)1. 小明买了3块面包和一盒1.8元的牛奶,付出10元,找回4元,求1块面包的价格.2. 某校今年七年级有352名学生,比去年增加了10%。

去年该校七年级有多少名学生?3. 甲乙两个仓库共有粮食60t.甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等。

两个仓库原来有各有多少吨?4. 小明比爸爸小26岁,今年爸爸的年龄正好是小明的3倍。

小明今年几岁?5.某课外活动小组的女学生人数占全组人数的一半,如果再增加6名女学生,那么女学生人数就占全组人数的三分二。

求这个课外活动小组人数6. 一个长方形的操场,长是宽的2.5倍,根据需要将它扩建,把它的长和宽各加长20m后,它的长是宽的2倍,求扩建前长方形操场的周长。

7. 某部小说分为上中下3册,印刷上册用了全部的印刷时间的40%,应中册用了全部印刷时间的35%,印下册用了7天,印刷这部小说共用了多少天?8. 某村果园里,1/2的面积种植了苹果树,1/4的面积种植了葡萄树,其它4ha地种植了桃树,求这个村的果园果面积。

10. 甲乙两人检修一条1000m长的煤气管道,甲每小时检修100m,乙每小时检修150m。

现在两人合作,需要多少时间?11. 甲、乙两人从楼底爬楼梯道楼顶,甲平均每分钟爬楼梯40级,乙平均每分钟爬楼梯50级,甲先出发2min,结果两人同时到达楼顶。

问从楼底道楼顶有楼梯多少级?...12. 小明和小丽同时从甲村出发去乙村,小丽的速度为每小时4千米,小明的速度为每小时5千米,小丽比小明晚到15min,求甲、乙两村之间的路程。

13.A,B两地之间的路程为160km,甲骑自行车从A地出发,骑行速度为速度为20km/h;乙骑摩托车从B地出发,速度是自行车的3倍。

两人同时出发,相向而行,经过多少时间相遇?14.一人驾驶汽车以100km/h的速度从甲城到乙城,到达乙城后休息了30min,又以80km/h的速度从乙城返回到甲城,共用了5小时,求甲乙两城间的路程15. 甲开汽车从A地到B地需2h,乙骑摩托车从B地到A地需3h,如果乙骑摩托车从B地出发往A地,1h后甲开汽车从A地往B地,那么甲出发多少时间与乙相遇?16. 某种商品降价10%后恰好比原价的一半多40元,该商品的原价是多少元?18.一块正方形铁皮,4个角截去4个一样大小的小正方形,折成底面边长是50cm的无盖正方体盒子,其容积式45000cm3,求原正方形铁皮的边长?19.根弹簧长40cm,一端固定,另一段可挂重物,通常所挂物体重量每增加1kg,弹簧伸长2cm求弹簧长度为45cm时挂物体的质量是多少?20.小明读一本科普书,星期六读了20页,星期日读了剩下的一半后,还剩15页没有读,这本科普书共有多少页?21.甲,乙两个旅游团共80人,甲团人数比乙团人数的2倍多5人,甲,乙两个旅游团各有多少人?22. 某动物园的门票价格如下:超过1m不超过1.4m的儿童10元一个人,成人20元一个人。

国庆节该动物园共卖了840张门票,得钱13600元,问成人票和儿童票各卖多少张?23.小明晨练,先以210m/min的速度跑步,再以90m/min的速度不行,共用18min行了2.1km.求小明跑步用了多少时间24. 某种药品含有甲、乙、丙三种药,这三种药的质量比是2:3:7,现在要配制1440g成药三种中药分别需要多少?25.某班男生人数比全班人数的5/8少5人。

女生比男生少2人,求全班人数?26.如图,“日”字形窗框的木材总长是7.2米,窗的高比宽多0.6米。

求窗的高和宽。

(不考虑木材加工时的损耗)27.小丽和爸爸一起玩投球游戏,规则为:小丽投中一个得3分,爸爸投中一个得1分,结果2人一共投中了20个,得分刚好相等,问小丽投中了几个?28.已知关于x的方程,3x+2a=x+7,小刚在解时,把+7抄-7,得x=2,求原方程解29.已知关于x的方程2分之x-m=x+3分之m与方程2分之y+1=3y-2的解互为倒数,求m的值。

30.某中学七年级举行足球友谊赛,规定:胜一场记3分,平一场记1分,负一场记0分,七年级1班在第一轮比赛中共积8分,其中胜的场数与平的场数相同,问七年级1班在此轮比赛中共胜了几场?31.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品;因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?32.甲,乙城际铁路将于2013年10月1日开通运营,预计高速列车在甲,乙两地间单程直达运行时间喂1/2h,某次试车时,试车列车由甲地到乙地的行驶时间比预计时间多用了6min,由乙地返回甲地的行驶时间与预计时间相同,如果在这次试车中,返回时比去时平均每小时多行驶40km,那么去时的平均速度是每小时多少千米?答案1、解:设一块面包x元。

3x+1.8=10-43x=6-1.83x=4.2x=1.4答:一块面包1.4元。

2、设去年七年级有x名学生。

x + 10%x = 3521.1x = 352x = 352 ÷ 1.1x = 320答:去年七年级有320名学生。

3、解:设甲原有粮食X吨,乙有(60-X)吨X+14=60-X+10X+X=60+10-142X=56X=2860-28=32答:甲原有28顿,乙有32吨4、设爸爸的年龄为X+26 岁小明的年龄为X岁X+26=3X.X=13.答:爸爸是39岁,小明是13岁5、设小组x人。

由题意得:3/2x-2/1x=6解之得:x=36答:这个小组36人。

6、设扩建前长方形操场的宽为x,则扩建前长方形操场的长为2.5x,根据题意得:2.5x+20=2(x+20)解得x=40所以扩建前长方形操场的宽为40m,扩建前长方形操场的长为100m,周长为280m。

7、解:设全布的印刷时间的为X天据题意,得X-(40%X+35%X)=7x-0.75x=70.25x=7x=28 8、解:设果园面积为X1/2X+1/4X+4=X1/4X= 4X=16答:果园面积为16ha9、设这个班共有X个学生.2×5+(X-5)×3=130X=45答:这个班共有45个学生.10、解设X小时100x+150x=1000250x=1000x=411、设乙用C分钟到楼顶。

据题意可得:80+40X = 50X,解得:X = 8,所以楼梯共有:8X50 = 400级。

12、解:设甲乙路程为x千米x/4-x/5=15/60x=5答:甲乙路程为5千米13、解:摩托车速度:20×3=60km/h设经过x h相遇(20+60)x=160得x=2答:经过2 小时相遇14、设去的时间为x小时,那么回来的时间为:5-x-30/60小时100x=80(5-x-30/60)x=2100×2=200公里答:甲乙两城之间的距离为200公里15、设甲出发a小时后相遇则甲走的路程为1/2×a 乙走的路程为1/3+1/3×a所以1/2×a+(1/3+1/3×a)=1得到a=4/5即经过4/5小时后相遇16、解:可设原价为x元,17、两件不同的衬衫进价分别为x yx(1+25%)=90 x=72y(1-25%)=90 y=120120+72=192>90X2亏损了18、解:设原来正方体铁皮的边长为Xcm,依题意得方程:50×50×(X-50)/2=45000解之,得X=86答:原来正方体铁皮的边长是86cm.19、设挂质量为X2X+40=45X=2.5kg20、思路解析:星期六读了20页,所以剩下的为(x-20),星期日读了剩下的一半还剩15页,说明15页是剩下的另一半,既然是一半。

就是二分之一,50%,就都一样,剩下的一半为(x-20)÷2,所以列出方程(x-20)÷2=15。

解:设此书一共有x页。

(x-20)÷2=15x-20=30x=5021、设乙为xx+2x+5=80x=25甲为55 乙为2522、设成人票卖了x张20x+10(840-x)=13600解得x=520答:成人票卖了520张,儿童票卖了320张23、设跑步x分钟,则有:210x+90(18-x)=2100;120x=2100-1620;120x=480;x=4;所以跑步4分钟24、设甲质量为2x克,乙为3x克,丙为7x克,有2x+3x+7x=1440,得x=120 甲为240克乙为360克由题意得:5X/8-5+5X/8-5-2=X解之得:X=25所以男生人数为25个,女生人数为23个,全班有48人26、设窗宽Xm 则高为(X+0.6)m3X+2(X+0.6)=7.2解得X=1.2m宽1.2m 高1.8米27、解:设小丽投中了x个,爸爸投中了(20-x)个。

3x=(20-x)x=5答:小丽投中了5个球。

28、错的过程3x-x=-2a-72x=-2a-7x=-a-3.5x=2a=-5.5方程为3x-11=x+73x-x=7+112x=18x=9原方程解为929、解由方程2,左右两边同时乘以3得x+1=3(3x-2)得9x-x=6+1解得x=7/8故x=8/7是方程1的解由方程1 得x-x/2=-m-3解得x=-2m-6得-2m-6=8/7左右两边同时乘以7得-14m-42=8解得m=-25/7 即为所求30、设负的场数为x则胜的场数与平的场数都为x-1共记8分所以x=331、.解:设运香菇的汽车各需x辆。

1.5x+2(6-x)=101.5x+12-2x=100.5x=2x=46-4=2(辆)答:运香菇的汽车需4辆,运茶叶的汽车需2辆32、解;设由甲地到乙地的平均速度是X千米/时? 36X=30*(X+40)36X=30X+12006X=1200X=200(千米/小时)。

相关文档
最新文档