较复杂的用比例解应用题

合集下载

解比例应用题

解比例应用题

1、某工厂生产A、B两种产品,已知生产1吨A产品需要2小时,生产1吨B产品需要3小时。

若该工厂有60小时的生产时间,且要求生产A、B产品的数量比为2:1,则应生产A产品多少吨?A. 20吨B. 24吨C. 30吨D. 36吨(答案)B2、甲、乙两人同时从两地出发,相向而行。

甲每分钟走60米,乙每分钟走40米。

经过15分钟后两人相遇,那么两地相距多少米?A. 1200米B. 1500米C. 1800米D. 2100米(答案)B3、学校图书馆有科技书和文艺书两种,科技书的数量是文艺书的2倍。

如果每位学生借3本科技书,则余8本;如果每位学生借2本文艺书,则缺12本。

那么学生人数是多少?A. 20人B. 24人C. 28人D. 32人(答案)A4、某班学生分两组参加植树活动,甲组人数是乙组的2倍,且甲组每人植树4棵,乙组每人植树5棵。

两组共植树150棵,那么乙组有多少人?A. 10人B. 15人C. 20人D. 25人(答案)C5、甲、乙两车从A、B两地同时出发,相向而行。

甲车每小时行驶60千米,乙车每小时行驶40千米。

两车相遇后,甲车再行驶4小时到达B地。

那么A、B两地相距多少千米?A. 400千米B. 480千米C. 560千米D. 640千米(答案)B6、某商场购进甲、乙两种商品,甲种商品每件进价20元,售价25元;乙种商品每件进价35元,售价40元。

若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,那么能购进甲种商品多少件?A. 30件B. 40件C. 50件D. 60件(答案)B7、某学校学生参加植树活动,四年级有3个班,共植树156棵;五年级有4个班,平均每个班植树42棵。

四、五年级平均每个班植树多少棵?A. 39棵B. 40棵C. 41棵D. 42棵(答案)A8、甲、乙两人分别同时从两地出发,相向而行,距离是50千米。

甲每小时走3千米,乙每小时走2千米,与甲同时同地出发的还有一条狗,每小时走5千米。

比例分配应用题复杂

比例分配应用题复杂

复杂的比例分配应用题姓名:1、生产同样数量的玩具 , 甲需要 3 天, 乙需要 4 天.现在两人在一段时间里共生产了玩具 1260 个, 甲乙两人各生产了多少个? 得 140 本,其余按 3: 5 分给乙丙两班,乙班分得图书多少本?6.玩具厂一、二、三车间人数的比为 12:8: 21,一车间比二车间多 80 人。

三个车间共有多少人?2. 、把一批图书按 4:5:6 分借给二、三、四三个班,已知二班比四班少分得 48 本。

三个班各分得多少本?7.图书馆里科技书和连环画的比 8: 5,科技书比连环画多 90 本,科技书和连环画各有多少本?3. 两个城市相距 760 千米,货车和客车同是从两城市相对开出,经过 4 小时相遇。

货车和客车的速度比是 12: 7。

货车和客车各行多少千米?8.同样数量的玩具,甲单独做需 8 小时,乙单独做需 6 小时,丙单独做需 12 小时,甲乙丙三人一起做 2700 个玩具。

每个人分别做了多少个?4、甲乙丙三个组按 2: 3: 5 分配劳动力去完成一项任务,已知乙组要派 120 人,求甲丙两个组应各派多少人?5.有一批图书要分给三个班,如果每班分得一样多,各可分得 180 本,实际甲班分9.货车和客车同时从两地相向开出, 3 小时后相遇,相遇时两车所行路程的比是 7:5,两地相距 360 千米。

货车和客车每小时各行多少千米?10.甲乙两队修一条河,甲队修了 16 千米,1占河全长的3,乙队修的与这条河长度的比是 5: 16,乙队修了多少千米?15. 某工程队计划挖一条 1600 米长的水渠,将任务按 2: 3: 5 分配给甲乙丙三个工程队,每队各挖多少米?16.胡伯伯家的菜地共 800 平方米,准11、甲乙丙分别有些邮票,他们邮票数量比是 7: 4: 3,丙有 60 枚邮票,甲和乙各有多少枚邮票?2备用5 种西红柿,剩下的按 2: 1 的面积比种黄瓜和茄子。

三种蔬菜的面积分别是多少平方米?12.学校把一批练习册按 2: 3: 5 的比例分给一、二、三年级,三年级分到了 120 本,一、二年级各分到多少本?17、一个长方体的棱长总和是 96 米,长宽高的比是 4:3:5,这个长方体的长、宽、高分别是多少?这个长方体的表面积和体积各是多少?13.玩具厂有两个车间,甲车间和乙车间的人数的比 3: 2,若从甲车间调 24 人到乙车间,两车间的人数恰好相等,这个玩具厂有多少工人?14. 学校把 450 本图书按 2:3:4 分配给四、五、六年级,四五六年级各分到多少本?18. 甲、乙两包糖果的重量的比是 4 : 1,如果从甲包取出 10 克放入乙包后,甲、乙两包糖果重量的比变为 7 : 5。

典型分数应用题(较难)

典型分数应用题(较难)

典型分数应用题(较难)1.将含糖量为12%的500毫升葡萄糖溶液稀释成含糖量为10%的溶液,需要加入多少毫升蒸馏水?2.某班原有54名学生,男生占多少比例?转来几名女生后,女生占全班的多少比例?3.甲桶有28千克水,喝了一部分后,乙桶喝了剩下的水,乙桶原来有多少千克水?4.食堂共有360袋大米和面粉,其中大米占比例多少?用了一些大米后,面粉的袋数恰好等于大米的袋数,用了多少袋大米?5.书店有故事书和科技书共300本,比例为3:2.后来运来一些科技书,此时故事书和科技书的比例为9:8,运来多少本科技书?6.图书馆原有文艺书和连环画630本,比例为1:4.后来买进一些文艺书,此时文艺书和连环画的比例为3:7,买进了多少本文艺书?7.二班原有42名学生,女生占比例多少?转来了几名女生后,女生与男生的比例为5:6,现在全班有多少人?8.两筐水果共重130千克,甲筐水果的重量是乙筐的7/13,甲乙两筐原各有多少千克水果?9.有两堆煤,第一堆运走后,第二堆运走一部分后还剩下,此时第一堆和第二堆的重量比为3:5,第一堆原有120吨煤,第二堆原有多少吨煤?1.将含糖量为12%的500毫升葡萄糖溶液稀释成含糖量为10%的溶液,需要加入多少毫升蒸馏水?2.某班原有54名学生,男生占比例多少?转来几名女生后,女生占全班的多少比例?3.甲桶有28千克水,喝了一部分后,乙桶喝了剩下的水,乙桶原来有多少千克水?4.食堂共有360袋大米和面粉,其中大米占比例多少?用了一些大米后,面粉的袋数恰好等于大米的袋数,用了多少袋大米?5.书店有故事书和科技书共300本,比例为3:2.后来运来一些科技书,此时故事书和科技书的比例为9:8,运来多少本科技书?6.图书馆原有文艺书和连环画630本,比例为1:4.后来买进一些文艺书,此时文艺书和连环画的比例为3:7,买进了多少本文艺书?7.二班原有42名学生,女生占比例多少?转来了几名女生后,女生与男生的比例为5:6,现在全班有多少人?8.两筐水果共重130千克,甲筐水果的重量是乙筐的7/13,甲乙两筐原各有多少千克水果?9.有两堆煤,第一堆运走后,第二堆运走一部分后还剩下,此时第一堆和第二堆的重量比为3:5,第一堆原有120吨煤,第二堆原有多少吨煤?一些人到一车间,使得两个车间的人数比为5:7,求调出了多少人。

复杂的按比例分配问题

复杂的按比例分配问题

例1一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4∶5∶6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?例2一块合金内铜和锌的比是2∶3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?例3 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?例4洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?例5 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?画出图便于解题:1.一块长方形的地,长和宽的比是3∶2,长比宽多24米,这块地的面积是多少平方米?2.一块长方形的地,长和宽的比是3∶2,长方形的周长是120米,求这块地的面积?3.化肥厂计划生产化肥1400吨,由于改进技术5天就完成了计划的25%,照这样计算,剩下的任务还需多少天完成?4.5.6. 甲乙丙三个班人数的和是175人,甲班和乙班的比是2:3,乙班和丙班的比是4:5,甲乙丙三个班各是多少人?7. 甲乙丙三个班的人数平均是20人,甲乙丙三个班人数的比是6:5:4,甲乙丙三个班各有多少人?8. 三个煤炭厂内共有煤炭2800万千克,甲厂和乙厂煤炭重量的比是3:4,乙厂与丙厂煤炭重量的比是6:7,三个煤炭厂各存煤炭多少万千克?9. 两个城市相距760千米,货车和客车同是从两城市相对开出,经过4小时相遇。

货车和客车的速度比是12:7。

货车和客车各行多少千米?10.图书馆里科技书和连环画的比8:5,科技书比连环画多90本,科技书和连环画各有多少本?11.甲乙丙三个组按2:3:5分配劳动力去完成一向任务,已知乙组要派120人,求甲丙两组应各派多少人?12. 加工一批零件,甲单独做需要8小时,乙单独做需要7小时,丙单独做需要14小时才能完成,三人合作2小时后,甲因另外有事离开,乙丙两人继续合作还需要几小时才能完成?13. 一列快车和一列慢车同时从两地相向开出,3小时后相遇。

六年级解比例练习题三道

六年级解比例练习题三道

六年级解比例练习题三道1. 某校的学生有男生和女生两个团体,其中男生团体有30人,女生团体有40人。

如果男生团体的人数增加了20%,女生团体的人数增加了30%,那么两个团体的人数比是多少?解答:首先,计算男生团体增加后的人数:男生团体增加了20%,所以增加的人数为 30 × 20% = 30 × 0.2 = 6 人。

增加之后男生团体的人数为 30 + 6 = 36 人。

接下来,计算女生团体增加后的人数:女生团体增加了30%,所以增加的人数为 40 × 30% = 40 × 0.3 = 12 人。

增加之后女生团体的人数为 40 + 12 = 52 人。

最后,计算两个团体的人数比:男生团体人数:女生团体人数 = 36 : 52。

2. 一辆车行驶了300公里所需要的时间是4小时。

如果以相同的速度行驶,行驶600公里需要多少时间?解答:首先,计算每小时的行驶公里数:车行驶了300公里所需时间为4小时,所以每小时行驶的公里数为300 / 4 = 75 公里/小时。

接下来,计算行驶600公里所需的时间:行驶600公里所需时间为 600 / 75 = 8 小时。

所以,以相同的速度行驶600公里需要8小时。

3. 一个长方形花坛的长和宽的比是3:2,如果长方形的周长是30米,那么长方形花坛的面积是多少平方米?解答:首先,根据长和宽的比值,设长方形花坛的长为3x,宽为2x。

根据周长的定义,周长 = 2(长 + 宽)。

根据题目中给出的周长是30米,可以得到方程:2(3x + 2x) = 30。

解方程得到:2(5x) = 30,化简为 10x = 30,再化简为 x = 3。

代入长方形花坛的长和宽的表达式,可以得到长为3x = 3 × 3 = 9米,宽为2x = 2 × 3 = 6米。

最后,计算长方形花坛的面积:面积 = 长 ×宽 = 9 × 6 = 54 平方米。

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)

难算的分数(比和比例)应用题(一)1、一条路已修了500米,是未修的2/5,求这条路一共有多长?解答:已修的是未修的2/5,那就是说是已修的是全长的2/7。

列式为:500÷2/7=1750(米)答:略。

2、一桶油用去1/5后连桶重14千克,用去1/3后连桶重12千克,求桶重多少千克?油重多少千克?分析与解答:用去油1/5后连桶重14千克,用去1/3后连桶重12千克,那就是说这桶油的1/3比1/5多2千克,也就是说1/3—1/5=2/15就是2千克。

那么这桶油重可以列式求出来:(14-12)÷(1/3—1/5)=2÷2/15=15(千克)那么桶重就是14-15×(1—1/5)=2(千克)或者12-15×(1—1/3)=2(千克)答:略。

3、修一条水渠,已修了4天,平均每天修35米,已修的比剩下的少全长的30%,这条水渠全长多少米?分析与解答:已修四天,每天修35米,则已修的是35×4=140米。

已修的比剩下的少全长的30%,那就是说,如果去掉这30%,剩下的和已修的刚好相等。

于是就有:(100%—30%)÷2=35%,这35%就是已修的。

到这儿就很好算了。

列式:35×4÷[(100%—30%)÷2]=140÷35%=400 (米)列方程为:解:设这条路全长为X米,则X—35×4—35×4=30%X 或(X—30%X)÷2=35×4答:略。

4、师傅和徒弟合做200个零件,师傅做的1/4比徒弟做的1/5多14个,求徒弟做了多少个?分析:师傅做的1/4比徒弟做的1/5多14个,那就是说,师傅做的4/4比徒弟做的4/5多14×4=56(个)。

这样题就变成了“师傅和徒弟合做200个零件,师傅做的比徒弟做的4/5多56个,求徒弟做了多少个?”这已是一个和倍问题了。

比例应用题及答案难点

比例应用题及答案难点

比例应用题及答案难点1. 题目:一个班级有男生和女生,男生人数是女生人数的1.5倍。

如果男生人数是45人,那么女生有多少人?答案:设女生人数为x人,根据题意,男生人数是女生人数的1.5倍,可以得到方程1.5x = 45。

解方程得到x = 45 / 1.5 = 30。

所以女生有30人。

2. 题目:一个工厂生产两种类型的机器,A型机器和B型机器。

A型机器的生产时间是B型机器的2倍。

如果A型机器的生产时间是4小时,那么B型机器的生产时间是多少?答案:设B型机器的生产时间为y小时,根据题意,A型机器的生产时间是B型机器的2倍,可以得到方程2y = 4。

解方程得到y = 4/ 2 = 2。

所以B型机器的生产时间是2小时。

3. 题目:一个果园里,苹果树和梨树的比例是3:2。

如果果园里有45棵苹果树,那么梨树有多少棵?答案:设梨树的数量为z棵,根据题意,苹果树和梨树的比例是3:2,可以得到方程3/2 = 45/z。

解方程得到z = (2/3) * 45 = 30。

所以梨树有30棵。

4. 题目:一个学校有学生和老师,学生人数是老师人数的4倍。

如果老师人数是30人,那么学生有多少人?答案:设学生人数为a人,根据题意,学生人数是老师人数的4倍,可以得到方程a = 4 * 30。

计算得到a = 120。

所以学生有120人。

5. 题目:一个商店销售两种商品,商品X和商品Y。

商品X的销售额是商品Y的1.2倍。

如果商品X的销售额是3600元,那么商品Y的销售额是多少?答案:设商品Y的销售额为b元,根据题意,商品X的销售额是商品Y的1.2倍,可以得到方程1.2b = 3600。

解方程得到b = 3600 / 1.2 = 3000。

所以商品Y的销售额是3000元。

6. 题目:一个花园里,玫瑰花和郁金香的比例是5:3。

如果花园里有30朵郁金香,那么玫瑰花有多少朵?答案:设玫瑰花的数量为c朵,根据题意,玫瑰花和郁金香的比例是5:3,可以得到方程5/3 = c/30。

较复杂的比的应用练习题

较复杂的比的应用练习题

比的应用练习题(难点部分)1、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。

如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是()。

2、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为()。

3、甲、乙、丙三个数的平均数是60。

甲、乙、丙三个数的比是3 :2 :1。

甲、乙、丙三个数各是多少?4、一个直角三角形的两个锐角度数的比是2 :1,这两个锐角分别是多少度?5、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。

求大、小瓶里各装油多少千克?6、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是5 :4,求甲、乙、丙三人各有图书多少本?7、一个直角三角形的三条边总和是60厘米,已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米?8、一个直角三角形的周长为36厘米,三条边的长度比是3 :4 :5,这个三角形的面积是多少平方厘米?9、一瓶盐水,盐和水的重量比是1 :24,如果再放入75克水,这时盐与水的重量比是1 :27,原来瓶内盐水重多少千克?10、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。

已知三种颜色的球共175个,红球有多少个?11、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。

问买圆珠笔和钢笔各花了多少元?12、甲、乙两包糖果的重量的比是4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。

那么两包糖果重量的总和是多少?13、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为6 :5,这时全体学生共有880人,问转学来的女生有多少人?14、小明读一本书,已读的和末读的页数比是1 :5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B
D F 一、图形中的比例
1、平行四边形ABCD 的面积是72平方厘米, ED= 31 BD ,FC= 31 BC,阴影部分的面积是多少平方厘米?
2、如图已知BD= 31AB ,BE= 41BC,阴影部分面积是2
平方厘米,求三角形ABC 的面积。

3、平行四边形ABCD 的BC 边上的高是12厘米,CD 边上的高是15厘米,如果平行四边形ABCD 的周长是72厘米,那么这个平行四边形的面积是多少平方厘米?
A B C D E
D C A
E F
4、已知四边形ABCD 中,三角形AOB 的面积是12平方厘米,三角形AOD 的面积是8平方厘米,三角形DOC 的面积是24平方厘米,求四边形ABCD 的面积。

二、行程中的比例:
1、甲乙两车同时从A 、B 两地相对开出,4小时相遇,然后各自行驶4.5小时,这时乙车正好到达A 地,甲车超过B 地50千米。

A 、B 两地相距多少千米?
2、甲乙两车从A 、B 两城相对开出,已知甲车的速度与乙车的速度比为5:6,甲车先从A 城开出55千米后,乙车才从B 城出发,两车相遇时,甲车比乙车多行驶了30千米,求AB 城的距离。

3、甲、乙二人同时从A 到B 地,当甲行全程的40﹪,乙距B 地还有150千米;当甲到B 地,乙距B 地的路程与甲所行的路程比是3:8,求A 、B 两地相距多少千米?
4、甲乙两车从AB 两地同时出发,30分钟相遇,相遇后又行7.5分钟,这时乙到中点;当甲到B 地时,乙A B C D
O
距A 地20千米,求AB 之间距离?
5、某人骑车计划用 2小时从甲地到乙地,由于途中有一段4千米的道路正在维修,走这段路的速度降低20%,因此比计划多用6分钟.甲乙两地相距多少千米?
6、一辆汽车从甲地开往乙地,如果把车速提高25%,可以比原定时间提前24分钟到达;如果原速度行驶60千米后再提高车速的 51 ,则可提前10分钟到达乙地,甲乙两地相距多少千米?
7、甲、乙两车以5:4的速度,同时从A 、B 两地相对开出,相遇后,乙车提速,每小时比原来多行18千米,结果两车恰好同时到达对方出发地,总用时6小时,A 、B 两地相距多少千米?
8、甲、乙两车以5:4的速度同时从AB 两地出发相向而行,相遇后甲车降速20%,乙车提速20%,继续前进。

乙车到达A 地时,甲车超过B 地18千米,AB 两地相距多少千米?
9、甲、乙两车以5:4的速度同时从AB 两地出发 相向而行,相遇后甲车降速20%,乙车提速20%, 继续前进。

甲车距B 地10千米时,乙车距A 地还有 18千米,AB 两地相距多少千米?
10、甲、乙两车以5:4的速度同时从AB两地出发
相向而行,相遇后甲车降速20%,乙车提速20%,
继续前进。

甲车超过B地18千米时,乙车距A地还有10千米,AB两地相距多少千米?
11、甲、乙两车以5:4的速度同时从AB两地出发相向而行,相遇后甲车降速20%,乙车提速20%,继续前进。

乙车超过A地10千米,甲车超过B地18千米,AB两地相距多少千米?
三、综合实践中的比例
1、张师傅把一根木头锯成8段,需要2.8分钟,那么把这根木头锯成12段,需要多少分钟?
2、用弹簧秤称2千克的物体,弹簧长12厘米,称6千克的物体,弹簧长14厘米,称5千克的物体,弹簧全长多少厘米?
3、两个铁环滚过同一段距离,一个转了50圈,另一个转了40圈。

如果一个铁环的周长比另一个铁环的周长少44厘米,这段距离是多少米?
4、甲、乙两个圆柱体水桶,甲水桶底面积是16平方厘米,水深6厘米,乙水桶底面积是4平方厘米,水深2厘米,现在向两个水桶中注入同样多的水后,乙桶的水深是甲桶的2倍,向两个桶中各倒入多少立方厘米的水?。

相关文档
最新文档