一编教材知识梳理篇第二章方程(组)与不等式(组)第一节一次方程与方程组及应用(精练)试题【含解析】
第二单元 方程(组)与不等式(组)知识点汇总整理

第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根为1.第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了。
中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
(完整版)方程与不等式的知识点梳理

方程与不等式知识点梳理1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。
那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。
也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。
在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。
2.方程(组)与不等式(组

等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移 项,运用了等式的性质1;去分母,运用了等式的性质2。 运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。
考点3
一元一次方程及其解法
个未知数,并且未知数的最高次数 一 一元一次方 含有________ 程的定义 是________ 一 ax+b=0 . 的方程,其一般形式为___________ 一元一次 方程的解
如图 6 - 1 所示的两台天平保持平衡,已知每块巧克力的重量相 等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量 分别为( ) A. 10g,40g B. 15g,35g C.20g,30g D. 30 g,20 g
小刚说:“我买一本笔记本和 4 支钢笔,刚好 18 元”,小明说: “我买一本笔记本和一支钢笔,刚好 6 元”.聪明的你根据他们 的对话内容,求出一本笔记本和一支钢笔各多少元?
等式性质2 去分母,得 3(3x+5)=2(2x-1);(__________) 去括号法则或乘法分配律 去括号,得 9x+15=4x -2;(____________________________________) 移项 等式性质1 (__________) , 得 9x-4x=-15-2; (_____________________________) 合并同类项 合并,得 5x=-17;(________)
一元一 次方程 的解法
一、去分母:做法:在方程两边各项都乘以各分母的最小公倍数;依据:等式的性质2 二、去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如 括号外有减号或除号的话一定要变号)依据:乘法分配律 三、移项:做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移 到方程左边,而把常数项移到右边)依据:等式的性质1 四、合并同类项:做法:把方程化成ax=b(a≠0)的形式;依据:(逆用乘法分配律) 五、系数化为1:做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。依据: 等式的性质2.
第2讲 方程(组)与不等式(组)

第2讲 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么b c2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a(6)“答”就是写出答案,注意单位要写清楚.【典例】例1如果3m =3n ,那么下列等式不一定成立的是( ) A .m ﹣3=n ﹣3 B .2m +3=3n +2C .5+m =5+nD .m −3=n −3例2解方程:(1)2﹣3(x ﹣1)=2(x ﹣2); (2).例3若方程12﹣3(x +1)=7﹣x 的解与关于x 的方程6﹣2k =2(x +3)的解相同,求k 的值.例4若方程2(2x ﹣1)=3x +1与关于x 的方程2ax =(a +1)x ﹣6的解互为倒数,求a 的值.例5我市某区为鼓励毕业大学生自主创业,经过调研决定:在2021年对60名自主创业的大学生进行奖励,共计奖励50万元.奖励标准是:大学生自主创业连续经营一年以上的给予5000元奖励;自主创业且解决3人以上失业人员稳定就业的,再给予1万元奖励.问:该区自主创业大学生中连续经营一年以上的和自主创业且解决3人以上失业人员稳定就业的大学生分别有多少人?例6两辆汽车从相距80km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇? (1)两车的速度各是多少? (2)两车出发几小时后相距20km ?【随堂练习】1.在下列方程的变形中,正确的是( ) A .由2x +1=3x ,得2x +3x =1 B .由25x =34,得x =34×52C .由2x =34,得x =32D .由−x+13=2,得﹣x +1=62.解方程:(1)3x +2=4(2x +3); (2)﹣1.3.某同学在解关于y 的方程﹣=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y =10.(1)求a 的值; (2)求方程正确的解.4.已知关于x 的方程2(x ﹣1)=3m ﹣1与3x ﹣2=﹣4的解相同,求m 的值.5.为加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格如表:每月用水量 单价(元)不超过23立方米的部分 m 超过23立方米的部分m +1.1(1)某用户4月份用水10立方米,共交费26元,求m 的值;(2)在(1)的前提下,该用户5月份交水费82元,请问该用户5月份用水多少立方米?知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.)0(2≥=a a x )0()(2≥=-a a b x(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即242ab b ac -±-.(2)=0一元二次方程有两个相等的实数根,即2ba-. (3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1若关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程,求m 的值.()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠221,2440)b b ac x b ac -±-=-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x ac b 42-⇔()002≠=++a c bx ax 20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x例2解方程:9(x﹣1)2=16(x+2)2.例3用配方法解方程:x2﹣8x+13=0.例4若关于x的一元二次方程kx2﹣6x+9=0有实数根,求k的取值范围.例5岳池县是电子商务百强县,某商店积极利用网络优势销售当地特产—西板豆豉.已知每瓶西板豆豉的成本价为16元,当销售单价定为20元时,每天可售出80瓶.为了回馈广大顾客,该商店现决定降价销售(销售单价不低于成本价).经市场调查反映:若销售单价每降低0.5元,则每天可多售出20瓶.(1)当销售单价降低1元时,每天的销售利润为元;(2)为尽可能让利于顾客,若该商店销售西板豆豉每天的实际利润为350元,求西板豆豉的销售单价.例6在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?【随堂练习】1.解方程:(1)(x﹣1)2﹣=0;(2)2x2+8x﹣1=0.2.已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.3.惠友超市于今年年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场获利4250元?4.如图是一张长20cm、宽13cm的矩形纸板,将纸板四个角各剪去一个边长为xcm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为cm,宽为cm;(用含x的式子表示)(2)若要制成一个底面积是144cm2的无盖长方体纸盒,求x的值.知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1解方程:(1)=﹣2.(2)=.例2用换元法解方程(xx+1)2+5(x x+1)+6=0时,若设xx+1=t,则原方程可化为关于t的一元二次方程是.例3定义一种新运算“⊗”,规则如下:a⊗b=,(a≠b2),这里等式右边是实数运算,例如:1⊗3==﹣.求x⊗(﹣2)=1中x的值.例4疫情过后,为做好复工复产,某工厂用A、B两种型号机器人搬运原料.已知A型机器人每小时搬运的原料比B型机器人每小时搬运的原料的一半多50千克,且B型机器人搬运2400千克所用时间与A型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.例5 2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,由于新冠疫情加重,当地加强了防控措施,对外出进行限制,小伟有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?例6要在规定天数内修筑一段公路,若让甲队单独修筑,则正好在规定天数内按期完成;若让乙队单独修筑,则要比规定天数多8天才完成.现在由乙队单独修筑其中一小段,用去了规定时间的一半,然后甲队接着单独修筑2天,这段公路还有一半未修筑.若让两队共同再修筑2天,能否完成任务?【随堂练习】1.用换元法解方程x−1x=3x x−1−2时,设x−1x=y ,换元后化成关于y 的一元二次方程的一般形式为 .2.解方程: (1)=;(2)﹣3.3.若关于x 的方程有增根,则增根是多少?并求方程产生增根时m 的值.4.虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.5.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1下列方程中,是二元一次方程的是()A.xy=2B.3x=4y C.x+1y=2D.x2+2y=4例2解方程组:(1);(2).例3已知方程组与有相同的解,求m 和n 值.例4糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?例5中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某种药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型 甲 乙 运载量(吨/辆) 10 12 运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?【随堂练习】1.如果3x 3m﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A .m =2,n =3 B .m =2,n =1C .m =﹣1,n =2D .m =3,n =42.如果方程组{ax −by =134x −5y =41与{ax +by =32x +3y =−7有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−53.解方程组:.4.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?5.某市要在A ,B 两景区安装爱心休闲椅,它有长条椅和弧形椅两种类型,其中每条长条椅可以同时供3人使用,每条弧形椅可以同时供5人使用.(列二元一次方程组解答) (1)市政府现在要为B 景区购买长条椅120条,弧形椅80条,若购买一条长条椅和一条弧形椅的价格共360元,为B 景区购买共花费了32800元,求长条椅和弧形椅的单价分别为多少元?(2)现决定从某公司为A 景区采购两种爱心休闲椅共400条,且正好可让1400名游客同时使用,求A 景区采购的长条椅和弧形椅分别为多少条?知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); a b a c c b a b c ac bc c a cb(3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).a b c ac bc c a cb ax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x【典例】例1如果a <b ,c <0,那么下列不等式中成立的是( ) A .a +c >b +c B .ac <bcC .ac 2>bc 2D .ac +1>bc +1例2解不等式10−x 3≤2x +1,并在数轴上将解集表示出来.例3解不等式组{2x −2≤xx +2>−12x −1,并把解集在数轴上表示出来.例4已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?例5为了美化校园,我校欲购进甲、乙两种工具,如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元. (1)甲、乙两种工具每件各多少元?(2)现要购买甲、乙两种工具共100件,总费用不超过1000元,那么甲种工具最多购买多少件?【随堂练习】1.若a >﹣1,则下列各式中错误的是( ) A .6a >﹣6 B .a 2>−12C .a +1>0D .﹣5a <﹣52.解不等式: (1)x +1>2x ﹣4; (2)−2x−13>4.3.解不等式组﹣2≤7x−53+2<5,并在数轴上表示出它的解集.4.某街道组织志愿者活动,选派志愿者到小区服务.若每一个小区安排4人,那么还剩下78人;若每个小区安排8人,那么最后一个小区不足8人,但不少于4人.求这个街道共选派了多少名志愿者?5.“端午节”将至,某商家预测某种粽子能够畅销,就准备购进甲、乙两种粽子.若购进甲种400个,乙种200个,需要用2800元;若购进甲种粽子700个,乙种粽子300个,需要4500元.(1)该商家购进的甲、乙两种粽子每个进价多少元?(2)该商家准备2500元全部用来购买甲乙两种粽子,计划销售每个甲种粽子可获利3元,销售每个乙种粽子可获利5元,且这两种粽子全部销售完毕后总利润不低于1900元,那么商家至少应购进甲种粽子多少个?综合运用1.若关于x 的方程x+m 3=x −m2与方程3+4x =2(3﹣x )的解互为倒数,求m 的值.2.解方程: (1)x−12=4x 3;(2)5x+13−2x−16=1.3.解不等式组{3−2(x −1)<3x 1−x−13≥0,把其解集在数轴上表示出来,并写出它的整数解.4.已知方程x 2﹣(k +1)x +k ﹣1=0是关于x 的一元二次方程. (1)求证:对于任意实数k ,方程总有两个不相等的实数根; (2)若方程的一个根是2,求k 的值及方程的另一个根.5.某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元.(1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?6.假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度.(2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?7.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.8.我市创全国卫生城市,梅溪湖社区积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)如果该街道需购买温馨提示牌和垃圾箱共3000个.该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的1.5倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?。
中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

5.(数学文化)《九章算术》是中国古代数学著作之一,书中有这样的一 个问题:五只雀、六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问: 每只雀、燕的质量各为多少?设一只雀的质量为 x 斤,一只燕的质量为 y
5x+6y=1, 斤,则可列方程组为__4x+y=5y+__x.
【考情分析】广西近 6 年主要考查解一元一次方程或二元一次方程组, 应用一元一次方程或二元一次方程组解决简单的实际问题,难度小,分 值 3-10 分,常在解答题中与不等式、一次函数的实际应用结合考查.
x=1, 则方程组的解为y=-1.
x-3y=-2, 5.(2020·玉林第 20 题 6 分)解方程组:2x+y=3.
x-3y=-2①, 解:2x+y=3②. ①+②×3 得 x+6x=-2+3×3, 解得 x=1, 将 x=1 代入②得 2+y=3, 解得 y=1.
x=1, 则方程组的解为y=1.
根据题意可列方程组为
y=3x-2, A.y=2x+9
y=3x-2, C.y=2x-9
y=3(x-2), B.y=2x+9
y=3(x-2), D.y=2x-9
( B)
7.(2021·桂林第 24 题 8 分)为了美化环境,建设生态桂林,某社区需 要进行绿化改造,现有甲、乙两个绿化工程队可供选择,已知甲队每天 能完成的绿化改造面积比乙队多 200 m2,甲队与乙队合作一天能完成 800 m2 的绿化改造面积. (1)甲、乙两工程队每天各能完成多少 m2的绿化改造面积? (2)该社区需要进行绿化改造的区域共有 12 000 m2,甲队每天的施工费 用为 600 元,乙队每天的施工费用为 400 元,比较以下三种方案: ①甲队单独完成;②乙队单独完成;③甲、乙两队全程合作完成. 哪一种方案的施工费用最少?
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

x+y=40, x+y=12, C.3x+4y=12 D.3x+4y=40
6.(2019·岳阳第 15 题 4 分)我国古代的数学名著《九章算术》中有下 列问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”其意思 为:今有一女子很会织布,每日加倍增长,5 日共织布 5 尺.问每日各织 多少布?根据此问题中的已知条件,可求得该女子第一天织布335115 尺.
8. (2019·娄底第 23 题 9 分)某商场用 14 500 元购进甲、乙两种矿泉水
共 500 箱,矿泉水的成本价与销售价如表所示:
类别
成本价(元/箱)
销售价(元/箱)
甲
25
35
乙
35
48
求:(1)购进甲、乙两种矿泉水各多少箱?
解:设购进甲矿泉水 x 箱,购进乙矿泉水 y 箱,依题意,得
x+y=500, 25x+35y=14 500,
2 次,2020 年考查 2 次)
2x-y=5, 1.(2021·郴州第 6 题 3 分)已知二元一次方程组x-2y=1,则 x-y 的
值为
( A)
A.2
B.6
C.-2
D.-6
2.(2021·株洲第 2 题 4 分)方程x2-1=2 的解是 A.x=2 B.x=3 C.x=5 D.x=6
( D)
3.(2019·湘潭第 6 题 4 分)若关于 x 的方程 3x-kx+2=0 的解为 2,则 k 的值为 44 .
m=8,m=5, m=2, ∴n=2,n=6,或n=10, ∴共有 3 种运输方案,
方案 1:安排 A 型车 8 辆,B 型车 2 辆, 所需费用:500×8+400×2=4 800(元); 方案 2:安排 A 型车 5 辆,B 型车 6 辆, 所需费用:500×5+400×6=4 900(元); 方案 3:安排 A 型车 2 辆,B 型车 10 辆, 所需费用:500×2+400×10=5 000(元). ∵4 800<4 900<5 000, ∴安排 A 型车 8 辆,B 型车 2 辆最省钱,最省钱的运输费用为 4 800 元.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 方程(组)与不等式(组)
第一节 一次方程与方程组及应用
1.(2015重庆中考)已知关于x 的方程2x +m -8=0的解是x =3,则m 的值为( A )
A .2
B .3
C .4
D .5
2.(2016毕节中考)已知关于x ,y 的方程x
2m -n -2
+4y
m +n +1
=6是二元一次方程,则m ,n 的值为( A )
A .m =1,n =-1
B .m =-1,n =1
C .m =31,n =-34
D .m =-31,n =34
3.(2016原创)已知m ,n 满足方程组m +5n =12,3m -n =4,
则m +n 的值为( C )
A .2
B .-2
C .4
D .-4
4.(2016宜昌中考)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m 长的彩绳截成2 m 或1 m 长的彩绳,用来做手工编织,在不造成浪费的前提下,有几种不同的截法( C )
A .1种
B .2种
C .3种
D .4种
5.(2015杭州中考)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x 公顷旱地改为林地,则可列方程( B )
A .54-x =20%×108
B .54-x =20%×(108+x)
C .54+x =20%×162
D .108-x =20%(54+x)
6.(2016原创)某商品的标价为200元,8折销售仍赚40元,则该商品的进价为( B )
A .140元
B .120元
C .160元
D .100元
7.(2016潍坊中考)若3x 2m y m
与x
4-n y n -1
是同类项,则m +n =__3__.
8.(2016扬州中考)以方程组y =-x +1y =2x +2,
的解为坐标的点(x ,y)在第__二__象限.
9.(2016宜宾中考)今年“五一”节,A ,B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组__5x +3y =253x +2y =16,
__.
10.(2016吉林中考)某学校要购买电脑,A 型电脑每台5 000元,B 型电脑每台3 000元,购买10台电脑共花费34 000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为__5 000x +3 000y =34 000x +y =10,
__.
11.(2016绍兴中考)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是__248或296__元.
12.解下列方程组:
(1)(2016金华中考)x +y =2;x +2y =5,
解:y =3;x =-1,
(2)(2016无锡中考)3x +2y =2;2x =3-y ,
解:y =-5;x =4,
(3)(2016黄石中考)x -y =2.9x2-4y2=36,
解:y =0x =2,或.36
13.(2016苏州中考)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小汽车,这些车共缴纳停车费480元,求中、小型汽车各有多少辆.
解:设中型汽车有x 辆,小型汽车有y 辆.根据题意,得12x +8y =480,x +y =50,解得y =30.x =20,
答:中型汽车有20辆,小型汽车有30辆.
14.(2016滨州中考)某运动员在一场篮球比赛中的技术统计如表所示:
注:表中出手投篮次数和投中次数均不包括罚球.
根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.
解:设本场比赛中该运动员投中2分球x 个,3分球y 个,依题意得:x +y =22,10+2x +3y =60,解得y =6,x =16,
答:本场比赛中该运动员投中2分球16个,3分球6个.
15.(2015聊城中考)某服装店用6 000元购进A ,B 两种新式服装,按标价售出后可获毛利润3 800元(毛利润=售价-进价),这两种服装的进价、标价如下表所示:
(1)求这两种服装各购进的件数;
(2)如果A 种服装按标价的8折出售,B 种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?
解:(1)设购进A 型服装x 件,B 型y 件,则40x +60y =3 800,60x +100y =6 000,∴y =30;x =50,
(2)100×0.2×50+160×0.3×30=2 440(元).
答:服装店比按标价售出少收入2 440元.
16.(2016原创)贵阳市某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
解:(1)设这批游客有x 人,原计划租y 辆车,则60(y -1)=x ,45y +15=x ,∴y =5.x =240,
答:这批游客有240人,原计划租5辆车;(2)若租45座需6辆,费用:6×220=1 320(元),若租60座需4辆,费用:4×300=1 200(元),因此租60座4辆比较合算.。