一次方程与方程组知识点
解方程的常见方法知识点总结

解方程的常见方法知识点总结一、一次方程的解法一次方程是指未知数的指数为1的方程。
解一次方程的常见方法有:1. 相加相减法:通过加减运算来消去未知数的系数,得到方程的解。
2. 乘法法则:通过乘法运算来消去未知数的系数,得到方程的解。
3. 代入法:将一个方程的解代入另一个方程中,求解未知数的值。
4. 变量转移法:通过将未知数的系数移到等号另一边,得到方程的解。
二、二次方程的解法二次方程是指未知数的指数为2的方程。
解二次方程的常见方法有:1. 因式分解法:将二次方程因式分解后,令各因式等于零,得到方程的解。
2. 公式法:使用二次方程的求根公式,直接计算出方程的解。
3. 完全平方式:将二次方程转换为完全平方式,求解方程的解。
4. 提取根号法:通过提取未知数的平方根,得到方程的解。
三、分式方程的解法分式方程是指未知数出现在分式中的方程。
解分式方程的常见方法有:1. 通分法:将分式方程的分母通分,然后进行运算,求解未知数的值。
2. 消元法:通过消去分式方程的分母,将方程转化为一次方程来求解。
3. 变量替换法:通过引入新的变量或替换未知数,将分式方程转化为一次方程或二次方程进行求解。
四、绝对值方程的解法绝对值方程是指方程中含有绝对值符号的方程。
解绝对值方程的常见方法有:1. 分类讨论法:根据绝对值的定义,分别讨论绝对值内外的正负情况,得到方程的解。
2. 去绝对值法:将方程的绝对值拆分成正负两部分,得到多个方程,分别求解并取并集。
五、方程组的解法方程组是指多个方程同时出现的一组方程。
解方程组的常见方法有:1. 消元法:通过消去方程组中的未知数,将方程组转化为简化的方程组来求解。
2. 代入法:通过将一个方程的解代入另一个方程中,求解未知数的值。
3. 变量替换法:通过引入新的变量或替换未知数,将方程组转化为简化的方程组进行求解。
六、无理方程的解法无理方程是指方程中含有无理数(如根号)的方程。
解无理方程的常见方法有:1. 平方去根法:通过平方运算,将方程中的根号消去,得到方程的解。
一次方程与方程组

一元一次一元二次方程及应用考点一 等式及方程的有关概念1.等式及其性质用等号“=”来表示相等关系的式子,叫做等式.等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的有关概念(1)含有未知数的等式,叫做方程.(2)使方程左、右两边的值相等的未知数的值,叫做方程的解(只含有一个未知数的方程的解,也叫做根).(3)求方程解的过程,叫做解方程. 考点二 一元一次方程 1.一元一次方程在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,叫做一元一次方程.ax +b =0(a ≠0)是一元一次方程的标准形式.2.解一元一次方程的一般步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1. 考点三 二元一次方程组及解法1.二元一次方程组几个含有相同未知数的二元一次方程合在一起,叫做二元一次方程组; 2.解二元一次方程组的基本思路:消元3.二元一次方程组的解法:(1)代入消元法;(2)加减消元法; 考点四 列方程(组)解应用题1.列方程(组)解应用题的一般步骤:审、设、列、解、检验、答 2.列方程(组)解应用题的关键是:确定等量关系.一元二次方程及应用考点一 一元二次方程的定义在整式方程中,只含有一个未知数,并且含未知数项的最高次数是2,这样的整式方程叫一元二次方程,一元二次方程的标准形式是ax 2+bx +c =0(a ≠0).考点二 一元二次方程的常用解法1.直接开平方法:如果x 2=a(a ≥0),则x =±a ,则x 1=a ,x 2=- a. 2.配方法3.公式法:方程ax 2+bx +c =0且b 2-4ac ≥0,则x =-b±b 2-4ac 2a.4.因式分解法考点三 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题步骤一样,即审、找、设、列、解、答六步.考点四 一元二次方程根的判别式关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式为b 2-4ac.1.b 2-4ac >0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则x 1,2=-b±b 2-4ac2a;2.b 2-4ac =0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,即x 1=x 2=-b 2a ;3.b 2-4ac <0⇔一元二次方程ax 2+bx +c =0(a ≠0)没有实数根;考点五 一元二次方程根与系数之间的关系若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两根分别为x 1、x 2,则x 1+x 2=-ba ,x 1·x 2=c a经典例题例一(1)已知⎩⎨⎧ x =2y =1是二元一次方程组⎩⎨⎧mx +ny =8nx -my =1的解,则2m -n 的算术平方根为( )A .4B .2 C.2 D .±2(2)已知方程x 2-5x +2=0的两个解分别为x 1、x 2,则x 1+x 2-x 1·x 2的值为( ) A .-7 B .-3 C .7 D .3例二(1)解方程:2x +13-10x +16=1. (2)解方程组:⎩⎨⎧3x +4y =19,x -y =4.(2)解方程(x -3)2+4x(x -3)=0.例三如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC 边的长.考点训练题 一、选择题1.方程组⎩⎨⎧x +y =12x -y =5的解是( )A.⎩⎨⎧ x =-1y =2B.⎩⎨⎧ x =-2y =3C.⎩⎨⎧ x =2y =1D.⎩⎨⎧x =2y =-12、方程(x -3)(x +1)=x -3的解是( ) A .x =0 B .x =3C .x =3或x =-1D .x =3或x =03.以方程组⎩⎨⎧y =-x +2y =x -1的解为坐标的点(x ,y)在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4.若|3a +b +5|+(2a -2b -2)2=0,则2a 2-3ab 的值为( ) A .4 B .2 C .-2 D .-45、.已知⎩⎨⎧ x =0y =-1和⎩⎨⎧x =1y =1是方程y =kx +b 的解,则k 、b 的值分别是( )A .k =-2,b =1B .k =2,b =3C .k =-2,b =-1D .k =2,b =-16.一元二次方程x 2-5x +6=0的两根分别是x 1、x 2,则x 1+x 2等于( ) A .5 B .6 C .-5 D .-67.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是( )A .168(1+a%)2=128B .168(1-a%)2=128C .168(1-2a%)=128D .168(1-a 2%)=1288.用配方法解一元二次方程x 2-4x =5的过程中,配方正确的是( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=9 D .(x -2)2=99.如果方程ax 2+2x +1=0有两个不等的实根,则实数a 的取值范围是( ) A .a<1 B .a<1且a ≠0 C .a ≤1 D .a ≤1且a ≠010.在一幅长80 cm 、宽50 cm 的矩形风景画的四周镶一条金色纸要制成一幅矩形挂图如下图所示,如果要使整个挂图的面积是5 400 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .x 2+130x -1 400=0B .x 2+65x -350=0C .x 2-130x -1 400=0D .x 2-65x -350=011.若方程组⎩⎨⎧ 2m -3n =133m +5n =30.9的解是⎩⎨⎧ m =8.3n =1.2,则方程组⎩⎨⎧2(x +2)-3(y -1)=133(x +2)+5(y -1)=30.9的解是( )A.⎩⎨⎧ x =8.3y =1.2B.⎩⎨⎧ x =10.3y =2.2C.⎩⎨⎧ x =6.3y =2.2D.⎩⎨⎧x =10.3y =0.212.若关于x 、y 的二元一次方程组⎩⎨⎧x +y =5k x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43 二、填空题13.1.方程(x -1)2=4的解是__________14.方程x 2-3x +1=0的解是__________.15.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca .根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________.16.已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是__________.17.设x 1、x 2是一元二次方程x 2-3x -2=0的两个实数根,则x 21+3x 1x 2+x 22的值为________18、已知x =-1是方程x 2+mx -5=0的一个根,则m =________,方程的另一根为________.20.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分作为草坪,要使草坪的面积为540 m 2,求道路的宽.21.解方程(组).(1)当m 取什么值时,代数式5m +14与5(m -14)的值互为相反数;(2)⎩⎪⎨⎪⎧x 3+1=y ,2(x +1)-y =6.(3) x 2-6x -6=0;(配方法)(4)解方程(x -3)2+4x(x -3)=0.(因式分解法)22、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元23.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1 228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台? (2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元,根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1 228台汽车用户共补贴了多少万元?答案1—5 DDADD 6-10ABDBB 11-12CB 13、【答案】120(1-x)2=10014、【答案】x 1=3+52,x 2=3-5215、【解析】∵x 1、x 2是x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3,∴x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10.16、【解析】∵方程有实数根,∴b 2-4ac>0,∴12-4(m -1)≥0,4m ≤5,m ≤54.∵方程是关于x 的一元二次方程,∴m -1≠0,∴m ≠1,∴m ≤54且m ≠1.17、【解析】由题意得x 1+x 2=3,x 1x 2=-2,所以x 21+3x 1x 2+x 22=x 21+2x 1x 2+x 22+x 1x 2=(x 1+x 2)2+x 1x 2=33+(-2)=9-2=7. 18、【答案】-4 x =519、【答案】⎩⎪⎨⎪⎧x =-4y =-220、解:设道路的宽为x m ,根据题意,得(20-x)(32-x)=540,∴x 2-52x +100=0,∴x 1=2,x 2=50(不合题意,舍去)21、解:(1)由题意得5m +14+5(m -14)=0,5m +14+5m -54=0, ∴10m =1,m =110.(2)⎩⎪⎨⎪⎧x 3+1=y ①2(x +1)-y =6 ②原方程组可化为⎩⎪⎨⎪⎧x -3y =-3 ①2x -y =4 ②,①×2得2x -6y =-6 ③,②-③得5y =10,∴y =2,把y =2代入②,得x =3,∴原方程组的解是⎩⎪⎨⎪⎧x =3y =2. 3、【解答】(1)x 2-6x -6=0 移项,得x 2-6x =6,配方,得(x -3)2=15,∴x -3=±15. ∴x 1=3+15,x 2=3-15. 4、(x -3)2+4x(x -3)=0换公因式,得(x -3)(x -3+4x)=0,(x -3)(5x - 3)=0.∴x -3=0或5x -3=0.∴x 1=3,x 2=35.22、解:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x 台、y 台,根据题意,得⎩⎪⎨⎪⎧ x +y =960x (1+30%)+y (1+25%)=1 228,解得⎩⎪⎨⎪⎧x =560y =400.。
方程主要知识点总结

方程主要知识点总结一、方程的定义在代数学中,方程是指含有一个或多个未知数的等式,通常用字母表示未知数。
方程的一般形式为:$a_1x^n + a_2x^{n-1} + ... + a_nx + a_{n+1} = 0$,其中$x$为未知数,$a_1,a_2, ..., a_{n+1}$为已知的常数,n为方程的次数。
方程的解即是使等式成立的未知数的值。
二、方程的类型1. 一元一次方程:一元一次方程是指只含有一个未知数的一次方程,一般有形式:$ax + b = 0$,其中$a$和$b$为已知的常数,$x$为未知数。
2. 一元二次方程:一元二次方程是指只含有一个未知数的二次方程,一般有形式:$ax^2+ bx + c = 0$,其中$a$、$b$和$c$为已知的常数,$x$为未知数。
3. 二元一次方程组:二元一次方程组是指含有两个未知数的一次方程组,一般有形式:$ \begin{cases} ax + by = c \\ dx + ey = f \end{cases}$,其中$a$、$b$、$c$、$d$、$e$和$f$为已知的常数,$x$和$y$为未知数。
4. 二元二次方程:二元二次方程是指含有两个未知数的二次方程,一般有形式:$ \begin{cases} ax^2 + by^2 = c \\ dx + ey = f \end{cases}$,其中$a$、$b$、$c$、$d$、$e$和$f$为已知的常数,$x$和$y$为未知数。
5. 多元线性方程组:多元线性方程组是指含有多个未知数的一次方程组,一般有形式:$\begin{cases} a_11x_1 + a_12x_2 + ... + a_1nx_n = b1\\ a_21x_1 + a_22x_2 + ... + a_2nx_n =b_2 \\ \cdots \\ a_m1x_1 + a_m2x_2 + ... + a_mnx_n = b_m \end{cases}$,其中$a_{ij}$和$b_i$为已知的常数,$x_i$为未知数,$i=1, 2, ..., n; j=1, 2, ..., m$。
高中数学方程的知识点总结

高中数学方程的知识点总结一、一元一次方程一元一次方程是高中数学中首先接触到的一种方程类型,也是最基础的方程类型之一。
一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。
解一元一次方程的基本方法是化简、变形,通过加减或乘除等运算得到方程的解。
1. 一元一次方程的解法(1)加减法,将方程化简成形如x=c的形式,即可求得x的值。
(2)代入法,将已知条件代入方程中,求出未知数的值。
(3)变形法,通过变形方程的形式或者将未知数移到方程的一侧,使方程等号两边相等,从而求得未知数的值。
(4)克莱姆法则,利用克莱姆法则可以得到一元一次方程的解,该方法通常适用于二元一次方程组求解。
2. 一元一次方程的应用(1)线性规划问题,通过建立一元一次方程模型,可以求解实际生活中的最优化问题。
(2)物品价格、消费等问题,通过一元一次方程可以解决生活中的购物、消费等实际问题。
二、一元二次方程一元二次方程是高中数学中比较重要的方程类型之一,一般形式为ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。
一元二次方程的求解需要利用一元二次方程的求根公式或者配方法等方法。
1. 一元二次方程的求根(1)求根公式,即利用一元二次方程的一般形式ax^2+bx+c=0,通过求解二次方程的根公式x=\frac{-b±\sqrt{b^2-4ac}}{2a},得到方程的解。
(2)配方法,将一元二次方程利用配方法化为全平方或者差平方的形式,然后根据公式求解方程。
2. 一元二次方程的图像一元二次方程在平面直角坐标系中表示为一个抛物线的图像,通过方程的系数可以看出抛物线的开口方向、开口大小等特征。
3. 一元二次方程的应用(1)物理问题,通过一元二次方程可以解决流体力学、电磁学等领域的问题。
(2)几何问题,一元二次方程可以求解几何问题中的距离、面积等问题。
三、高次方程高次方程是指次数大于二的方程,一般形式为a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=0。
关于方程知识点总结

关于方程知识点总结一、方程的基本概念1. 方程的定义方程是数学中用等号连接的两个代数式,它表达了两个数学对象相等的关系。
一般地,方程可以表示为A=B,其中A和B是代数式,等号表示它们相等的关系。
2. 方程的解方程的解是指能够使得方程成立的数值。
如果一个数满足方程,则称该数为方程的解。
对于一元方程来说,它的解是一个数;而对于多元方程来说,它的解是一组数值。
3. 方程的种类根据方程中含有的未知数的个数,方程可以分为一元方程和多元方程。
一元方程只含有一个未知数,而多元方程含有多个未知数。
二、一元一次方程1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
一元一次方程的一般形式为ax+b=0,其中a和b是已知数,a≠0。
2. 一元一次方程的解法解一元一次方程的最基本的方法是移项和合并同类项。
通过适当的变换和化简,可以得到方程的解。
3. 一元一次方程的实际应用一元一次方程在生活和工作中有着广泛的应用,比如解决物品的购买和销售问题、解决工程和技术中的实际问题等。
三、一元二次方程1. 一元二次方程的定义一元二次方程是指含有一个未知数,并且未知数的最高次数为二的方程。
一元二次方程的一般形式为ax^2+bx+c=0,其中a、b和c是已知数,a≠0。
2. 一元二次方程的解法解一元二次方程的方法较多,包括用公式解法、配方法解法、因式分解法、完全平方公式等。
3. 一元二次方程的实际应用一元二次方程在现实生活和工作中也有很多应用,比如解决抛物线运动问题、解决生产和经济中的实际问题等。
四、多元方程组1. 多元方程组的定义多元方程组是指含有多个未知数的方程组。
它由多个方程组成,每个方程表示一个条件,多个方程表示多个条件。
多元方程组的求解过程比较复杂,需要运用适当的方法和技巧。
2. 多元方程组的解法解多元方程组的方法包括代入法、减法法、加法法、消元法、矩阵法等。
每种方法都有其适用的范围和特点。
第6讲 一次方程与方程组

值为( A ) A.8 B.4 C.-4 D.-8
4 . (2014·襄 阳 ) 若 方 程
mx + ny= 6
的
两
个
解
是
x=1, y=1,
xy= =-2,1,则 m,n 的值为( A )
A.4,2
B.2,4
C.-4,-2
D.-2,-4
5.(2014·绍兴)如图①,天平呈平衡状态,其中左侧秤盘中有 一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有 2
两个方法 (1)代入消元法;(2)加减消元法.
1.(2014·咸宁)若代数式x+4的值是2,则x等于( B )
A.2
B.-2
C.6
D.-6
2.(2014·无锡)某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2
元.该店在六一儿童节举行文具优惠售卖活动,铅笔按原价打八折出售,
圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得金额87元.若设
个各 20 克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘, 并拿走右侧秤盘的 1 个砝码后,天平仍呈平衡状态,如图②,则 被移动的玻璃球的质量为( A )
A.10 克 B.15 克 C.20 克 D.25 克
一元一次方程的解法
【例 1】 解下列方程: (1)12x-45=170;
解:(1)5x-8=7,5x=8+7,5x=15,∴x=3
x=3 9=0,x=3,∴y=-1 解法二:整理得(x+y-2)a=x-2y-5,
x+y-2=0,
x=3
∴x-2y-5=0,解得y=-1
ቤተ መጻሕፍቲ ባይዱ
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
七年级数学第3章一次方程与方程组知识点沪科版

第3章 一次方程与方程组知识点一次方程与方程组知识点知识点1:一元一次方程的概念只含有一个未知数,并且未知数的次数都是1,像这样的整式方程叫做一元一次方程。
(如:21,314223x x x x --=+=-) 特点:①等号两边都是整式②只含有一个未知数③未知数的次数都为1。
判断方法:首先要将整式方程化简,然后再判断是否满足一元一次方程的三个特点。
知识点2:等式的基本性质1.等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
即如果a b =,那么a c b c ±=±;2。
等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.即如果a b =,那么ac bc =,(0)ab c c c=≠; 3。
对称性:如果a b =,那么b a =;4。
传递性:如果a b =,b c =,那么a c =。
知识点3:一元一次方程的解法1。
移项法则把方程的某一项改变符号后,从方程的一边移到方程的另一边,叫做移项法则.2。
解一元一次方程的步骤①去分母:在方程两边都乘以各分母的最小公倍数; ②去括号:先去小括号,再去中括号,最后去大括号; ③移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(移项要变号)④合并同类项:把方程变成(0)ax b a =≠的形式⑤系数华为1:在方程两边都除以未知数的系数a ,得到方程的解b x a=。
知识点4:(1)二元一次方程的概念含有两个未知数,且未知项的最高次数是1的整式方程叫做二元一次方程。
如:1,323,32m x y x y n +=-=+=都是二元一次方程。
(2)二元一次方程组的概念由两个二元一次方程组成的方程组叫做二元一次方程组。
(如:2324x y x y +=⎧⎨-=⎩) 知识点5:二元一次方程组的解使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解。
知识点6:二元一次方程组的解法(1)用代入法求解二元一次方程组步骤:①从方程组中选一个系数比较简单的方程,将这个方程的一个未知数用含另一个未知数的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解方程组步骤:①方程组中的两个方程中,如果同一个未知数的系数即不互为相反数又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数变为相反数或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用符号“{"联立起来.知识点7:用一次方程(或方程组)解决实际问题①行程问题:行程问题中涉及的量有路程、平均速度、时间。
一次方程与方程组知识点总结归纳

一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点1:一元一次方程的概念
只含有一个未知数,并且未知数的次数都是1,像这样的整式方程叫做一元一次方程。
(如:21,314223
x x x x --=+=-) 特点:①等号两边都是整式②只含有一个未知数③未知数的次数都为1.
判断方法:首先要将整式方程化简,然后再判断是否满足一元一次方程的三个特点。
知识点2:等式的基本性质
1.等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
即如果a b =,那么a c b c ±=±;
2.等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式。
即如果a b =,那么ac bc =,
(0)a b c c c
=≠; 3.对称性:如果a b =,那么b a =;
4.传递性:如果a b =,b c =,那么a c =。
知识点3:一元一次方程的解法
1.移项法则
把方程的某一项改变符号后,从方程的一边移到方程的另一边,叫做移项法则。
2.解一元一次方程的步骤
①去分母:在方程两边都乘以各分母的最小公倍数;
②去括号:先去小括号,再去中括号,最后去大括号;
③移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(移项要变号)
④合并同类项:把方程变成(0)ax b a =≠的形式
⑤系数华为1:在方程两边都除以未知数的系数a ,得到方程的解b x a
=。
知识点4:(1)二元一次方程的概念
含有两个未知数,且未知项的最高次数是1的整式方程叫做二元一次方程。
如:1,323,32
m x y x y n +=-=+=都是二元一次方程。
(2)二元一次方程组的概念
由两个二元一次方程组成的方程组叫做二元一次方程组。
(如:2324
x y x y +=⎧⎨-=⎩)
知识点5:二元一次方程组的解
使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解。
知识点6:二元一次方程组的解法
(1)用代入法求解二元一次方程组
步骤:①从方程组中选一个系数比较简单的方程,将这个方程的一个未知数用含另一个未知数的代数式表示出来;
②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;
③解这个一元一次方程,求出x(或y)的值;
④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;
⑤把求得的x、y的值用“{”联立起来,就是方程组的解。
(2)用加减法解方程组
步骤:①方程组中的两个方程中,如果同一个未知数的系数即不互为相反数又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数变为相反数或相等;
②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
③解这个一元一次方程,求出x(或y)的值;
④将求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用符号“{”联立起来。
知识点7:用一次方程(或方程组)解决实际问题
①行程问题:行程问题中涉及的量有路程、平均速度、时间。
它们之间的关系是:
路程=平均速度⨯时间
②储蓄问题:储蓄问题中涉及的量有本金、利率、期数、利息、本金和。
它们之间的关系是:
本金⨯利率⨯期数=利息
本金+利息=本金和
③利润问题:商品买卖问题中涉及的量有实际售价、成本(进价)、数量、利润。
它们之间的关系是:
实际售价-成本(进价)=利润
总利润=数量⨯利润
④工程问题:工程问题中涉及的量有工作总量、工作效率、工作时间。
它们之间的关系是:
工作效率=工作总量工作时间。