八年级数学上册第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法14.3.2.1运用平方
2024年人教版八年级数学上册教案及教学反思第14章14.3.2 公式法(第2课时)

第十四章整式的乘法与因式分解14.3 因式分解14.3.2 公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式: a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2 + 24x +9= (4x)2+2·4x·3+ 32.解:(1)16x2+ 24x +9= (4x)2 + 2·4x·3 + 32= (4x + 3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+ 4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是( )(出示课件15)A . 11 B. 9 C. –11 D. –9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2 ;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解: (1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b) ·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a –4b+5=0,求2a 2+4b –3的值.(出示课件23) 师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a –4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b –2)2=0∴ 2a 2+4b –3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是( )A .a 2+1B .a 2–6a +9C .x 2+5yD .x 2–5y2.把多项式4x 2y –4xy 2–x 3分解因式的结果是( )A .4xy(x –y)–x 3B .–x(x –2y)21020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩C.x(4xy–4y2–x2) D.–x(–4xy+4y2+x2)3.若m=2n+1,则m2–4mn+4n2的值是________.4.若关于x的多项式x2–8x+m2是完全平方式,则m的值为_________ .5. 把下列多项式因式分解.(1)x2–12x+36; (2)4(2a+b)2–4(2a+b)+1;(3) y2+2y+1–x2;6. 计算:(1) 38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327. 分解因式:(1)4x2+4x+1;(2)1x2–2x+3.3小聪和小明的解答过程如下:小聪: 小明:他们做对了吗?若错误,请你帮忙纠正过来.8. (1)已知a–b=3,求a(a–2b)+b2的值;(2)已知ab=2,a+b=5,求a3b+2a2b2+ab3的值.参考答案:1.B2.B3.14. ±45. 解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6. 解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17. 解: (1)原式=(2x)2+2•2x•1+1=(2x+1)2(2)原式=13(x2–6x+9)=13(x–3)28. 解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2. 当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
第十四章整式的乘法与因式分解 作业设计 数学人教版八年级上册

赣州市义务教育“作业设计我来评”优秀作业征集评比参赛作品一、作业设计内容人教版八年级上册第十四章整式的乘法与因式分解。
二、作业设计类型单元每课时的作业(包括单元复习课作业)。
三、作业目标在中考中,本章是必考内容,主要考查幂的运算、乘法公式、因式分解,所以,本章的作业目标是:1.让学生充分掌握运用整式的乘(除)法法则、乘法公式、添括号法则进行相关计算。
2.能灵活运用提公因式法和公式法进行因式分解。
3.体会转化、数形结合等数学思想,体会和掌握类比的学习方法。
4.提高学生运用所学知识解决问题的能力。
四、作业设计方案见附件。
五、设计理念阐述1.作业设计理念:深入贯彻落实《中共中央办公厅国务院办公厅关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》《教育部办公厅关于加强义务教育学校作业管理的通知》等精神,进一步提升作业设计的科学性、针对性和规范性,增强作业实施的有效性,减轻学生过重的作业负担,依据《义务教育数学课程标准》设计作业。
2.作业设计思路:(1)尊重差异,体现自主性。
新课程强调学生学习的主体,承认并尊重学习上的差异,是主体性学习的一个重要特点。
(2)积累知识,厚积薄发。
使数学学习成为沟通课本与生活的桥梁,提高数学思维与解题能力。
(3)培养学生实际应用能力。
即使把所学知识与实际问题相联系,使学生从学数学向用数学方向推进。
(4)突出重点,强化练习。
作业设计体现新的课改理念,还应符合本年段学生的认识,心理特征,关注到学习兴趣的培养和个性发展的需要,体现多元化,多层次,因材施教。
3.作业形式:设计分“知识梳理,夯实基础,能力提升,思维拓展”四个层面,通过选择、填空、解答等形式达到作业目标。
附:作业设计方案第14章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法知识梳理知识点一:同底数幂的乘法运算法则a m⋅a n=a m+n(m,n都是正整数).即同底数幂相乘,底数________,指数________.同底数幂是指底数相同的幂,底数可以是___________,也可以是________或________.三个或三个以上同底数幂相乘时,也具有这一性质.即a m⋅a n⋅a P=a m+n+P(m,n,p都是正整数).知识点二:逆用同底数幂的乘法运算法则把一个幂分解成____个或____个同底数幂的积,其中他们的底数与原来的底数______,它们的指数之和等于原来幂的_______.即a m+n=a m⋅a n(m,n都是正整数).夯实基础1.下列计算正确的是().A.a3⋅a3=a6B.a3⋅a3=2a3C.a3⋅a3=a9D.a3+a3=a62.计算a3⋅(−a)的结果是( ).A.a2 B.−a2C.a4D.−a43.若2n+2n+2n+2n=8,则n=( ).A. 1B. 2C. 0D. 144.若x2⋅x m=x5,则m=______.5.若3×32m×33m=311,则m的值为_________.能力提升1.计算:(a−b)3⋅(b−a)⋅(a−b)5=.2.已知x m−n⋅x2n+1=x11,y m−1⋅y5−n=y6,求mn2的值.3. (1)−a2⋅a5+a⋅a3⋅a3;(2)a2⋅a3−(−a3)⋅a4+a6⋅(−a).思维拓展1.(1)若2x=3,2y=5,则2x+y=.(2)已知a x=5,a x+y=25,求a x+a y的值.(3)已知x2a+b⋅x3a−b⋅x a=x12,求−a100+2101的值.14.1.2幂的乘方知识梳理知识点一:幂的乘方运算法则(a m)n=a mn(m,n都是正整数),即幂的乘方,底数________,指数__________.公式的推广:((a m)n)P=a mnp(m,n,p都是正整数)注意:负号在括号内时,偶次方结果为______,奇次方结果为______;负号在括号外时,结果都为______.知识点二:逆用幂的乘方运算法则a mn=(a m)n=(a n)m(m,m都是正整数).根据题目的需要常常逆用幂的乘方运算将某些幂变形,从而解决问题.夯实基础1.计算(a2)3,结果是().A. a5B. a6C. a8D. a92.计算(−a5)2+(−a2)5的结果是()A. 0B. −2a7C. 2a10D. −2a103.若k为正整数,则A. k2kB. k2k+1C. 2k kD. k2+k4.计算:(1)(−a2)3⋅a3+(−a)2⋅a7−5(a3)3;(2)x5⋅x7+x6⋅(−x3)2+2(x3)4.能力提升1.已知3a=5,3b=10,则3a+2b的值为()A. −50B. 50C. 500D. −5002.已知a m=2,a n=−1,求a3m+2n的值.3.已知3x+5y−1=0,求8x⋅32y的值.思维拓展阅读下列解题过程:试比较2100与375的大小.解:因为2100=(24)25=1625,375=(33)25=2725,16<27,所以2100<375.请根据上述方法解答问题:比较255,344,433的大小.14.1.3积的乘方知识梳理知识点一:积的乘方运算法则(ab)n=a n⋅b n(n是正整数).即积的乘方,等于把积的每一个因式分别_______,再把所得的幂__________.公式的推广:(abc)n=a n⋅b n⋅c n(n是正整数).知识点二:逆用积的乘方运算法则a nb n=(ab)n(n是正整数).逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.夯实基础1.计算:(−23x2y)3=_______________.2.如果(a n b m)3=a9b15,那么m,n的值为_____________.3.计算(−4×103)2×(−2×103)3的结果为_____________________.能力提升1.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.2.若n为正整数,且x2n=3,则(3x3n)2=.3.用简便方法计算:(1)(−125)8×0.255×(57)8×(−4)5;(2)0.1252021×(−82022).思维拓展(1)已知a n=2,b2n=3,求(a3b4)2n的值.(2)若59=a,95=b,用a,b表示4545的值.(3)若n为正整数,且x2n=7,求(3x3n)2−13(x2)2n的值.14.1.4整式的乘法第一课时单项式的乘法知识梳理知识点:单项式的乘法运算法则单项式与单项式相乘,把它们的系数、同底数幂分别_________,对于只在一个单项式里含有的字母,则连同它的_______作为积的一个______.三个或三个以上的单项式相乘同样适用.夯实基础x⋅(−2x2)3=______.1.计算:122.计算(6×103)×(8×105)的结果是__________.a2)4⋅(−b2)5.3.计算:(−3a2b)3⋅(−12能力提升1.若x3⋅x m y2n=x9y8,则4m−3n=__________________.2.若−2x3m+1y2n与4x n−6y−3−m的积与−4x4y是同类项,求m、n.3.已知3a n+1b n+1与−a2m−1b n−1的积等于−3a3b6,求(2m+n)n的值.思维拓展若“三角”表示3abc,“方框”表示−4x y w z,则×=.14.1.4整式的乘法第二课时单项式与多项式相乘知识梳理知识点:单项式与多项式相乘的运算法则单项式与多项式相乘,就是用_______去乘________的每一项,再把所得的积_________.即P(a+b+c)=Pa+Pb+Pc.夯实基础1.下列运算正确的是().A.2a(a−1)=2a2−aB.a(a+3b)=a2+3abC.−3(a+b)=−3a+3bD.a(−a+2b)=−a2−2ab2.计算2x(3x2+1)=_______________________.xy2)2⋅[xy(2x−y)+xy2].3.计算:(−134.计算:(2x2)3−6x3(x3+2x2+x).能力提升1.若x−y+3=0,则x(x−4y)+y(2x+y)的值为().A. 9B. −9C. 3D. −32.若一个长方体的长、宽、高分别为2x,x,3x−4,则长方体的体积为().A.3x3−4x2B.6x2−8xC.6x3−8x2D.6x3−8x3.解不等式:45+(−x)2+6x(x+3)>(−x)(2x−13)+(−3x)2.思维拓展【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax−y+6+3x−5y−1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x−6y+5,所以a+3=0,则a=−3.【理解应用】(1)若关于x的多项式(2x−3)m+2m2−3x 的值与x的取值无关,求m值;【能力提升】(2)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1−S2的值始终保持不变,求a与b的等量关系.14.1.4整式的乘法第三课时多项式与多项式相乘知识梳理知识点:多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个_______的每一项乘另一个_______,再把所得的积__________.即(a+b)(m+n)=____________________.夯实基础1.若(x+4)(x−2)=x2+mx+n,则m、n的值分别是().A. 2,8B.−2,−8C.2,−8D.−2,82.计算(x+2)(x−3)=_______________________.3.计算:2(x+3)(x−4)−(2x−3)(x+2).能力提升1.已知ab=a+b+2020,则(a−1)(b−1)的值为_________________.2.要使(6x−m)(3x+1)的结果中不含x的一次项,则m的值等于_____________.3.解方程或不等式:(1)(x−3)(x+8)=(x+4)(x−7)+2(x+5);(2)2x(x−4)>(x+4)(x+2)+(x−3)(x+6).思维拓展(1)填空:(a−b)(a+b)=______.(a−b)(a2+ab+b2)=______.(a−b)(a3+a2b+ab2+b3)=______.(2)猜想:(a−b)(a n−1+a n−2b+⋯+ab n−2+b n−1)=______(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:27+26+25+24+23+2+1.14.1.4整式的乘法第四课时整式的除法知识梳理知识点一:同底数幂的除法运算法则a m÷a n=____________(a≠0,m,n都是正整数,并且m> n).即同底数幂相除,底数________,指数________.知识点二:零次指数幂a0=1(a≠0).任何不等于0的数的0次幂都等于________.知识点三:单项式的除法运算法则单项式相除,把______与_______分别相除作为商的_______,对于只在被除式里含有的_______,则连同它的_____ ___作为商的一个________.知识点四:多项式除以单项式的运算法则多项式除以单项式,先把这个多项式的__________除以这个_________,再把所得的商_________.夯实基础1.计算:28x4y2÷7x3y=______________________.2.(-2021)0=_______________.2.计算:(1)(4x 3y +6x 2y 2−xy 3)÷(2xy);(2)(−2x 3y 2−3x 2y 2+2xy)÷(2xy).能力提升1.已知5x =3,5y =2,则52x−3y =( )A. 34B. 1C. 23D. 98 2.若a >0,且a x =3,a y =2,则a 2x−y 的值为( ) A. 92B. 4C. 3D. 7 3.已知:2a =3,2b =5,2c =75.求2c−b+a 的值;思维拓展老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如图:×(−12xy)=3x 2y −xy 2+12xy . (1)求所捂的多项式;(2)若x =23,y =12,求所捂多项式的值.14.2乘法公式14.2.1平方差公式知识梳理知识点:平方差公式平方差公式:(a+b)(a−b)=a2−b2.即:两个数的_____与这两个数的_____的积,等于这两个数的平方差.注意:公式中的字母a,b可以是一个______、一个_______、一个_________.所以,当这个字母表示一个负数、单项式、多项式时,应加括号避免出现只把字母平方,而系数忘了平方的错误.夯实基础1.下列多项式乘法中可以用平方差公式计算的是()A. (x+y)(y−x)B. (−a+b)(a−b)C. (x+2)(2+x)D. (x−2)(x+1)2.已知a+b=10,a−b=8,则a2−b2=____________.3.计算:(2a−1)(−2a−1)=____________.4.如果一个长方形的长为(a+2b)米,宽为(a−2b)米,则该长方形的面积是平方米.能力提升1.若x2−y2=3,则(x+y)2(x−y)2的值是().A. 3B. 6C. 9D. 182.化简x2−(x+3)(x−3)的结果是.3.用乘法公式计算(2+1)(22+1)(24+1)…(22018+1)的结果.思维拓展【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式____________________.(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(2)已知4m2−n2=12,2m+n=4,则2m−n的值为_______________.(3)计算:20192−2020×2018.【拓展】(4)计算:1002−992+982−972+⋯+42−32+22−12.14.2.2完全平方公式(第一课时)知识梳理知识点:完全平方公式完全平方公式:(a+b)2=a2+2ab+b2, (a−b)2= a2−2ab+b2.即两个数的_____(或_____)的平方,等于它们的________,加上(或_______)它们的积的_____倍.注意:公式左边是两数的和(或差)的平方,右边是二次三项式,是这两个数的平方和加(或减)这两个数积的2倍.以下是常见的变形:a2+b2=(a+b)2−2ab=(a−b)2+2ab(a+b)2=(a−b)2+4ab夯实基础1.若(y+a)2=y2−8y+b,则a,b的值分别为().A.4,16B.−4,−16C.4,−16D.−4,162.计算(−a+2b)2=_______________.3.运用完全平方公式计算)2; (2)2992;(1)(60160(3)1012+992−98×102.能力提升1.若a−b=1,a2+b2=13,则ab的值为().A. 6B. 7C. 8D. 92.已知xy=10,(x−2y)2=1,则(x+2y)2的值为().A. 21B. 9C. 81D. 413.先化简,再求值:(x+1)2−x(x+1),其中x=2.4.先化简,再求值:(x−1)(3x+1)−(x+2)2+5,其中x2−3x−1=0.思维拓展已知(a+b)2=25,(a−b)2=9,求ab与a2+b2的值.14.2.2完全平方公式(第二课时)知识梳理知识点:添括号法则添括号时,如果括号前面是正号,括到括号里的各项都______符号;如果括号前面是负号,括到括号里的各项都要______符号.如a+b+c=a+(b______c),a−b−c=a−(b______c)夯实基础1.(a+b−c)(a−b+c)=[a+(_______)][a−(______)]2.已知x−2y=−2,则3−x+2y=__________________.3.计算(1)(a−b+c)2;(2)(2x−y+4)(2x+y−4).能力提升1.计算:(2x−2)(x+1)−( x−1 )2−( x+1 )2.2.利用乘法公式计算:(x+2y+1)(x−2y+1)−(x−2y−1)2.3.长方形中相邻两边的长分别是8−x,x−2,若(8−x)2+(x−2)2=13,求这个长方形的面积.思维拓展若m2+2mn+2n2−6n+9=0,求mn2的值解:因为m2+2mn+2n2−6n+9=0,所以(m+n)2+(n−3)2=0.所以n=3,m=−3.所以mn2=−332=−13.根据你的观察,探究下面的问题:(1)若x2+4x+4+y2−8y+16=0,求yx的值;(2)若x2+2y2−2xy+2y+1=0,求x+2y的值;(3)试说明:不论x,y取什么实数,多项式x2+y2−2x+ 2y+3的值总是正数;14.3因式分解14.3.1提公因式法知识梳理知识点一:因式分解的概念把一个_________化成几个________的______的形式,叫做把这个多项式_________,也叫做把这个多项式____________.知识点二:用提公因式法分解因式1.公因式:在多项式中,如果各项都有一个______的因式,就把这个因式称为_______.2.提公因式法分解因式(1)定义:一般地,如果多项式的各项有_________,可以把这个________提取出来,将多项式写成_______与另一个______的_______的形式,这种分解因式的方法叫做___________.(2)实质:提公因式法的实质是____________的逆用.(3)步骤:①确定______;②提______并确定另一个_____;③把多项式写成这两个因式的_______的形式.夯实基础1.下列等式中,从左到右的变形属于因式分解的是()A.a(a+2)=a2+2aB.a2−b2=(a+b)(a−b)C.m2+m+3=m(m+1)+3D.a2+6a+3=(a+3)2−62.多项式8x m y n−1−12x3m y n各项的公因式是_________.3.已知x+y=8,xy=15,则x2y+xy2的值为.4.用提公因式法分解因式:−3a n+2+2a n+1−5a n.能力提升1.计算(1)49×19.99+52×19.99−19.99(2)22022−5×22021+6×22020+2023.2.如图,把R1、R2、R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3.当R1=19.7,R2= 32.4,R3=35.9,I=2.5时,则U的值为______.思维拓展先阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]= (1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是,共应用了次;(2)若分解因式:1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2022,则需应用上述方法次,结果是;(3)分解因式:1+x+x(x+1)+x(x+1)2+⋯+x(x+ 1)n(n为正整数).14.3.2公式法(第一课时)知识梳理知识点:平方差公式a2−b2=(a+b)(a−b),即两个数的平方差,等于这两个数的_____与这两个数的_____的____.夯实基础1.下列各式中,能运用平方差公式分解因式的是().A. x2+y2B. 1−x2C. −x2−y2D. x2−xy2.因式分解:m3n−mn3=______.能力提升1.对于任何整数m,多项式(4m+5)2−9都能().A.被8整除B.被m整除C.被m−1整除D.被2m−1整除2.分解因式:(2x−y)2−(4x+3y)2=.3.若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.4.利用因式分解进行计算:3.14×512−3.14×492.思维拓展利用因式分解进行计算:(1−122)(1−132)(1−142)·⋯·(1−120222).14.3.2公式法(第二课时)知识梳理知识点一:用完全平方公式分解因式两个数的________加上(或减去)这两个数的_____的____倍,等于这两个数的_____(或______)的_______.即a2+2ab+ b2=(a+b)2,a2−2ab+b2=(a−b)2.知识点二:公式法用来把某些具有特殊形式的多项式____________,这种分解因式的方法叫做公式法.夯实基础1.下列各式中,能用完全平方公式进行因式分解的是()A. x2−4B. x2−2x−1C. x2−4x+4D. x2+4x+12.分解因式:2xy−x2−y2=______________________.3.分解因式:ab2−2ab+a=______________________.能力提升1.若a+b=2,ab=−3,则a3b+2a2b2+ab3的值为.2.利用因式分解计算:(1)1012+492+101×98;(2)8002−1600×798+7982.思维拓展1.利用因式分解回答问题:已知x+y=3,x−y=−2,求(x2+y2)2−4x2y2的值.2.已知△ABC的三边长a,b,c满足a2−b2=ac−bc,试判断△ABC的形状.第十四章复习课作业夯实基础1.下列计算正确的是()A.(−a3)÷(−a)=−a2B.(a3)2=a5C.3x2⋅(−2x3)=−6x5D.(ab3)2=ab62.计算(−3x)·(2x2−5x−1)=_________________________.3.计算(28a3−28a2+7a)÷7a=_______________________.4.若x2+2(m−3)x+16是完全平方式,则m的值等于().A. 3B. −5C. 7D. 7或−15.计算:|−3|+(π+1)0−√4=.6.分解因式:x3y−4xy3=___________.7.分解因式:4ax2−4ax+a=______.能力提升1.把一个两位数交换十位数字和个位数字后得到一个新的两位数,若将这个新的两位数与原两位数相加,则所得的和一定是().A. 偶数B. 奇数C. 11的倍数D. 9的倍数2.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为().A. 18B. −18C. −8D. −63.先化简,再求值:(x+y)(x−y)−(4x3y−8xy3)÷2xy,其中x=1,y=3.思维拓展南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下图称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4 (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5则(a+b)9展开式中所有项的系数和是________________.。
人教版八年级数学上册作业课件 第十四章整式的乘法与因式分解 因式分解 公式法 用完全平方公式分解因式

第十四章 整式的乘法与因式分解
14. 3 因式分解
14.3.2 公式法 第2课时 用完全平方公式分解因式
完全平方公式
1.(3分)下列式子中是完全平方式的是( D) A.a2+ab+b2 B.a2+2a+2 C.a2-2b+b2 D.a2+2a+1 2.(3分)已知x2-12xy+m是一个完全平方式,则m=__3_6_;已知x2+ kx+4是一个完全平方式,则k=__±__4_.
(3)请你模仿以上方法尝试对多项式(a2-2a-1)·(a2-2a+3)+4进行因 式分解.
解:设a2-2a=b, 原式=(b-1)(b+3)+4 =b2+2b-3+4 =(b+1)2 =(a2-2a+1)2 =[(a-1)2]2 =(a-1)4
(4)(x2+1)2-4x2. 解:原式=(x2+1+2x)(x2+1-2x) =(x+1)2(x-1)2
16.(10分)利用因式分解求值: (1)(x+y)(x2+3xy+y2)-5xy(x+y),其中x=6.6,y=-3.4; 解:原式=(x+y)(x2+3xy+y2-5xy)=(x+y)(x2+y2-2xy)=(x+y)(x-y)2, 当x=6.6,y=-3.4时,原式=3.2×102=320 (2)已知a(a+1)-(a2+2b)=-1,求a2-4ab+4b2-2a+4b+1的值. 解:原式=(a-2b)2-2(a-2b)+1=(a-2b-1)2.∵a(a+1)-(a2+2b)=a2+a -a2-2b=a-2b=-1,∴原式=(-1-1)2=4
(4)(m+n)2-6(m+n)+9. 解:原式=(m+n-3)2
先提公因式再用完全平方公式分解因式
7.(3分)(株洲中考)下列各选项中因式分解正确的是( D) A.x2-1=(x-1)2 B.a3-2a2+a=a2(a-2) C.-2y2+4y=-2y(y+2) D.m2n-2mn+n=n(m-1)2 8.(3分)(扬州中考)分解因式:a3-2a2+a=__a_(a_-__1_)_2_.
人教版八年级上册数学精品教学课件 第14章 整式的乘法与因式分解 提公因式法

典例精析 例1 下列从左到右的变形中是因式分解的有 ( B ) ① x2-y2-1=(x+y)(x-y)-1;② x3+x=x(x2+1);
③ (x-y)2=x2-2xy+y2;④ x2-9y2=(x+3y)(x-3y).
A.1 个 B.2 个
C.3 个
D.4 个
方法总结:因式分解与整式乘法是相反方向的变形,
当堂练习
1. 多项式 15m3n2 + 5m2n - 20m2n3 的公因式是( C )
A.5mn B.5m2n2 C.5m2n
D .5mn2
2. 把多项式 ( x + 2 )(x - 2) + (x - 2) 提取公因式 (x - 2) 后,余下的部分是( D )
A.x + 1 B.2x C.x + 2
问题2 如何确定一个多项式的公因式? 找 3 x 2 – 6 x y 的公因式.
3 系数: 最大公约数
x
1
指数: 相同字母的
字母: 最低次数
相同的字母
所以公因式是 3x
找出多项式的公因式的一般步骤: 1. 定系数:公因式的系数是多项式各项系数的最大公 约数; 2. 定字母:字母取多项式各项中都含有的相同的字母; 3. 定指数:相同字母的指数取各项中最小的一个,即 字母的因式相同 时,提公因式后剩余的项是 1.
正确解:原式 = 3x·x - 6y·x + 1·x = x(3x - 6y + 1)
注意:某项提出莫漏 1.
小华的解法有误吗? 因式分解:- x2 + xy - xz. 解:原式 = - x(x + y - z).
错误
提出负号时括号 里的项没变号
4. 把下列各式分解因式: (1) 8m2n + 2mn =__2_m_n_(_4_m__+__1_)_;
第14章 整式的乘法与因式分解 人教版八年级上册 第十四章 章末复习

(3)xy2-x=__x_(y_+__1_)_(y_-__1_)__.
8.若x2+kx-10=(x-5)(x+2),则k的值为____-__3____.
9.已知m+3n=5,则2m+6n+2=___1_2____.
第十四章 章末复习
10.计算: (1)(2a+3b)(2a-b); (2)(12x3+6x2 )÷3x. 解:(1)原式=4a2-2ab+6ab-3b2
解:原式=x2-4-x2+x=x-4.
第十四章 章末复习
3.计算: (1)x3y·3y2=___3_x_3_y_3 ___; (2)2x(3x2-x)=__6_x_3-__2_x_2__; (3)8a5b3÷(-4a2b)=__-__2_a_3_b_2 __.
返回目录
第十四章 章末复习
4.计算: (1)2a2·ab2+ab·(-a2b); (2)(3x-4y)(x+2y); (3)(6m4-8m2n2)÷2m2.
返回目录
基础练习
返回目录
第十四章 章末复习
1.(2023吉林)下列各式运算结果为a5的是( B )
A.a2+a3
B.a2·a3
C.(a2)3
D.a10÷a2
2.(2023赤峰)下列运算正确的是( A )
A.(a2b3)2=a4b6
B.3ab-2ab=1
C.(-a)3·a=a4
D.(a+b)2=a2+b2
解:(1)原式=2a3b2-a3b2=a3b2. (2)原式=3x2+6xy-4xy-8y2=3x2+2xy-8y2. (3)原式=6m4÷2m2-8m2n2÷2m2=3m2-4n2.
返回目录
第十四章 章末复习
乘法公式 1.平方差公式:(a+b)(a-b)=a2-b2. 2.完全平方公式:(a±b)2=a2±2ab+b2.
第14章-《整式的乘法与因式分解》知识点及考点典例精选全文完整版

可编辑修改精选全文完整版第十四章 《整式的乘法与因式分解》知识点及考点典例重点知识回顾:一、整式的乘法:),(都是正整数n m a a a n m n m +=• ),(都是正整数)(n m a a mn n m =)()(都是正整数n b a ab n n n = 22))((b a b a b a -=-+2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-注意:(1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘,结果是一个_______,其项数与因式中多项式的项数______。
(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。
(5)公式中的字母可以表示数,也可以表示单项式或多项式。
二、整式的除法: nm n m a a a -=÷ ()0≠a 10=a()0≠a单项式÷单项式 多项式÷单项式三、因式分解 1、把一个多项式化成几个_________的形式,叫做把这个多项式因式分解。
2、因式分解的常用方法(1)提公因式法:)(c b a ac ab +=+(2)运用公式法:))((22b a b a b a -+=-222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(3)分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++(4)十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。
(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:二项式可以尝试运用________公式分解因式;三项式可以尝试运用______________、__________分解因式;四项式及四项式以上的可以尝试______________分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。
第14章 整式的乘法与因式分解 人教版八年级上册 第14课时 因式分解(3)——公式法

=(a+b+c)2.
返回目录
第14课时 因式分解(3)——公式法(完全平方公式)
返回目录
5.已知一个长方形的长和宽分别为a,b,周长为12,面积为5,求
ab3+2a2b2+a3b的值. 解:由题意,得 ab=5,2(a+b)=12,即 a+b=12 ×12=6.
课堂检测
返回目录
第14课时 因式分解(3)——公式法(完全平方公式)
返回目录
1.下列各式是完全平方式的是( B )
A.x2+2x+y2
B.x2-4x+4
C.x2-3x+9
D.x2+xy+y2
2.分解因式: (1)1-2m+m2=___(_1_-__m_)_2___; (2)9x2-6x+1=___(3_x_-__1_)_2__;
完全平方式:形如a2+2ab+b2和a2-2ab+b2,即两个数的平方和
加上或减去这两个数的积的2倍的式子.
第14课时 因式分解(3)——公式法(完全平方公式)
3.因式分解:
返回目录
(1)a2+2ab+b2=___(a_+__b_)_2__;
(2)a2-2ab+b2=___(a_-__b_)_2__.
第14课时 因式分解(3)——公式法(完全平方公式)
综合运用提公因式法和公式法分解因式 例4 分解因式: (1)2x2+16x+32; (2)-3y2+18y-27.
解:(1)原式=2(x2+8x+16) =2(x+4)2.
(2)原式=-3(y2-6y+9) =-3(y-3)2.
返回目录
第14课时 因式分解(3)——公式法(完全平方公式)
训练 3.分解因式: (1)1-10x+25x2; (2)9a2+24ab+16b2.
人教版八年级数学上册14.3.2《公式法》 课件第1课时(共17张PPT)

探究新知
4.将 a2 b2 (a b)(a b) 用文字语言表述, 并说明公式中的字母a,b可以表示什么?
(1)(a b)2 c2 a2 2ab b2 c2 ;
不正确. 对分解因式的概念不清,左边是多项式的形 式,右边应是整式乘积的形式,但右边还是多项 式的形式,因此,最终结果是未对所给多项式进 行因式分解.
课堂练习
(2)a4 1 (a2 )2 1 (a2 1)(a2 1) .
不正确. 因式分解不彻底.
3.因式分解应进行到每一个因式不能分解为止. 4.计算中应用因式分解,可使计算简便.
课堂小结
本图片资源介绍了用平方差公式分解因式,适用于公 式法的教学.若需使用,请插入图片【知识点解析】 用平方差公式分解因式.
课堂小结
本图片资源介绍了因式分解的一般步骤,适用于因式 分解的教学.若需使用,请插入图片【知识点解析】 因式分解的一般步骤.
(1)x2 4 与多项式和 (2)a2 36 进行因式
分解?
(1)x2 4 x2 22 (x 2)(x 2) ; (2) a2 36 a2 62 (a 6)(a 6) .
例题解析
【例1】分解因式:
(1)4x2 9 ; (2) (x p)2 (x q)2 .
解:(1)4x2 9 (2x)2 32 (2x 3)(2x 3) ; (2)(x p)2 (x q)2 [(x p)+(x q)][(x p) (x q)] (2x p q)( p q) .
文字语言表述:两个数的平方差,等于这两个数 的和与这两个数的差的积.字母a 、b可以表示任何 数、单项式或多项式.