2018-2019数学新学案同步精致讲义选修2-1苏教版第2章 圆锥曲线与方程 2.2.2(一) Word版含答案

合集下载

2018-2019学年高二数学讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.6.1

2018-2019学年高二数学讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.6.1

§2.6 曲线与方程2.6.1 曲线与方程学习目标 1.了解曲线上的点与方程的解之间的一一对应关系.2.初步领会“曲线的方程”与“方程的曲线”的概念.3.学会分析、判断曲线与方程的关系,强化“形”与“数”的统一以及相互转化的思想方法.知识点 曲线与方程的概念思考 到两坐标轴距离相等的点的轨迹方程是什么?为什么?答案 y =±x .在直角坐标系中,到两坐标轴距离相等的点M 的坐标(x 0,y 0)满足y 0=x 0或y 0=-x 0,即(x 0,y 0)是方程y =±x 的解;反之,如果(x 0,y 0)是方程y =x 或y =-x 的解,那么以(x 0,y 0)为坐标的点到两坐标轴距离相等.梳理 如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解(条件①,即纯粹性),且以方程f (x ,y )=0的解(x ,y )为坐标的点都在曲线C 上(条件②,即完备性),那么,方程f (x ,y )=0叫做曲线C 的方程,曲线C 叫做方程f (x ,y )=0的曲线.特别提醒:(1)曲线的方程和方程的曲线是两个不同的概念,是从不同角度出发的两种说法.曲线C 的点集和方程f (x ,y )=0的解集之间是一一对应的关系,曲线的性质可以反映在它的方程上,方程的性质又可以反映在曲线上.定义中的条件①说明曲线上的所有点都适合这个方程;条件②说明适合方程的点都在曲线上而毫无遗漏.(2)曲线的方程和方程的曲线有着紧密的关系,通过曲线上的点与实数对(x ,y )建立了一一对应关系,使方程成为曲线的代数表示,通过研究方程的性质可间接地研究曲线的性质.1.过点A (3,0)且垂直于x 轴的直线的方程为x =3.(√)2.到y 轴距离为2的点的直线方程x =-2.(×)3.方程=1表示斜率为1,在y 轴上的截距是2的直线.(×)xy -2类型一 曲线与方程的概念例1 命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,下列命题中正确的是________.(填序号)①方程f(x,y)=0的曲线是C;②方程f(x,y)=0的曲线不一定是C;③f(x,y)=0是曲线C的方程;④以方程f(x,y)=0的解为坐标的点都在曲线C上.答案 ②解析 不论方程f(x,y)=0是曲线C的方程,还是曲线C是方程f(x,y)=0的曲线,都必须同时满足两层含义:曲线上的点的坐标都是方程的解,以方程的解为坐标的点都在曲线上,所以①,③,④错误.反思与感悟 解决“曲线”与“方程”的判定这类问题(即判定方程是不是曲线的方程或判定曲线是不是方程的曲线),只要一一检验定义中的“两性”是否都满足,并作出相应的回答即可.判断点是否在曲线上,就是判断点的坐标是否适合曲线的方程.跟踪训练1 设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,给出下列命题:①坐标满足方程f(x,y)=0的点都不在曲线C上;②曲线C上的点的坐标都不满足方程f(x,y)=0;③坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上;④一定有不在曲线C上的点,其坐标满足f(x,y)=0.其中判断正确的是________.(填序号)答案 ④解析 “坐标满足方程f(x,y)=0的点都在曲线C上”不正确,即“坐标满足方程f(x,y)=0的点不都在曲线C上”是正确的.“不都在”包括“都不在”和“有的在,有的不在”两种情况,故①③错,②显然错.类型二 点与曲线的位置关系例2 方程(x-4y-12)[(-3)+log2(x+2y)]=0表示的曲线经过点A(0,-3),B(0,4),C,D (8,0)中的________个.(53,-74)答案 2解析 由对数的真数大于0,得x +2y >0,∴A (0,-3),C 不符合要求;(53,-74)将B (0,4)代入方程检验,符合要求;将D (8,0)代入方程检验,符合要求.反思与感悟 点与实数解建立了如下关系:C 上的点(x 0,y 0)??f (x ,y )=0的解,曲线上的点的坐标都是这个方程的解,因此要判断点是否在曲线上只需验证该点是否满足方程即可.跟踪训练2 证明圆心为坐标原点,半径等于5的圆的方程是x 2+y 2=25,并判断点M 1(3,-4),M 2(-2,2)是否在这个圆上.5解 (1)设M (x 0,y 0)是圆上任意一点,因为点M 到原点的距离等于5,所以=5,也x 20+y 20就是x +y =25,即(x 0,y 0)是方程x 2+y 2=25的解.2020(2)设(x 0,y 0)是方程x 2+y 2=25的解,那么x +y =25,两边开方取算术平方根,得2020=5,即点M (x 0,y 0)到原点的距离等于5,点M (x 0,y 0)是这个圆上的点.x 20+y 20由(1),(2)可知,x 2+y 2=25是圆心为坐标原点,半径等于5的圆的方程.把点M 1(3,-4)的坐标代入方程x 2+y 2=25,左右两边相等,(3,-4)是方程的解,所以点M 1在这个圆上;把点M 2(-2,2)的坐标代入方程x 2+y 2=25,左右两边不等,5(-2,2)不是方程的解,所以点M 2不在这个圆上.5类型三 曲线与方程关系的应用例3 判断下列结论的正误,并说明理由.(1)到x 轴距离为4的点的直线方程为y =-4;(2)到两坐标轴的距离的乘积等于1的点的轨迹方程为xy =1;(3)△ABC 的顶点A (0,-3),B (1,0),C (-1,0),D 为BC 的中点,则中线AD 的方程为x =0.解 (1)因到x 轴距离为4的点的直线方程还有一个y =4,即不具备完备性.所以结论错误.(2)到两坐标轴的距离的乘积等于1的点的轨迹方程为|x |·|y |=1,即xy =±1.所以所给问题不具备完备性.所以结论错误.(3)中线AD 是一条线段,而不是直线,应为x =0(-3≤y ≤0),所以所给问题不具备纯粹性.所以结论错误.反思与感悟 判断曲线与方程关系问题时,可以利用曲线与方程的定义;也可利用互为逆否关系的命题的真假性一致判断.跟踪训练3 若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R ),求k 的取值范围.解 ∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-22+.(a +12)12∴k ≤,12∴k 的取值范围是.(-∞,12]1.已知坐标满足方程f (x ,y )=0的点都在曲线C 上,那么下列说法正确的是________.(填序号)①曲线C 上的点的坐标都适合方程f (x ,y )=0;②凡坐标不适合f (x ,y )=0的点都不在曲线C 上;③不在曲线C 上的点的坐标必不适合f (x ,y )=0;④不在曲线C 上的点的坐标有些适合f (x ,y )=0,有些不适合f (x ,y )=0.答案 ③2.已知方程+=1,下列所给的点在此方程表示的曲线上的为________.(填序号)9(x -1)2y 24①(-2,0) ②(1,2) ③(4,0) ④(3,1)答案 ①③解析 将点(-2,0)和(4,0)代入方程后成立,而②,④代入后方程不成立,故只有①③符合题意.3.若点M 在方程x 2+(y -1)2=10所表示的曲线上,则实数m =________.(m2,-m )答案 -或2185解析 依题意得2+(-m -1)2=10,(m2)解得m =2或m =-.185所以m 的值为2或-.1854.方程4x 2-y 2+6x -3y =0表示的图形为________.答案 两条相交直线解析 原方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0,∴原方程表示直线2x -y =0和直线2x +y +3=0.5.方程(x 2-4)2+(y 2-4)2=0表示的图形是________.答案 4个点解析 由题意,得Error!∴Error!或Error!或Error!或Error!∴方程(x 2-4)2+(y 2-4)2=0表示的图形是4个点.1.判断点是否在某个方程表示的曲线上,就是检验该点的坐标是不是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.2.已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题.一、填空题1.方程y =3x -2 (x ≥1)表示的曲线为________.(填序号)①一条直线②一条射线③一条线段④不能确定答案 ②解析 方程y=3x-2表示的曲线是一条直线,当x≥1时,它表示一条射线.2.曲线C的方程为y=2x-1(1<x<5),则下列四个点中在曲线C上的是________.(填序号)① (0,0) ②(7,15) ③(2,3) ④(4,4)答案 ③解析 由y=2x-1(1<x<5)得①,②的横坐标不满足题意,④中坐标代入后不满足方程,故只有③符合题意.3.方程|x|+|y|=1表示的曲线所围成的平面图形的面积为________.答案 2解析 由题得该曲线所围成平面图形如下图所示,故其面积为2.4.下列方程对应的曲线是同一条曲线的是________.(填序号)x23x3①y=a log a x;②y=;③y=log a a x;④y=.答案 ③④3x3解析 由y=log a a x=x,y==x,得③④表示同一条曲线.y-25.方程(x-1)2+=0表示的是____________.答案 点(1,2)y-2y-2解析 由(x-1)2+=0,知(x-1)2=0,且=0,即x=1且y=2,所以(x-1)2+=0表示的是点(1,2).y-26.若点M到两坐标轴的距离的积为2016,则点M的轨迹方程是________.答案 xy=±2016解析 设M(x,y),则由题意得|x|·|y|=2016,所以xy=±2016.7.直线l:y=kx+1,抛物线C:y2=4x,则“k≠0”是“直线l与抛物线C有两个不同交点”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由(kx+1)2=4x,得k2x2+2(k-2)x+1=0,则当k ≠0时,Δ=[2(k -2)]2-4k 2=16(1-k )>0,得k <1且k ≠0,故“k ≠0”是“直线l 与抛物线C 有两个不同交点”的必要不充分条件.8.若直线kx -y +3=0与椭圆+=1有一个公共点,则k 的值为________.x 216y 24答案 ±54解析 联立方程组Error!消去y 并整理,得(4k 2+1)x 2+24kx +20=0,当Δ=16(16k 2-5)=0,即k =±时,直线与椭圆有一个公共点.549.如果曲线C 上的点满足方程F (x ,y )=0,有以下说法:①曲线C 的方程是F (x ,y )=0;②方程F (x ,y )=0的曲线是C ;③坐标满足方程F (x ,y )=0的点在曲线C 上;④坐标不满足方程F (x ,y )=0的点不在曲线C 上.其中正确的是________.(填序号)答案 ④10.已知两定点A (-2,0),B (1,0),若动点P 满足PA =2PB ,则点P 的轨迹所围的面积为________.答案 4π解析 设P (x ,y ),∵PA =2PB ,∴(x +2)2+y 2=4(x -1)2+4y 2,∴(x -2)2+y 2=4.∴点P 的轨迹为以(2,0)为圆心,以2为半径的圆,∴所围成的面积S =π·22=4π.11.下列命题正确的是________.(填序号)①△ABC 的顶点坐标分别为A (0,3),B (-2,0),C (2,0),则中线AO 的方程是x =0;②到x 轴距离为5的点的轨迹方程是y =5;③曲线2x 2-3y 2-2x +m =0通过原点的充要条件是m =0.答案 ③解析 对照曲线和方程的概念,①中“中线AO 的方程是x =0 (0≤y ≤3)”;而②中,动点的轨迹方程为|y |=5.从而只有③是正确的.二、解答题12.已知曲线C 的方程为x =,说明曲线C 是什么样的曲线,并求该曲线与y 轴围4-y 2成的图形的面积.解 由x =,得x 2+y 2=4.4-y 2又x ≥0,∴方程x =表示的曲线是以原点为圆心,2为半径的右半圆,从而该曲线C4-y 2与y 轴围成的图形是半圆,其面积S =π·4=2π.12所以所求图形的面积为2π.13.已知两曲线f (x ,y )=0与g (x ,y )=0的一个交点为P (x 0,y 0).求证:点P 在曲线f (x ,y )+λg (x ,y )=0(λ∈R )上.证明 因为P (x 0,y 0)是两曲线的交点,所以点P 的坐标既满足方程f (x ,y )=0,又满足方程g (x ,y )=0,即f (x 0,y 0)=0且g (x 0,y 0)=0,故f (x 0,y 0)+λg (x 0,y 0)=0,所以P (x 0,y 0)的坐标是方程f (x ,y )+λg (x ,y )=0的解,故点P 在曲线f (x ,y )+λg (x ,y )=0(λ∈R )上.三、探究与拓展14.已知方程①x -y =0;②-=0;③x 2-y 2=0;④=1,其中能表示直角坐标系的x y xy 第一、三象限的角平分线C 的方程的序号是________.答案 ①解析 ①是正确的;②不正确,如点(-1,-1)在第三象限的角平分线上,但其坐标不满足方程-=0;③不正确.如点(-1,1)满足方程x 2-y 2=0,但它不在曲线C 上;④不x y 正确.如点(0,0)在曲线C 上,但其坐标不满足方程=1.xy 15.方程(2x +3y -5)(-1)=0表示的曲线是什么?x -3解 因为(2x +3y -5)(-1)=0,x -3所以可得Error!或者-1=0,即2x +3y -5=0(x ≥3)或者x =4,故方程表示的曲线为x -3一条射线2x +3y -5=0(x ≥3)和一条直线x =4.。

2018-2019数学新学案同步精致讲义选修2-1苏教版第2章 圆锥曲线与方程 2.2.2(二) Word版含答案

2018-2019数学新学案同步精致讲义选修2-1苏教版第2章 圆锥曲线与方程 2.2.2(二) Word版含答案

椭圆的几何性质(二)学习目标.巩固椭圆的几何性质.掌握直线与椭圆的三种位置关系,特别是直线与椭圆相交的问题.知识点一点与椭圆的位置关系已知点(,)与椭圆+=(>>).当在椭圆外时,()>;+()当在椭圆上时,+=;()当在椭圆内时,.<+知识点二直线与椭圆的位置关系思考直线与椭圆有几种位置关系?答案有三种位置关系,分别是相交、相切、相离.思考如何判断=+与椭圆+=(>>)的位置关系?答案联立(\\(=+,,()+()=,))消去得关于的一元二次方程,则梳理()判断直线和椭圆位置关系的方法:将直线的方程和椭圆的方程联立,消去一个未知数,得到一个一元二次方程.若Δ>,则直线和椭圆相交;若Δ=,则直线和椭圆相切;若Δ<,则直线和椭圆相离.()根与系数的关系及弦长公式:设直线:=+(≠,为常数)与椭圆+=(>>)相交,两个交点为(,),(,),则线段叫做直线截椭圆所得的弦,线段的长度叫做弦长.=·,其中+与均可由根与系数的关系得到..直线与椭圆有且只有一个公共点时,直线与椭圆相切.(√).直线-=被椭圆+=截得的弦长为.(√).已知椭圆+=(>>)与点(),过点可作出该椭圆的一条切线.(×).直线=(-)与椭圆+=的位置关系是相交.(√)类型一点、直线与椭圆位置关系的判断例已知点(),椭圆+=,点在椭圆外,则实数的取值范围为.答案∪解析依题意得,+>,解得<-或>.引申探究若将本例中点坐标改为“(,)”呢?答案∪解析依题意得,+>,解得>,即<-或>.反思与感悟处理点与椭圆位置关系问题时,紧扣判定条件,然后转化为解不等式等问题,注意求解过程与结果的准确性.跟踪训练已知点()在椭圆+=(>>)上,则+的最小值为.答案解析依题意得,+=,而+=(+)=+++=++≥+=,(当且仅当=时等号成立)故+的最小值为.例对不同的实数,讨论直线=+与椭圆+=的位置关系.考点直线与椭圆的位置关系题点直线与椭圆的公共点个数问题解由(\\(=+,,()+=,))消去,得++-=,Δ=-××(-)=×(-).当-<<时,Δ>,直线与椭圆相交;当=-或=时,Δ=,直线与椭圆相切;。

2018-2019数学新学案同步精致讲义选修2-1苏教版第2章 圆锥曲线与方程 §2.1 Word版含答案

2018-2019数学新学案同步精致讲义选修2-1苏教版第2章 圆锥曲线与方程 §2.1 Word版含答案

§圆锥曲线学习目标.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考如图,把细绳两端拉开一段距离,分别固定在图板上的两点,处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考图中移动的笔尖始终满足怎样的几何条件?答案+是常数(大于).梳理平面内到两个定点,的距离的和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做焦点椭圆的,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点或,拉开或闭拢拉链,拉链头经过的点可画出一条曲线,思考下列问题:思考图中动点的几何性质是什么?答案-为一个正常数.思考若-=,则动点的轨迹是什么?答案以为端点,向右边延伸的射线.等于常数绝对值平面内到两个定点,的距离的差的梳理(小于的正数的点的轨迹叫做双曲)线,两个定点,叫做双曲线的焦点焦距.,两焦点间的距离叫做双曲线的知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点和定直线,用三角板画出到定点的距离等于到定直线的距离的动点的轨迹.则动点的轨迹是什么?其满足什么条件?答案抛物线,动点到定点和定直线距离相等,且不在上.梳理平面内到一个定点和一条定直线(不在上)的距离相等的点的轨迹叫做抛物线,定点叫做焦点抛物线的,定直线叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线..平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×).平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×).抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一圆锥曲线定义的理解例平面内动点到两点(-),()的距离之和为,问取何值时的轨迹是椭圆?。

2018-2019数学新学案同步精选练习选修2-1苏教版:第2章 圆锥曲线与方程 滚动训练(二) Word版含答案

2018-2019数学新学案同步精选练习选修2-1苏教版:第2章 圆锥曲线与方程 滚动训练(二) Word版含答案

滚动训练(二)一、填空题1、已知命题p :∃x ∈R ,x 2+ax +a <0,若命题p 是假命题,则实数a 的取值范围是________、 答案 [0,4]解析 ∵p 是假命题,∴∀x ∈R ,x 2+ax +a ≥0恒成立,∴Δ=a 2-4a ≤0,∴0≤a ≤4.2、已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是________、考点 椭圆的定义题点 椭圆定义的应用答案 椭圆解析 设椭圆的右焦点为F 2,由题意,知PO =12MF 2,PF 1=12MF 1, 又MF 1+MF 2=2a ,所以PO +PF 1=a >F 1O =c ,故由椭圆的定义,知P 点的轨迹是椭圆、3、命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是________、答案 ∃x ∈R ,∀n ∈N *,使得n <x 2解析 原命题是全称命题,条件为∀x ∈R ,结论为∃n ∈N *,使得n ≥x 2,其否定形式为存在性命题,条件中改量词,并否定结论、4、已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________、答案 4解析 设椭圆的另一个焦点为E ,则MF +ME =10,∴ME =8,又ON 为△MEF 的中位线,∴ON =12ME =4.5、直线y =x +1被椭圆x 2+2y 2=4所截得的弦的中点坐标是________、答案 ⎝⎛⎭⎫-23,13 解析 将直线y =x +1代入椭圆x 2+2y 2=4中,得x 2+2(x +1)2=4,∴3x 2+4x -2=0,∴弦的中点的横坐标是x =12×⎝⎛⎭⎫-43=-23, 代入直线方程y =x +1中,得y =13, ∴弦的中点坐标是⎝⎛⎭⎫-23,13. 6、设函数f (x )=|log 2x |,则f (x )在区间(m,2m +1)(m >0)上不是单调函数的充要条件是________、 答案 0<m <1解析 作出函数f (x )=|log 2x |的图象如图所示,可得⎩⎪⎨⎪⎧0<m <1,2m +1>1, 故0<m <1即为f (x )在区间(m,2m +1)(m >0)上不是单调函数的充要条件、7、已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率e 的取值范围是________、答案 ⎝⎛⎭⎫0,22 解析 设M (x ,y ),∵MF 1→·MF 2→=0,∴点M 的轨迹方程是x 2+y 2=c 2,点M 的轨迹是以原点为圆心的圆,其中F 1F 2为圆的直径、 由题意知,椭圆上的点P 总在圆外,所以OP >c 恒成立,由椭圆性质知OP ≥b ,∴b >c ,∴a 2>2c 2,∴⎝⎛⎭⎫c a 2<12,∴0<e <22.8、若椭圆x 2+my 2=1的离心率为32,则m =________. 答案 14或4 解析 方程化为x 2+y 21m =1,则有m >0且m ≠1. 当1m<1,即m >1时,依题意有1-1m 1=32, 解得m =4,满足m >1;当1m>1,即0<m <1时,依题意有1m -11m =32, 解得m =14,满足0<m <1. 综上,m =14或4. 9、椭圆x 2a 2+y 2b2=1(a >b >0)中,F 1,F 2分别为其左、右焦点,M 为椭圆上一点且MF 2⊥x 轴,设P 是椭圆上任意一点,若△PF 1F 2面积的最大值是△OMF 2面积的3倍(O 为坐标原点),则该椭圆的离心率e =________.考点 椭圆的离心率问题题点 求a ,b ,c 得离心率答案 53解析 由题意,可得M ⎝⎛⎭⎫c ,b 2a 或M ⎝⎛⎭⎫c ,-b 2a . ∵△PF 1F 2面积的最大值是△OMF 2面积的3倍,∴12×2c ×b =3×12×c ×b 2a, ∴b =23a ,∴c =a 2-b 2=53a , ∴e =c a =53. 10、已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1.与椭圆相交于A ,B 两点,则弦AB 的长为________、考点 直线与椭圆的位置关系题点 直线与椭圆相交求弦长与三角形面积答案 553解析 由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1)、由方程组⎩⎪⎨⎪⎧ y =2(x -1),x 25+y 24=1, 消去y ,整理得3x 2-5x =0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系,得x 1+x 2=53,x 1x 2=0. 则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎡⎦⎤⎝⎛⎭⎫532-4×0=553. 11、已知椭圆C :x 2a 2+y 2b2=1(a >b >0)及点B (0,a ),过B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =________.考点 直线与椭圆的位置关系题点 椭圆中的定点、定值、取值范围问题答案 90°解析 由题意知,切线的斜率存在,设切线方程为y =kx +a (k >0), 与椭圆方程联立得⎩⎪⎨⎪⎧y =kx +a ,x 2a 2+y 2b2=1,消去y , 整理得b 2x 2+a 2(kx +a )2-a 2b 2=0,即(b 2+a 2k 2)x 2+2a 3kx +a 4-a 2b 2=0,由Δ=4a 6k 2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a, 从而y =c ax +a ,交x 轴于A ⎝⎛⎭⎫-a 2c ,0, 又F (c,0),所以BA →=⎝⎛⎭⎫-a 2c ,-a ,BF →=(c ,-a ),则BA →·BF →=0,故∠ABF =90°.二、解答题12、已知方程x 25-2m +y 2m +1=1表示椭圆,求实数m 的取值范围、 考点 椭圆的标准方程题点 已知椭圆的焦点位置、焦距求参数解 (1)当方程表示焦点在x 轴上的椭圆时,则有5-2m >m +1>0,解得-1<m <43; (2)当方程表示焦点在y 轴上的椭圆时,则有m +1>5-2m >0,解得43<m <52. 综上,m 的取值范围为⎝⎛⎭⎫-1,43∪⎝⎛⎭⎫43,52. 13、在平面直角坐标系xOy 中,点A (-2,0),B (2,0),直线AM ,BM 相交于点M ,且它们的斜率之积是-34. (1)求点M 的轨迹C 的方程;(2)直线l :y =x -1与曲线C 相交于P 1,P 2两点,Q 是x 轴上一点,若△P 1P 2Q 的面积为62,求Q 点的坐标、考点 直线与椭圆的位置关系题点 直线与椭圆相交求弦长与三角形面积解 (1)设M (x ,y ),则y x +2×y x -2=-34, 化简整理得,点M 的轨迹C 的方程为x 24+y 23=1(x ≠±2)、 (2)由⎩⎪⎨⎪⎧x 24+y 23=1,y =x -1,消去y ,得7x 2-8x -8=0. 设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=87,x 1x 2=-87, ∴P 1P 2=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=247. 设Q (m,0),则Q 到直线l 的距离d =|m -1|2, 依题意,得12×P 1P 2×d =62, 化简得|m -1|=7,解得m =8或m =-6,故所求点为Q (8,0)或Q (-6,0)、 三、探究与拓展14、已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左、右焦点,若△F 1PF 2为直角三角形,则这样的点P 有______个、答案 6解析 当∠PF 1F 2为直角时,根据椭圆的对称性知,这样的点P 有2个;同理当∠PF 2F 1为直角时,这样的点P 有2个;当P 点为椭圆的短轴端点时,∠F 1PF 2最大,且为直角,此时这样的点P 有2个、故符合要求的点P 有6个、15、已知圆G :x 2+y 2-x -3y =0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F 及上顶点B ,过圆外一点(m,0)(m >a )且倾斜角为3π4的直线l 交椭圆于C ,D 两点、 (1)求椭圆的方程;(2)若右焦点F 在以线段CD 为直径的圆E 的内部,求m 的取值范围、 考点 直线与椭圆的位置关系题点 椭圆中定点、定值、取值范围问题解 (1)∵圆G :x 2+y 2-x -3y =0经过点F ,B ,∴F (1,0),B (0,3),∴c =1,b =3,∴a 2=4,故椭圆的方程为x 24+y 23=1. (2)直线l 的方程为y =-(x -m )(m >2)、由⎩⎪⎨⎪⎧ x 24+y 23=1,y =-(x -m ),消去y , 得7x 2-8mx +(4m 2-12)=0.设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=8m 7,x 1x 2=4m 2-127, ∴y 1y 2=[-(x 1-m )]·[-(x 2-m )] =x 1x 2-m (x 1+x 2)+m 2.∵FC →=(x 1-1,y 1),FD →=(x 2-1,y 2), ∴FC →·FD →=(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =2x 1x 2-(m +1)(x 1+x 2)+1+m 2 =7m 2-8m -177. ∵点F 在圆E 的内部,∴FC →·FD →<0,即7m 2-8m -177<0, 解得4-3157<m <4+3157. 由Δ=64m 2-28(4m 2-12)>0, 解得-7<m <7.又m >2,∴2<m <4+3157.。

2018-2019数学新学案同步精致讲义选修2-1苏教版:第2章 圆锥曲线与方程 疑难规律方法 Word版含答案

2018-2019数学新学案同步精致讲义选修2-1苏教版:第2章 圆锥曲线与方程 疑难规律方法 Word版含答案

1 利用椭圆的定义解题椭圆定义反映了椭圆的本质特征,揭示了曲线存在的几何性质.有些问题,如果恰当运用定义来解决,可以起到事半功倍的效果,下面通过几个例子进行说明. 1.求最值例1 线段AB =4,P A +PB =6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是________.解析 由于P A +PB =6>4=AB ,故由椭圆定义知P 点的轨迹是以M 为原点,A ,B 为焦点的椭圆,且a =3,c =2,∴b =a 2-c 2= 5.于是PM 的长度的最小值是b = 5.答案52.求动点坐标例2 椭圆x 29+y 225=1上到两个焦点F 1,F 2的距离之积最大的点的坐标是________.解析 设椭圆上的动点为P ,由椭圆的定义可知 PF 1+PF 2=2a =10, 所以PF 1·PF 2≤⎝⎛⎭⎪⎫PF 1+PF 222=⎝⎛⎭⎫1022=25, 当且仅当PF 1=PF 2时取等号.由⎩⎪⎨⎪⎧PF 1+PF 2=10,PF 1=PF 2,解得PF 1=PF 2=5=a ,此时点P 恰好是椭圆短轴的两端点, 即所求点的坐标为(±3,0). 答案 (±3,0)点评 由椭圆的定义可得“PF 1+PF 2=10”,即两个正数PF 1,PF 2的和为定值,结合基本不等式可求PF 1,PF 2乘积的最大值,结合图形可得所求点P 的坐标.3.求焦点三角形面积例3 如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.解 由已知,得a =2,b =3, 所以c =a 2-b 2=1,F 1F 2=2c =2.在△PF 1F 2中,由余弦定理,得PF 22=PF 21+F 1F 22-2PF 1·F 1F 2·cos120°, 即PF 22=PF 21+4+2PF 1,①由椭圆定义,得PF 1+PF 2=4, 即PF 2=4-PF 1.② 将②代入①,得PF 1=65.所以S △PF 1F 2=12PF 1·F 1F 2·sin120°=12×65×2×32=335, 即△PF 1F 2的面积是335.点评 在△PF 1F 2中,由椭圆的定义及余弦定理可得关于PF 1,PF 2的方程组,消去PF 2可求PF 1.从以上问题,我们不难发现,凡涉及椭圆上的点及椭圆焦点的问题,我们应首先考虑利用椭圆的定义求解.2 如何求椭圆的离心率1.由椭圆的定义求离心率例1 以椭圆的焦距为直径并过两焦点的圆,交椭圆于4个不同的点,顺次连结这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为________.解析 如图所示,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,由题意知∠F 1AF 2=90°,∠AF 2F 1=60°.∴AF 2=c ,AF 1=2c ·sin60°=3c . ∴AF 1+AF 2=2a =(3+1)c . ∴e =c a =23+1=3-1.答案3-1点评 本题利用了圆及正六边形的几何性质,并结合椭圆的定义,化难为易,使问题简单解决.2.解方程(组)求离心率例2 椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-c,0),A (-a ,0),B (0,b )是两个顶点,如果F 1到直线AB 的距离为b7,则椭圆的离心率e =________. 解析 如图所示,直线AB 的方程为x -a +yb=1,即bx -ay +ab =0.∵点F 1(-c,0)到直线AB 的距离为b 7,∴b 7=|-bc +ab |a 2+b 2,∴7|a -c |=a 2+b 2,即7a 2-14ac +7c 2=a 2+b 2.又∵b 2=a 2-c 2,整理,得5a 2-14ac +8c 2=0. 两边同除以a 2并由e =ca 知,8e 2-14e +5=0,解得e =12或e =54(舍去).答案 123.利用数形结合求离心率例3 在平面直角坐标系中,已知椭圆x 2a 2+y 2b 2=1(a >b >0),圆O 的半径为a ,过点P ⎝⎛⎭⎫a 2c ,0作圆O 的两条切线,且这两条切线互相垂直,则离心率e =________. 解析 如图所示,切线P A ,PB 互相垂直,P A =PB .又OA ⊥P A ,OB ⊥PB ,OA =OB , 则四边形OAPB 是正方形, 故OP =2OA , 即a 2c =2a ,∴e =c a =22. 答案224.综合类例4 设M 为椭圆x 2a 2+y 2b 2=1上一点,F 1,F 2为椭圆的左、右焦点,如果∠MF 1F 2=75°,∠MF 2F 1=15°,求椭圆的离心率. 解 由正弦定理得2c sin90°=MF 1sin15°=MF 2sin75°=MF 1+MF 2sin15°+sin75°=2asin15°+sin75°,∴e =c a =1sin15°+cos15°=12sin60°=63.点评 此题可推广为若∠MF 1F 2=α,∠MF 2F 1=β,则椭圆的离心率e =cosα+β2cosα-β2.3 活用双曲线定义妙解题在解双曲线中的有关求动点轨迹、离心率、最值等问题时,若能灵活应用双曲线的定义,能把大题化为小题,起到事半功倍的作用.下面举例说明. 1.求动点轨迹例1 动圆C 与两定圆C 1:x 2+(y -5)2=1和圆C 2:x 2+(y +5)2=16都外切,求动圆圆心C 的轨迹方程.解 设动圆圆心为C (x ,y ),半径为r , 因为动圆C 与两定圆相外切,所以⎩⎪⎨⎪⎧CC 1=r +1,CC 2=r +4,即CC 2-CC 1=3<C 1C 2=10,所以点C 的轨迹是以C 1(0,5),C 2(0,-5)为焦点的双曲线的上支,且a =32,c =5,所以b 2=914.故动圆圆心C 的轨迹方程为4y 29-4x 291=1⎝⎛⎭⎫y ≥32.点评 依据动圆与两定圆外切建立关系式,可得到CC 2-CC 1=3<C 1C 2,从而判断出C 的轨迹是双曲线的一支,最后求出a ,b 即可写出轨迹方程,这里一定要注意所求的轨迹是双曲线的一支还是两支. 2.求焦点三角形的周长例2 过双曲线x 216-y 29=1左焦点F 1的直线与左支交于A ,B 两点,且弦AB 长为6,则△ABF 2(F 2为右焦点)的周长是________.解析 由双曲线的定义知AF 2-AF 1=8,BF 2-BF 1=8, 两式相加得AF 2+BF 2-(AF 1+BF 1)=AF 2+BF 2-AB =16, 从而有AF 2+BF 2=16+6=22,所以△ABF 2的周长为AF 2+BF 2+AB =22+6=28. 答案 28点评 与焦点有关的三角形周长问题,常借助双曲线的定义解决,注意解决问题时的拼凑技巧.3.最值问题例3 已知F 是双曲线x 23-y 2=1的右焦点,P 是双曲线右支上一动点,定点M (4,2),求PM+PF 的最小值.解 设双曲线的左焦点为F ′, 则F ′(-2,0), 由双曲线的定义知: PF ′-PF =2a =23, 所以PF =PF ′-23,所以PM +PF =PM +PF ′-23,要使PM +PF 取得最小值,只需PM +PF ′取得最小值,由图可知,当P 、F ′、M 三点共线时,PM +PF ′有最小值MF ′=210, 故PM +PF 的最小值为210-2 3.点评 本题利用双曲线的定义对F 的位置进行转换,然后再根据共线易求得最小值.另外同学们不妨思考一下:(1)若将M 坐标改为M (1,1),其他条件不变,如何求解呢?(2)若P 是双曲线左支上一动点,如何求解呢? 4.求离心率范围例4 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,试求该双曲线离心率的取值范围. 解 因为PF 1=4PF 2,点P 在双曲线的右支上, 所以设PF 2=m ,则PF 1=4m ,由双曲线的定义,得PF 1-PF 2=4m -m =2a , 所以m =23a .又PF 1+PF 2≥F 1F 2, 即4m +m ≥2c ,所以m ≥25c ,即23a ≥25c ,所以e =c a ≤53.又e >1,所以双曲线离心率的取值范围为⎝⎛⎦⎤1,53. 点评 本题利用双曲线的定义及三角形的两边之和与第三边之间的关系建立了关于双曲线基本量a ,c 的不等关系,使问题得以巧妙地转化、获解.4 抛物线的焦点弦例1 如图所示,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦.设A (x A ,y A ),B (x B ,y B ),AB 的中点M (x 0,y 0),过A ,M ,B 分别向抛物线的准线l 作垂线,垂足分别为A 1,M 1,B 1,则有以下重要结论:(1)以AB 为直径的圆必与准线相切;(2)AB =2⎝⎛⎭⎫x 0+p2(焦点弦长与中点坐标的关系); (3)AB =x A +x B +p ;(4)A ,B 两点的横坐标之积,纵坐标之积为定值,即x A x B =p 24,y A y B =-p 2;(5)A 1F ⊥B 1F ;(6)A ,O ,B 1三点共线; (7)1F A +1FB =2p. 以下以第(7)条结论为例证明: 证明 当直线AB 的斜率不存在,即与x 轴垂直时,F A =FB =p , ∴1F A +1FB =1p +1p =2p. 当直线AB 的斜率存在时,设直线AB 的方程为 y =k ⎝⎛⎭⎫x -p2,并代入y 2=2px , ∴⎝⎛⎭⎫kx -kp22=2px , 即k 2x 2-p (2+k 2)x +k 2p 24=0.由A (x A ,y A ),B (x B ,y B ), 则x A +x B =p (k 2+2)k 2,x A x B =p 24.∵F A =x A +p 2,FB =x B +p2,∴F A +FB =x A +x B +p , F A ·FB =⎝⎛⎭⎫x A +p 2⎝⎛⎭⎫x B +p 2 =x A x B +p 2(x A +x B )+p 24=p2(x A +x B +p ).∴F A +FB =F A ·FB ·2p ,即1F A +1FB =2p.点评 该结论是抛物线过焦点的弦所具有的一个重要性质,解题时,不可忽视AB ⊥x 轴的情况.例2 设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|=________.解析 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又F (1,0). 由F A →+FB →+FC →=0知(x 1-1)+(x 2-1)+(x 3-1)=0, 即x 1+x 2+x 3=3,|F A →|+|FB →|+|FC →|=x 1+x 2+x 3+32p =6.答案 65 求曲线方程的常用方法曲线方程的求法是解析几何的重要内容和高考的常考点.求曲线方程时,应根据曲线的不同背景,不同的结构特征,选用不同的思路和方法,才能简捷明快地解决问题.下面对其求法进行探究. 1.定义法求曲线方程时,如果动点轨迹满足已知曲线的定义,则可根据题设条件和图形的特点,恰当运用平面几何的知识去寻求其数量关系,再由曲线定义直接写出方程,这种方法叫做定义法. 例1 如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N .现将圆形纸片放在平面直角坐标系xOy 中,设圆C :(x +1)2+y 2=4a 2 (a >1),A (1,0),记点N 的轨迹为曲线E .(1)证明曲线E 是椭圆,并写出当a =2时该椭圆的标准方程;(2)设直线l 过点C 和椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心率e ∈⎣⎡⎦⎤12,32,求点Q 的纵坐标的取值范围.解 (1)依题意,直线m 为线段AM 的垂直平分线, ∴NA =NM .∴NC +NA =NC +NM =CM =2a >2=AC ,∴N 的轨迹是以C ,A 为焦点,长轴长为2a ,焦距为2的椭圆. 当a =2时,长轴长为2a =4,焦距为2c =2, ∴b 2=a 2-c 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由(1)知a 2-b 2=1.又C (-1,0),B (0,b ), ∴直线l 的方程为x -1+yb =1,即bx -y +b =0.设Q (x ,y ),∵点Q 与点A (1,0)关于直线l 对称, ∴⎩⎪⎨⎪⎧yx -1·b =-1,b ·x +12-y 2+b =0,消去x 得y =4bb 2+1.∵离心率e ∈⎣⎡⎦⎤12,32,∴14≤e 2≤34,即14≤1a 2≤34,∴43≤a 2≤4. ∴43≤b 2+1≤4,即33≤b ≤3, ∵y =4b b 2+1=4b +1b≤2,当且仅当b =1时取等号. 又当b =3时,y =3;当b =33时,y = 3.∴3≤y ≤2. ∴点Q 的纵坐标的取值范围是[3,2].2.直接法若题设条件有明显的等量关系,或者可运用平面几何的知识推导出等量关系,则可通过“建系、设点、列式、化简、证明”五个步骤直接求出动点的轨迹方程,这种“五步法”可称为直接法.例2 已知直线l 1:2x -3y +2=0,l 2:3x -2y +3=0.有一动圆M (圆心和半径都在变动)与l 1,l 2都相交,并且l 1,l 2被截在圆内的两条线段的长度分别是定值26,24.求圆心M 的轨迹方程. 解 如图,设M (x ,y ),圆半径为r ,M 到l 1,l 2的距离分别是d 1,d 2,则d 21+132=r 2,d 22+122=r 2, ∴d 22-d 21=25,即⎝⎛⎭⎪⎫|3x -2y +3|132-⎝ ⎛⎭⎪⎫|2x -3y +2|132=25, 化简得圆心M 的轨迹方程是(x +1)2-y 2=65.点评 若动点运动的规律是一些几何量的等量关系,则常用直接法求解,即将这些关系直接转化成含有动点坐标x ,y 的方程即可. 3.待定系数法若已知曲线(轨迹)的形状,求曲线(轨迹)的方程时,可由待定系数法求解.例3 已知椭圆的对称轴为坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OF A =23,求椭圆的方程.解 椭圆的长轴长为6,cos ∠OF A =23,所以点A 不是长轴的顶点,是短轴的顶点, 所以OF =c ,AF =OA 2+OF 2=b 2+c 2=a =3,c 3=23,所以c =2,b 2=32-22=5,故椭圆的方程为x 29+y 25=1或x 25+y 29=1.4.相关点法(或代入法)如果点P 的运动轨迹或所在的曲线已知,又点P 与点Q 的坐标之间可以建立某种关系,借助于点P 的运动轨迹便可得到点Q 的运动轨迹.例4 如图所示,从双曲线x 2-y 2=1上一点Q 引直线l :x +y =2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.分析 设P (x ,y ),因为P 是QN 的中点,为此需用P 点的坐标表示Q 点的坐标,然后代入双曲线方程即可.解 设P 点坐标为(x ,y ),双曲线上点Q 的坐标为(x 0,y 0),∵点P 是线段QN 的中点, ∴N 点的坐标为(2x -x 0,2y -y 0).又点N 在直线x +y =2上,∴2x -x 0+2y -y 0=2, 即x 0+y 0=2x +2y -2.① 又QN ⊥l ,∴k QN =2y -2y 02x -2x 0=1,即x 0-y 0=x -y .②由①②,得x 0=12(3x +y -2),y 0=12(x +3y -2).又∵点Q 在双曲线上,∴14(3x +y -2)2-14(x +3y -2)2=1. 化简,得⎝⎛⎭⎫x -122-⎝⎛⎭⎫y -122=12. ∴线段QN 的中点P 的轨迹方程为⎝⎛⎭⎫x -122-⎝⎛⎭⎫y -122=12.点评 本题中动点P 与点Q 相关,而Q 点的轨迹确定,所以解决这类问题的关键是找出P ,Q 两点坐标间的关系,用相关点法求解. 5.参数法有时求动点满足的几何条件不易得出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点的坐标(x ,y )中的x ,y 分别随另一个变量的变化而变化,我们可以设这个变量为参数,建立轨迹的参数方程,这种方法叫做参数法.例5 已知点P 在直线x =2上移动,直线l 通过原点且与OP 垂直,通过点A (1,0)及点P 的直线m 和直线l 交于点Q ,求点Q 的轨迹方程. 解 如图,设OP 的斜率为k ,则P (2,2k ).当k ≠0时,直线l 的方程:y =-1k x ,①直线m 的方程:y =2k (x -1).②联立①②消去k 得2x 2+y 2-2x =0 (x ≠1).当k =0时,点Q 的坐标(0,0)也满足上式,故点Q 的轨迹方程为2x 2+y 2-2x =0(x ≠1).6 解析几何中的定值与最值问题1.定点、定值问题对于解析几何中的定点、定值问题,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口.例1 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于A ,B 两点,OA →+OB →与a =(3,-1)共线.设M 为椭圆上任意一点,且OM →=λOA →+μOB → (λ,μ∈R ),求证:λ2+μ2为定值.证明 ∵M 是椭圆上任意一点,若M 与A 重合, 则OM →=OA →,此时λ=1,μ=0,∴λ2+μ2=1,现在需要证明λ2+μ2为定值1.设椭圆方程为x 2a 2+y 2b2=1(a >b >0),A (x 1,y 1),B (x 2,y 2),AB 的中点为N (x 0,y 0),∴⎩⎨⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,即y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=-b 2x 0a 2y 0,又∵k AB =y 1-y 2x 1-x 2=1,∴y 0=-b 2a 2x 0.∴直线ON 的方向向量为ON →=⎝⎛⎭⎫1,-b 2a 2,∵ON →∥a ,∴13=b 2a2.∵a 2=3b 2,∴椭圆方程为x 2+3y 2=3b 2, 又直线方程为y =x -c .联立⎩⎪⎨⎪⎧y =x -c ,x 2+3y 2=3b 2,得4x 2-6cx +3c 2-3b 2=0. ∴x 1+x 2=32c ,x 1x 2=3c 2-3b 24=38c 2.又设M (x ,y ),则由OM →=λOA →+μOB →,得⎩⎪⎨⎪⎧x =λx 1+μx 2,y =λy 1+μy 2,代入椭圆方程整理得 λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2. 又∵x 21+3y 21=3b 2,x 22+3y 22=3b 2,x 1x 2+3y 1y 2=4x 1x 2-3c (x 1+x 2)+3c 2 =32c 2-92c 2+3c 2=0, ∴λ2+μ2=1,故λ2+μ2为定值.例2 已知椭圆x 2a 2+y 2b 2=1(a >0,b >0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l 与x 轴正半轴和y 轴分别交于Q ,P ,与椭圆分别交于点M ,N ,各点均不重合且满足PM →=λ1MQ →,PN →=λ2NQ →. (1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l 过定点并求此定点. 解 (1)设椭圆的焦距为2c ,由题意知b =1,且(2a )2+(2b )2=2(2c )2, 又a 2=b 2+c 2,∴a 2=3.∴椭圆的方程为x 23+y 2=1.(2)由题意设P (0,m ),Q (x 0,0),M (x 1,y 1),N (x 2,y 2), 设l 方程为x =t (y -m ),由PM →=λ1MQ →知(x 1,y 1-m )=λ1(x 0-x 1,-y 1),∴y 1-m =-y 1λ1,由题意y 1≠0,∴λ1=my 1-1.同理由PN →=λ2NQ →知λ2=m y 2-1.∵λ1+λ2=-3,∴y 1y 2+m (y 1+y 2)=0,①联立⎩⎪⎨⎪⎧x 2+3y 2=3,x =t (y -m )得(t 2+3)y 2-2mt 2y +t 2m 2-3=0,∴由题意知Δ=4m 2t 4-4(t 2+3)(t 2m 2-3)>0,② 且有y 1+y 2=2mt 2t 2+3,y 1y 2=t 2m 2-3t 2+3,③③代入①得t 2m 2-3+2m 2t 2=0,∴(mt )2=1, 由题意知mt <0,∴mt =-1,满足②,得l 的方程为x =ty +1,过定点(1,0),即Q 为定点. 2.最值问题解决圆锥曲线中的最值问题,一般有两种方法:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来解非常巧妙;二是代数法,将圆锥曲线中的最值问题转化为函数问题(即根据条件列出所求的目标函数),然后根据函数的特征选用参数法、配方法、判别式法、三角有界法、函数单调法及基本不等式法等,求解最大或最小值.例3 已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则PF +P A的最小值为________.解析 设右焦点为F ′,由题意可知F ′坐标为(4,0),根据双曲线的定义,PF -PF ′=4,∴PF +P A =4+PF ′+P A ,∴要使PF +P A 最小,只需PF ′+P A 最小即可,PF ′+P A 最小需P ,F ′,A 三点共线,最小值即4+F ′A =4+9+16=4+5=9.答案 9点评 “化曲为直”求与距离有关的最值是平面几何中一种巧妙的方法,特别是涉及圆锥曲线上动点与定点和焦点距离之和的最值问题常用此法.例4 已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解 设动点P 的坐标为(x ,y ), 由题意有(x -1)2+y 2-|x |=1.化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0 (x <0).如图,由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0, Δ=(2k 2+4)2-4k 4>0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根, 于是x 1+x 2=2+4k 2,x 1x 2=1.因为l 1⊥l 2,所以l 2的斜率为-1k .设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1. 故AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB → =|AF →|·|FB →|+|FD →|·|EF →|=(x 1+1)(x 2+1)+(x 3+1)(x 4+1) =x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1=1+⎝⎛⎭⎫2+4k 2+1+1+(2+4k 2)+1 =8+4⎝⎛⎭⎫k 2+1k 2≥8+4×2k 2·1k2=16. 当且仅当k 2=1k 2,即k =±1时,AD →·EB →取得最小值16.7 圆锥曲线中存在探索型问题存在探索型问题作为探索性问题之一,具备了内容涉及面广、重点题型丰富等命题要求,方便考查分析、比较、猜测、归纳等综合能力,因而受到命题人的喜爱.圆锥曲线存在探索型问题是指在给定题设条件下是否存在某个数学对象(数值、性质、图形)使某个数学结论成立的数学问题.本节仅就圆锥曲线中的存在探索型问题展开,帮助复习. 1.常数存在型问题例1 直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点,是否存在实数a ,使A ,B 关于直线y =2x 对称?请说明理由.分析 先假设实数a 存在,然后根据推理或计算求出满足题意的结果,或得到与假设相矛盾的结果,从而否定假设,得出某数学对象不存在的结论. 解 设存在实数a ,使A ,B 关于直线l :y =2x 对称,并设 A (x 1,y 1),B (x 2,y 2),则AB 中点坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.依题设有y 1+y 22=2·x 1+x 22,即y 1+y 2=2(x 1+x 2),①又A ,B 在直线y =ax +1上,∴y 1=ax 1+1,y 2=ax 2+1, ∴y 1+y 2=a (x 1+x 2)+2,②由①②,得2(x 1+x 2)=a (x 1+x 2)+2, 即(2-a )(x 1+x 2)=2,③联立⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1得(3-a 2)x 2-2ax -2=0,∴x 1+x 2=2a 3-a 2,④把④代入③,得(2-a )·2a3-a 2=2,解得a =32,经检验知满足Δ=4a 2+8(3-a 2)>0,∴k AB =32,而k l =2,∴k AB ·k l =32×2=3≠-1.故不存在满足题意的实数a . 2.点存在型问题例2 在平面直角坐标系中,已知圆心在第二象限,半径为22的圆与直线y =x 相切于原点O ,椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.分析 假设满足条件的点Q 存在,根据其满足的几何性质,求出Q 的坐标,则点Q 存在,若求不出Q 的坐标,则点Q 就不存在. 解 (1)由题意知圆心在y =-x 上, 设圆心的坐标是(-p ,p )(p >0), 则圆的方程可设为(x +p )2+(y -p )2=8, 由于O (0,0)在圆上,∴p 2+p 2=8,解得p =2, ∴圆C 的方程为(x +2)2+(y -2)2=8.(2)椭圆x 2a 2+y 29=1与圆C 的一个交点到椭圆两焦点的距离之和为10,由椭圆的定义知2a =10,a =5,∴椭圆右焦点为F (4,0).假设存在异于原点的点Q (m ,n )使QF =OF ,则有⎩⎪⎨⎪⎧(m +2)2+(n -2)2=8,(m -4)2+n 2=16且m 2+n 2≠0,解得⎩⎨⎧m =45,n =125,故圆C 上存在满足条件的点Q ⎝⎛⎭⎫45,125.3.直线存在型问题例3 试问是否能找到一条斜率为k (k ≠0)的直线l 与椭圆x 23+y 2=1交于两个不同的点M ,N ,且使M ,N 到点A (0,1)的距离相等,若存在,试求出k 的取值范围;若不存在,请说明理由.分析 假设满足条件的直线l 存在,由平面解析几何的相关知识求解.解 设直线l :y =kx +m 为满足条件的直线,再设P 为MN 的中点,欲满足条件,只要AP ⊥MN 即可.由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(1+3k 2)x 2+6mkx +3m 2-3=0.设M (x 1,y 1),N (x 2,y 2),P (x P ,y P ),则x P =x 1+x 22=-3mk 1+3k 2,y P =kx P+m =m 1+3k 2, ∴k AP =3k 2-m +13mk.∵AP ⊥MN ,∴3k 2-m +13mk =-1k (k ≠0),故m =-3k 2+12.由Δ=36m 2k 2-4(1+3k 2)(3m 2-3)=9(1+3k 2)(1-k 2)>0,得-1<k <1,且k ≠0. 故当k ∈(-1,0)∪(0,1)时,存在满足条件的直线l .8 圆锥曲线中的易错点剖析1.求轨迹方程时,动点坐标设法不当而致误例1 长为a 的线段AB ,两端点分别在两坐标轴上移动,求线段AB 中点P 的轨迹方程. 错解 如图所示,设A (0,y ),B (x,0).由中点坐标公式可得P 点坐标为⎝⎛⎭⎫x 2,y 2,连结OP ,由直角三角形斜边上的中线性质有OP =12AB =12a .故⎝⎛⎭⎫x 22+⎝⎛⎭⎫y 22=⎝⎛⎭⎫a 22,即所求的轨迹方程为x 2+y 2=a 2.正解 设中点P (x ,y ),A (0,m ),B (n,0), 则m 2+n 2=a 2,x =n 2,y =m 2,于是所求轨迹方程为x 2+y 2=14a 2.2.忽视定义中的条件而致误例2 平面内一点M 到两定点F 1(0,-4),F 2(0,4)的距离之和为8,则点M 的轨迹为________. 错解 根据椭圆的定义,点M 的轨迹为椭圆,故填椭圆.正解 因为点M 到两定点F 1,F 2的距离之和为F 1F 2,所以点M 的轨迹是线段F 1F 2.答案线段3.忽视标准方程的特征而致误例3 设抛物线y =mx 2 (m ≠0)的准线与直线y =1的距离为3,求抛物线的标准方程. 错解 抛物线y =mx 2 (m ≠0)的准线方程为y =-m4.又与直线y =1的距离为3的直线为y =-2或y =4. 故-m 4=-2或-m4=4.∴m =8或m =-16.∴抛物线的标准方程为y =8x 2或y =-16x 2.正解 由于y =mx 2 (m ≠0)可化为x 2=1m y ,其准线方程为y =-14m .由题意知-14m =-2或-14m =4,解得m =18或m =-116. 则所求抛物线的标准方程为x 2=8y 或x 2=-16y .4.求解抛物线标准方程时,忽略对焦点位置讨论致误例4 抛物线的焦点F 在x 轴上,点A (m ,-3)在抛物线上,且AF =5,求抛物线的标准方程.错解一 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上, 所以抛物线方程可设为y 2=2px (p >0). 设点A 到准线的距离为d ,则d =AF =p2+m ,所以⎩⎪⎨⎪⎧ (-3)2=2pm ,p 2+m =5,解得⎩⎪⎨⎪⎧ p =1,m =92或⎩⎪⎨⎪⎧p =9,m =12. 所以抛物线方程为y 2=2x 或y 2=18x .错解二 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上, 所以当m >0时,点A 在第四象限,抛物线方程可设为 y 2=2px (p >0).2所以⎩⎪⎨⎪⎧ (-3)2=2pm ,p 2+m =5,解得⎩⎪⎨⎪⎧ p =1,m =92或⎩⎪⎨⎪⎧p =9,m =12. 所以抛物线方程为y 2=2x 或y 2=18x . 当m <0时,点A 在第三象限, 抛物线方程可设为y 2=-2px (p >0),设点A 到准线的距离为d ,则d =AF =p2+m ,所以⎩⎪⎨⎪⎧(-3)2=-2pm ,p 2+m =5,解得⎩⎨⎧p =5+34,m =5-342或⎩⎨⎧p =5-34,m =5+342(舍去).所以抛物线方程为y 2=-2(5+34)x .综上所述,抛物线方程为y 2=-2(5+34)x 或y 2=2x 或y 2=18x . 错因分析 当抛物线的焦点位置无法确定时,需分类讨论. 正解 因为抛物线的焦点F 在x 轴上,且点A (m ,-3)在抛物线上,所以当m >0时,点A 在第四象限,抛物线方程可设为y 2=2px (p >0),设点A 到准线的距离为d ,则d =AF =p2+m ,所以⎩⎪⎨⎪⎧(-3)2=2pm ,p 2+m =5,解得⎩⎪⎨⎪⎧ p =1,m =92或⎩⎪⎨⎪⎧p =9,m =12,所以抛物线方程为y 2=2x 或y 2=18x .当m <0时,点A 在第三象限,抛物线的方程可设为y 2=-2px (p >0),2所以⎩⎪⎨⎪⎧ (-3)2=-2pm ,p 2-m =5,解得⎩⎪⎨⎪⎧ p =1,m =-92或⎩⎪⎨⎪⎧p =9,m =-12.所以抛物线方程为y 2=-2x 或y 2=-18x .综上所述,抛物线方程为y 2=-2x 或y 2=-18x 或y 2=2x 或y 2=18x .9 圆锥曲线中的数学思想方法1.方程思想方程思想就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或解方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.本章中,方程思想的应用最为广泛.例1 已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且a =2b ,若AB =25,求椭圆的方程.解 由⎩⎨⎧y =-12x +2,x 24b 2+y2b 2=1消去y 并整理得x 2-4x +8-2b 2=0,Δ=16-4(8-2b 2)>0. 设A (x 1,y 1),B (x 2,y 2),则由根与系数的关系得x 1+x 2=4,x 1x 2=8-2b 2. ∵AB =25,∴(x 1-x 2)2+(y 1-y 2)2=25,∴1+14·(x 1+x 2)2-4x 1x 2=25, 即52·16-4(8-2b 2)=25, 解得b 2=4,故a 2=4b 2=16.∴所求椭圆的方程为x 216+y 24=1.2.函数思想很多与圆锥曲线有关的问题中的各个数量在运动变化时,都是相互联系、相互制约的,它们之间构成函数关系.这类问题若用函数思想来分析、寻找解题思路,会有很好的效果.一些最值问题常用函数思想,运用根与系数的关系求弦的中点和弦长问题,是经常使用的方法. 例2 若点(x ,y )在x 24+y 2b 2=1(b >0)上运动,求x 2+2y 的最大值.解 ∵x 24+y 2b 2=1(b >0),∴x 2=4⎝⎛⎭⎫1-y 2b 2≥0,即-b ≤y ≤b .∴x 2+2y =4⎝⎛⎭⎫1-y2b 2+2y =-4y 2b 2+2y +4=-4b 2⎝⎛⎭⎫y -b 242+4+b 24.当b 24≤b ,即0<b ≤4时,若y =b 24,则x 2+2y 取得最大值,其最大值为4+b 24;当b 24>b ,即b >4时,若y =b ,则x 2+2y 取得最大值,其最大值为2b . 综上所述,x 2+2y 的最大值为⎩⎪⎨⎪⎧4+b 24,0<b ≤4,2b ,b >4.3.转化和化归思想在解决圆锥曲线的综合问题时,经常利用转化和化归思想.转化题中的已知条件和所求,真正化归为直线和圆锥曲线的基本问题.这里的转化和化归非常关键,没有转化和化归,就很难找到解决问题的途径和方法.例3 如图所示,已知椭圆x 224+y 216=1,直线l :x =12,P 是l 上任意一点,射线OP 交椭圆于点R ,又点Q 在线段OP 上,且满足OQ ·OP =OR 2,当点P 在l 上运动时,求点Q 的轨迹方程.解 设P (12,y P ),R (x R ,y R ),Q (x ,y ),∠POx =α. ∵OR 2=OQ ·OP ,∴⎝⎛⎭⎫OR cos α2=OQ cos α·OP cos α. 由题意知x R >0,x >0,∴x 2R =x ·12.① 又∵O ,Q ,R 三点共线,∴k OQ =k OR ,即y x =y Rx R .②由①②得y 2R =12y 2x.③∵点R (x R ,y R )在椭圆x 224+y 216=1上,∴x 2R 24+y 2R16=1.④由①③④得2(x -1)2+3y 2=2(x >0), ∴点Q 的轨迹方程是2(x -1)2+3y 2=2(x >0). 4.分类讨论思想本章中,涉及的字母参数较多,同时圆锥曲线的焦点可能在x 轴上,也可能在y 轴上,所以必须要注意分类讨论.例4 求与双曲线x 24-y 2=1有共同的渐近线且焦距为10的双曲线的方程.分析 由题意可设所求双曲线的方程为x 24-y 2=λ(λ≠0),将λ分为λ>0,λ<0两种情况进行讨论.解 由题意可设所求双曲线的方程为x 24-y 2=λ(λ≠0),即x 24λ-y 2λ=1(λ≠0). 当λ>0时,c 2=4λ+λ=5λ=25,即λ=5, ∴所求双曲线的方程为x 220-y 25=1.当λ<0时,c 2=(-4λ)+(-λ)=-5λ=25,即λ=-5, ∴所求双曲线的方程为y 25-x 220=1.综上所述,所求双曲线的方程为x 220-y 25=1或y 25-x 220=1.5.数形结合思想利用数形结合思想,可以解决某些最值、轨迹、参数范围等问题.例5 在△ABC 中,BC 边固定,顶点A 在移动,设BC =m ,当三个角满足条件|sin C -sin B |=12|sin A |时,求顶点A 的轨迹方程. 解 以BC 的中点O 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,如图所示.则B ⎝⎛⎭⎫-m 2,0,C ⎝⎛⎭⎫m2,0. 设点A 坐标为(x ,y ),由题设, 得|sin C -sin B |=12|sin A |.根据正弦定理,得|AB -AC |=m2<m =BC .可知点A 在以B ,C 为焦点的双曲线上. 2a =m 2,∴a =m 4.又c =m 2,∴b 2=c 2-a 2=m 24-m 216=316m 2.故所求点A 的轨迹方程为16x 2m 2-16y 23m 2=1(y ≠0).。

数学新学案同步精致讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.3.2 含答案

数学新学案同步精致讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.3.2 含答案

2.3.2 双曲线的几何性质学习目标 1.了解双曲线的几何性质(范围、对称性、顶点、实轴长和虚轴长等).2.理解离心率的定义、取值范围和渐近线方程.3.掌握标准方程中a ,b ,c ,e 间的关系.[&^@~%]知识点一 双曲线的性质 [*&^@~]知识点二 等轴双曲线思考 求下列双曲线的实半轴长、虚半轴长,并分析其共同点. (1)x 2-y 2=1;(2)4x 2-4y 2=1. [*&~#%] 答案 (1)的实半轴长为1,虚半轴长为1(2)的实半轴长为12,虚半轴长为12.它们的实半轴长与虚半轴长相等. [*%~&#]梳理 实轴和虚轴等长的双曲线叫作等轴双曲线,其渐近线方程为y =±x ,离心率为 2.1.双曲线x 2a 2-y 2b 2=1与y 2a 2-x 2b 2=1(a >0,b >0)的形状相同.(√) [^#*%&]2.双曲线x 2a 2-y 2b 2=1与y 2a 2-x 2b 2=1(a >0,b >0)的渐近线相同.(×) [%*&~@]3.等轴双曲线的离心率为 2.(√)4.离心率是2的双曲线为等轴双曲线.(√)类型一 双曲线的几何性质例1 求双曲线nx 2-my 2=mn(m>0,n>0)的实半轴长、虚半轴长、焦点坐标、离心率、顶点坐标和渐近线方程.解 把方程nx 2-my 2=mn(m>0,n>0)化为标准方程为x 2m -y2n=1(m>0,n>0),[%*^~#]由此可知,实半轴长a =m , [%~*#&] 虚半轴长b =n ,c =m +n ,焦点坐标为(m +n ,0),(-m +n ,0), 离心率e =c a =m +nm=1+nm, [#*&^@] 顶点坐标为(-m ,0),(m ,0),所以渐近线方程为y =±n mx ,即y =±mn m x.引申探究将本例改为“求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程”,请给出解答.解 将9y 2-4x 2=-36变形为x 29-y24=1, [@&%~*]即x 232-y 222=1, [^*%&@] 所以a =3,b =2,c =13,因此顶点坐标为(-3,0),(3,0), [@^~*#] 焦点坐标为(-13,0),(13,0), 实轴长是2a =6,虚轴长是2b =4,离心率e =c a =133,渐近线方程为y =±b a x =±23x.反思与感悟 由双曲线的方程研究几何性质的解题步骤 [~@%#&] (1)把双曲线方程化为标准形式是解题的关键.(2)由标准方程确定焦点位置,确定a ,b 的值. [@~%&^] (3)由c 2=a 2+b 2求出c 的值,从而写出双曲线的几何性质.跟踪训练1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解 把方程9y 2-16x 2=144化为标准方程y 242-x 232=1. [^~@*&]由此可知,实半轴长a =4,虚半轴长b =3,c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5), [%^@*~] 离心率e =c a =54,渐近线方程为y =±43x. [*%@^#]类型二 由双曲线的几何性质确定标准方程。

2018-2019数学新学案同步精致讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.6.2-2.6.3 Word版含答案

2018-2019数学新学案同步精致讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.6.2-2.6.3 Word版含答案

2.6.2求曲线的方程2.6.3曲线的交点学习目标1.了解求曲线方程的步骤,会求简单曲线的方程.2.掌握求两条曲线交点的方法.3.领会运用坐标法研究直线与圆锥曲线的位置关系.知识点一 坐标法的思想思考1 怎样理解建立平面直角坐标系是解析几何的基础?答案 只有建立了平面直角坐标系,才有点的坐标,才能将曲线代数化,进一步用代数法研究几何问题.思考2 依据一个给定的平面图形,选取的坐标系唯一吗? 答案 不唯一,常以得到的曲线方程最简单为标准.梳理 (1)坐标法:借助于坐标系,通过研究方程的性质间接地来研究曲线性质的方法. (2)解析几何研究的主要问题:①通过曲线研究方程:根据已知条件,求出表示曲线的方程. ②通过方程研究曲线:通过曲线的方程,研究曲线的性质. 知识点二 求曲线的方程的步骤 1.建系:建立适当的坐标系.2.设点:设曲线上任意一点M 的坐标为(x ,y ). 3.列式:列出符合条件p (M )的方程f (x ,y )=0. 4.化简:化方程f (x ,y )=0为最简形式.5.证明:证明以化简后的方程的解为坐标的点都在曲线上. 知识点三 曲线的交点已知曲线C 1:f 1(x ,y )=0和C 2:f 2(x ,y )=0.(1)P 0(x 0,y 0)是C 1和C 2的公共点⇔⎩⎪⎨⎪⎧f 1(x 0,y 0)=0.f 2(x 0,y 0)=0,(2)求两曲线的交点,就是求方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0的实数解.(3)方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点.1.x 2+y 2=1(x >0)表示的曲线是单位圆.(×)2.若点M (x ,y )的坐标是方程f (x ,y )=0的解,则点M 在曲线f (x ,y )=0上.(√) 3.方程y =x 与方程y =x 2x 表示同一曲线.(×)4.曲线xy =2与直线y =x 的交点是(2,2).(×)类型一 直接法求曲线的方程例1 一个动点P 到直线x =8的距离是它到点A (2,0)的距离的2倍.求动点P 的轨迹方程. 解 设P (x ,y ),则|8-x |=2P A . 则|8-x |=2(x -2)2+(y -0)2,化简,得3x 2+4y 2=48,故动点P 的轨迹方程为3x 2+4y 2=48. 引申探究若本例中的直线改为“y =8”,求动点P 的轨迹方程. 解 设P (x ,y ),则P 到直线y =8的距离d =|y -8|, 又P A =(x -2)2+(y -0)2, 故|y -8|=2(x -2)2+(y -0)2,化简,得4x 2+3y 2-16x +16y -48=0.故动点P 的轨迹方程为4x 2+3y 2-16x +16y -48=0. 反思与感悟 直接法求动点轨迹的关键及方法 (1)关键:①建立恰当的平面直角坐标系; ②找出所求动点满足的几何条件.(2)方法:求曲线的方程遵循求曲线方程的五个步骤,在实际求解时可简化为三大步骤:建系、设点;根据动点满足的几何条件列式;对所求的方程化简、证明. 特别提醒:直接法求动点轨迹方程的突破点是将几何条件代数化.跟踪训练1 已知两点M (-1,0),N (1,0),且点P 使MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列.求点P 的轨迹方程.解 设点P (x ,y ),由M (-1,0),N (1,0), 得PM →=-MP →=(-1-x ,-y ), PN →=-NP →=(1-x ,-y ), MN →=-NM →=(2,0).∴MP →·MN →=2(x +1),PM →·PN →=x 2+y 2-1, NM →·NP →=2(1-x ).于是,MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列等价于⎩⎪⎨⎪⎧x 2+y 2-1=12[2(x +1)+2(1-x )],2(1-x )-2(x +1)<0,即⎩⎨⎧x 2+y 2=3,x >0.∴点P 的轨迹方程为x 2+y 2=3(x >0). 类型二 相关点法求解曲线的方程例2 动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程. 解 设P (x ,y ),M (x 0,y 0),因为P 为MB 的中点, 所以⎩⎪⎨⎪⎧x =x 0+32,y =y 02,即⎩⎪⎨⎪⎧x 0=2x -3,y 0=2y , 又因为M 在曲线x 2+y 2=1上, 所以(2x -3)2+4y 2=1.所以P 点的轨迹方程为(2x -3)2+4y 2=1. 反思与感悟 相关点法求解轨迹方程的步骤 (1)设动点P (x ,y ),相关动点M (x 0,y 0).(2)利用条件求出两动点坐标之间的关系⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y ).(3)代入相关动点的轨迹方程. (4)化简、整理,得所求轨迹方程.跟踪训练2 已知△ABC 的两顶点A ,B 的坐标分别为A (0,0),B (6,0),顶点C 在曲线y =x 2+3上运动,求△ABC 重心的轨迹方程.解 设G (x ,y )为△ABC 的重心,顶点C 的坐标为(x ′,y ′),则由重心坐标公式,得⎩⎪⎨⎪⎧x =0+6+x ′3,y =0+0+y ′3,所以⎩⎪⎨⎪⎧x ′=3x -6,y ′=3y .因为顶点C (x ′,y ′)在曲线y =x 2+3上, 所以3y =(3x -6)2+3, 整理,得y =3(x -2)2+1.故ΔABC 重心的轨迹方程为y =3(x -2)2+1. 类型三 根据曲线的方程求两曲线的交点例3 过点M (1,2)的直线与曲线y =ax (a ≠0)有两个不同的交点,且这两个交点的纵坐标之和为a ,求a的取值范围.解 当过M 点的直线斜率为零或斜率不存在时, 不可能与曲线有两个公共点. 设直线方程为y -2=k (x -1)(k ≠0),联立曲线方程,得⎩⎪⎨⎪⎧y -2=k (x -1),y =a x ,消去x ,得y 2-(2-k )y -ka =0.①当此方程有两个不同的根,即方程组有两个不同的解时,直线与曲线有两个不同的交点. ∴Δ=(2-k )2+4ka >0.设方程①的两根分别为y 1,y 2, 由根与系数的关系,得y 1+y 2=2-k . 又∵y 1+y 2=a ,∴k =2-a , 代入Δ>0中,得a 2+4a (2-a )>0, 解得0<a <83.又∵k ≠0, ∴2-a ≠0,即a ≠2.∴a 的取值范围是(0,2)∪⎝⎛⎭⎫2,83. 反思与感悟 结合曲线方程的定义,两曲线的交点的坐标即为两曲线的方程构成的方程组的解,所以可以把求两曲线交点坐标的问题转化为解方程组的问题,讨论交点的个数问题转化为讨论方程组解的个数问题.若两曲线C 1和C 2的方程分别为F (x ,y )=0和G (x ,y )=0,则它们的交点坐标由方程组⎩⎪⎨⎪⎧F (x ,y )=0,G (x ,y )=0的解来确定. 跟踪训练3 已知直线y =2x +b 与曲线xy =2相交于A ,B 两点,若AB =5,求实数b 的值. 解 设A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧y =2x +b ,xy =2,消去y ,整理得2x 2+bx -2=0.①∵x 1,x 2是关于x 的方程①的两根, ∴x 1+x 2=-b2,x 1x 2=-1.又AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2(x 1+x 2)2-4x 1x 2,其中k =2,代入则有AB =1+22·b 2+162=5,∴b 2=4,则b =±2.故所求b 的值为±2.1.直线y =x +4与双曲线x 2-y 2=1的交点坐标为________. 答案 ⎝⎛⎭⎫-178,158 解析 由⎩⎪⎨⎪⎧y =x +4,x 2-y 2=1得x 2-(x +4)2-1=0,即⎩⎨⎧x =-178,y =158.2.已知斜率为2的直线l 经过椭圆x 25+y 24=1的右焦点F 2,则直线l 与椭圆的交点坐标为________.答案 (0,-2),⎝⎛⎭⎫53,43解析 因F 2(1,0),l 方程为y =2x -2.由方程组⎩⎪⎨⎪⎧y =2x -2,x 25+y 24=1,解得⎩⎪⎨⎪⎧x =0,y =-2或⎩⎨⎧x =53,y =43,故所得交点坐标为(0,-2),⎝⎛⎭⎫53,43.3.直线x a +y 2-a =1与x ,y 轴交点的中点的轨迹方程是________________.答案 x +y -1=0(x ≠0,x ≠1)解析 设直线x a +y 2-a =1与x ,y 轴交点为A (a,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a2,y =1-a2,消去a ,得x +y =1.∵a ≠0,a ≠2,∴x ≠0,x ≠1. 4.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是________. 答案 x =32解析 设动点P (x ,y ), 则x 2+y 2-2=(x -4)2+y 2-6,化简整理得x =32.5.M 为直线l :2x -y +3=0上的一动点,A (4,2)为一定点,又点P 在直线AM 上运动,且AP →=3PM →,求动点P 的轨迹方程.解 设点M ,P 的坐标分别为M (x 0,y 0),P (x ,y ),由题设及向量共线条件可得⎩⎪⎨⎪⎧4x =4+3x 0,4y =3y 0+2,所以⎩⎪⎨⎪⎧x 0=4x -43,y 0=4y -23,因为点M (x 0,y 0)在直线2x -y +3=0上, 所以2×4x -43-4y -23+3=0,即8x -4y +3=0,从而点P 的轨迹方程为8x -4y +3=0.求解轨迹方程常用方法:(1)直接法:直接根据题目中给定的条件求解方程.(2)定义法:依据有关曲线的性质建立等量关系,从而确定其轨迹方程.(3)代入法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法或代入法. (4)待定系数法:根据条件能知道曲线的类型,可先根据曲线方程的一般形式设出方程,再根据条件确定待定的系数.一、填空题1.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是________. 答案 (x -2)2+(y +1)2=1解析 设中点的坐标为(x ,y ),则相应圆x 2+y 2=4上的点的坐标为(2x -4,2y +2), 所以(2x -4)2+(2y +2)2=4, 即(x -2)2+(y +1)2=1.2.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 答案 π3或5π3解析 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=5π3.3.已知直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围为________. 答案 [1,2)解析 在同一直角坐标系内作出y =x +b 与y =1-x 2的图象,如图所示,可得b 的范围为1≤b < 2.4.直线y =mx +1与椭圆x 2+4y 2=1有且只有一个交点,则m 2的值为________. 答案 34解析 因为直线与椭圆只有一个交点,由⎩⎪⎨⎪⎧y =mx +1,x 2+4y 2=1,消去y 得(1+4m 2)x 2+8mx +3=0,所以由Δ=(8m )2-12(1+4m 2)=16m 2-12=0,解得m 2=34. 5.已知定点A (0,1),直线l 1:y =-1,记过点A 且与直线l 1相切的圆的圆心为点C .则动点C 的轨迹E 的方程为________.答案 x 2=4y解析 设动点C (x ,y ),根据题意可知,点C 到点A 的距离与到直线l 1:y =-1的距离相等,所以x 2+(y -1)2=|y +1|,两边平方整理得x 2=4y .6.已知点A (-1,0),B (1,0),且MA →·MB →=0,则动点M 的轨迹方程是________.答案 x 2+y 2=1解析 设动点M (x ,y ),则MA →=(-1-x ,-y ),MB →=(1-x ,-y ).由MA →·MB →=0,得(-1-x )(1-x )+(-y )·(-y )=0, 即x 2+y 2=1.7.已知点F (1,0),直线l :x =-1,P 为平面上的一动点,过点P 作l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →.则动点P 的轨迹C 的方程是________.答案 y 2=4x解析 设点P (x ,y ),则Q (-1,y ).由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),所以2(x +1)=-2(x -1)+y 2,化简得y 2=4x .8.已知两点A (2,0),B (-2,0),点P 为平面内一动点,过点P 作y 轴的垂线,垂足为Q ,且P A →·PB→=2PQ →2,则动点P 的轨迹方程为________.答案 y 2-x 2=2解析 设动点P 的坐标为(x ,y ),则点Q 的坐标为(0,y ),PQ →=(-x,0),P A →=(2-x ,-y ),PB →=(-2-x ,-y ),P A →·PB →=x 2-2+y 2.由P A →·PB →=2PQ →2,得x 2-2+y 2=2x 2,所以所求动点P 的轨迹方程为y 2-x 2=2.9.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________.答案 14解析 由⎩⎪⎨⎪⎧x -y -1=0,y =ax 2,消去y 得方程ax 2-x +1=0. 令Δ=1-4a =0,得a =14. 10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.过F 1作倾斜角为30°的直线与椭圆的一个交点P ,且PF 2⊥x 轴,则此椭圆的离心率e 为________.答案 33 解析 由题意得PF 2=b 2a ,PF 1=2b 2a, 由椭圆定义得3b 2a=2a,3b 2=3a 2-3c 2=2a 2, 则此椭圆的离心率e 为33. 11.已知过抛物线y 2=6x 焦点的弦长为12,则该弦所在直线的倾斜角是________.答案 45°或135°解析 由y 2=6x 得焦点坐标为⎝⎛⎭⎫32,0,设直线方程y =k ⎝⎛⎭⎫x -32, 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -32,y 2=6x ,得k 2x 2-(6+3k 2)x +94k 2=0, 设直线与抛物线的交点为A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=6+3k 2k 2, ∵弦长为12,∴6+3k 2k 2+3=12, ∴k =±1,∴直线的倾斜角为45°或135°.二、解答题12.在平面直角坐标系中,已知点F (0,2),一条曲线在x 轴的上方,它上面的每一点到F 的距离减去到x 轴的距离的差都是2,求这条曲线的方程.解 设点M (x ,y )是所求曲线上任意一点,因为曲线在x 轴的上方,所以y >0.过点M 作MB ⊥x 轴,垂足是点B ,则MF -MB =2, 即x 2+(y -2)2-y =2,整理得x 2+(y -2)2=(y +2)2,化简得y =18x 2, 所以所求曲线的方程是y =18x 2(x ≠0). 13.已知线段AB ,B 点的坐标为(6,0),A 点在曲线y =x 2+3上运动,求线段AB 的中点M 的轨迹方程.解 设线段AB 的中点M 的坐标为(x ,y ),点A (x 1,y 1),则⎩⎪⎨⎪⎧ x =x 1+62,y =y 12,得⎩⎪⎨⎪⎧x 1=2x -6,y 1=2y . 由题知点A (x 1,y 1)在曲线y =x 2+3上,所以2y =(2x -6)2+3,所以线段AB 的中点M 的轨迹方程为y =2(x -3)2+32. 三、探究与拓展14.过点P (0,1)的直线与曲线|x |-1=1-(1-y )2相交于A ,B 两点,则线段AB 长度的取值范围是____________.答案 [22,4]解析 曲线|x |-1=1-(1-y )2可化为x ≥1,(x -1)2+(y -1)2=1,或x <-1,(x +1)2+(y -1)2=1,图象如图所示,线段AB 长度的取值范围是[22,4].15.已知直角坐标平面上点Q (2,0)和圆O :x 2+y 2=1,M 为直角坐标平面内一动点,过点M 作圆O 的切线,切点为N ,若MN 和MQ 的比值等于常数λ(λ>0),求动点M 的轨迹方程,并说明它表示什么曲线.解 连结ON ,OM ,则ON ⊥MN ,设M (x ,y ).∵圆的半径是1,∴MN 2=OM 2-ON 2=OM 2-1.由题意,MN MQ=λ(λ>0),∴MN =λMQ , 即x 2+y 2-1=λ(x -2)2+y 2, 整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0.∵λ>0,∴当λ=1时,方程化为x =54, 该方程表示一条直线;当λ≠1时,方程化为⎝ ⎛⎭⎪⎫x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2, 该方程表示以⎝ ⎛⎭⎪⎫2λ2λ2-1,0为圆心,以1+3λ2|λ2-1|为半径的圆.。

2018-2019学年高二数学讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.3.1

2018-2019学年高二数学讲义选修2-1苏教版:第2章 圆锥曲线与方程 2.3.1

§2.3双曲线2.3.1双曲线的标准方程学习目标 1.掌握双曲线标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题.知识点双曲线的标准方程思考双曲线标准方程中的a,b,c的关系如何?与椭圆标准方程中的a,b,c的关系有何不同?答案双曲线标准方程中的两个参数a和b,确定了双曲线的形状和大小,是双曲线的定形条件,这里b2=c2-a2,即c2=a2+b2,其中c>a,c>b,a与b的大小关系不确定;而在椭圆中b2=a2-c2,即a2=b2+c2,其中a>b>0,a>c,c与b大小不确定.梳理(1)两种形式的标准方程(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.(3)当双曲线的焦点位置不确定时,可设其标准方程为Ax2+By2=1(AB<0).(4)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,注意这里的b 2=c 2-a 2与椭圆中的b 2=a 2-c 2相区别.1.方程x 2m -y 2n =1(m ·n >0)表示焦点在x 轴上的双曲线.(×)2.在双曲线标准方程x 2a 2-y 2b2=1中,a >0,b >0且a ≠b .(×)3.在双曲线标准方程x 2a 2-y 2b2=1(a >0,b >0)中,焦距为2c ,则a 2=b 2+c 2.(×)类型一 求双曲线的标准方程例1 求适合下列条件的双曲线的标准方程.(1)与椭圆y 225+x 216=1有公共焦点,且过点(-2,10);(2)双曲线上两点P 1,P 2的坐标分别为(3,-42),⎝⎛⎭⎫94,5. 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程解 (1)方法一 椭圆y 225+x 216=1的焦点为F 1(0,-3),F 2(0,3),设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),则有⎩⎪⎨⎪⎧10a 2-4b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=5,b 2=4.故所求双曲线的方程为y 25-x 24=1.方法二 由椭圆方程y 225+x 216=1知焦点在y 轴上,设所求双曲线方程为y 225-λ-x 2λ-16=1(16<λ<25).∵双曲线过点(-2,10),∴1025-λ-4λ-16=1,解得λ=20或λ=7(舍去), 故所求双曲线的方程为y 25-x 24=1.(2)设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得⎩⎨⎧n =116,m =-19,∴双曲线的标准方程为y 216-x 29=1.反思与感悟 待定系数法求方程的步骤(1)定型:即确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式:①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0); ②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程.跟踪训练1 (1)求以椭圆x 216+y 29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程;(2)已知双曲线过P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5两点,求双曲线的标准方程. 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程解 (1)由题意,知双曲线的两焦点为F 1(0,-3),F 2(0,3). 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),将点A (4,-5)代入双曲线方程,得25a 2-16b 2=1.又a 2+b 2=9,解得a 2=5,b 2=4, 所以双曲线的标准方程为y 25-x 24=1.(2)若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P ,Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.综上,双曲线的标准方程为y 29-x 216=1.类型二 曲线方程的讨论例2 若方程x 25-m +y 2m 2-2m -3=1表示焦点在y 轴上的双曲线,求实数m 的取值范围.解 由方程x 25-m +y 2m 2-2m -3=1表示焦点在y 轴上的双曲线,得⎩⎪⎨⎪⎧5-m <0,m 2-2m -3>0,解得m >5.所以实数m 的取值范围是(5,+∞).反思与感悟 给出方程x 2m +y 2n =1(mn ≠0),当mn <0时,方程表示双曲线,当⎩⎪⎨⎪⎧m >0,n <0时,表示焦点在x 轴上的双曲线;当⎩⎪⎨⎪⎧m <0,n >0时,表示焦点在y 轴上的双曲线.跟踪训练2 (1)“3<m <5”是“方程x 2m -5+y 2m 2-m -6=1表示双曲线”的_________条件.答案 充分不必要解析 (m -5)(m 2-m -6)=(m -5)(m -3)(m +2).①方程x 2m -5+y 2m 2-m -6=1表示双曲线⇒(m -5)(m 2-m -6)<0,即(m -5)(m -3)(m +2)<0 ⇒3<m <5或m <-2 ⇏3<m <5,∴3<m <5不是“x 2m -5+y 2m 2-m -6=1表示双曲线”的必要条件.②3<m <5⇒(m -5)(m -3)(m +2)<0, 即(m -5)(m 2-m -6)<0⇒x 2m -5+y 2m 2-m -6=1表示双曲线. ∴3<m <5是x 2m -5+y 2m 2-m -6=1的充分条件.(2)讨论x 225-k +y 29-k=1表示何种圆锥曲线,它们有何共同特征.解 由于k ≠9,k ≠25,则k 的取值范围为k <9,9<k <25,k >25,分别进行讨论. ①当k <9时,25-k >0,9-k >0,所给方程表示椭圆,此时a 2=25-k ,b 2=9-k ,c 2=a 2-b 2=16,这些椭圆有共同的焦点(-4,0),(4,0).②当9<k <25时,25-k >0,9-k <0,所给方程表示双曲线,此时a 2=25-k ,b 2=k -9,c 2=a 2+b 2=16,这些双曲线也有共同的焦点(-4,0),(4,0). ③当k >25时,所给方程没有轨迹. 类型三 双曲线的定义及标准方程的应用例3 已知双曲线x 29-y 216=1的左,右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得PF 1-PF 2=±6,F 1F 22=PF 21+PF 22-2PF 1·PF 2cos60°, 所以102=(PF 1-PF 2)2+PF 1·PF 2, 所以PF 1·PF 2=64,所以12F PF S=12PF 1·PF 2·sin ∠F 1PF 2 =12×64×32=16 3. 引申探究本例中若∠F 1PF 2=90°,其他条件不变,求△F 1PF 2的面积. 解 由双曲线方程知a =3,b =4,c =5, 由双曲线的定义得|PF 1-PF 2|=2a =6,所以PF 21+PF 22-2PF 1·PF 2=36,① 在Rt △F 1PF 2中,由勾股定理得PF 21+PF 22=F 1F 22=(2c )2=100,②将②代入①得PF 1·PF 2=32, 所以12F PF S=12PF 1·PF 2=16. 反思与感悟 求双曲线x 2a 2-y 2b 2=1中焦点三角形面积的方法(1)方法一:①根据双曲线的定义求出|PF 1-PF 2|=2a ;②利用余弦定理表示出PF 1,PF 2,F 1F 2之间满足的关系式; ③通过配方,利用整体思想求出PF 1·PF 2的值; ④利用公式12PF F S =12PF 1·PF 2sin ∠F 1PF 2求得面积. (2)方法二:利用公式S △PF 1F 2=12F 1F 2×|y P |(y P 为P 点的纵坐标)求得面积.同理可求得双曲线y 2a 2-x 2b2=1中焦点三角形的面积.特别提醒:利用双曲线的定义解决与焦点有关的问题,一是要注意定义条件|PF 1-PF 2|=2a的变形使用,特别是与PF 21+PF 22,PF 1·PF 2间的关系. 跟踪训练3 如图所示,已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1的左,右焦点,点M 为双曲线上一点,并且∠F 1MF 2=θ,求△MF 1F 2的面积.解 在△MF 1F 2中,由余弦定理,得F 1F 22=MF 21+MF 22-2MF 1·MF 2·cos θ.①∵F 1F 22=4c 2,MF 21+MF 22=(MF 1-MF 2)2+2MF 1·MF 2=4a 2+2MF 1·MF 2, ∴①式化为4c 2=4a 2+2MF 1·MF 2(1-cos θ), ∴MF 1·MF 2=2b 21-cos θ,∴12MF F S =12MF 1·MF 2·sin θ=b 2sin θ1-cos θ=b 2·2sin θ2·cosθ21-⎝⎛⎭⎫1-2sin 2θ2=b 2tan θ2.1.若方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是________.答案 (-1,1)解析 依题意得(1+k )(1-k )>0,即(k +1)(k -1)<0,解得-1<k <1. 2.双曲线x 2k 2+8-y 28-k 2=1的焦距为________.答案 8解析 依题意得焦距为2k 2+8+8-k 2=8.3.已知圆C :x 2+y 2-6x -4y +8=0,以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则所得双曲线的标准方程为________. 答案 x 24-y 212=1解析 令x =0,得y 2-4y +8=0,方程无解,即该圆与y 轴无交点. 令y =0,得x 2-6x +8=0,解得x =2或x =4, 则符合条件的双曲线中a =2,c =4,∴b 2=c 2-a 2=16-4=12,且焦点在x 轴上, ∴双曲线的方程为x 24-y 212=1.4.已知双曲线2x 2-y 2=k (k ≠0)的焦距为6,则k 的值为________. 答案 ±6解析 由题意知,k ≠0.当k >0时,方程化为x 2k 2-y 2k =1,∴c 2=k 2+k =3k2,∴2×3k2=6,解得k =6. 当k <0时,方程化为y 2-k -x 2-k2=1,∴c 2=-32k ,∴2×-3k2=6,解得k =-6. 综上,k =-6或k =6.5.已知双曲线x 29-y 216=1上一点M 的横坐标为5,则点M 到左焦点的距离是________.答案343解析 由于双曲线x 29-y 216=1的右焦点为F (5,0),设M (x M ,y M ),将x M =5代入双曲线方程可得|y M |=163,即为点M 到右焦点的距离,由双曲线的定义知M 到左焦点的距离为163+2×3=343.求双曲线标准方程的步骤:(1)定位:是指确定与坐标系的相对位置,在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.(2)定量:是指确定a 2,b 2的数值,常由条件列方程组求解.特别提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx 2+ny 2=1的形式,为简单起见,常标明条件mn <0.与双曲线x 2a 2-y 2b 2=1有相同焦点的双曲线方程可设为x 2a 2+k -y 2b 2-k =1(-a 2<k <b 2).已知双曲线的渐近线方程为y =±n m x ,可设双曲线方程为x 2m 2-y 2n2=λ(λ≠0).一、填空题1.满足条件:a =2,且一个焦点为(4,0)的双曲线的标准方程为________________. 答案 x 24-y 212=1解析 由一个焦点(4,0)知双曲线焦点在x 轴上,且c =4,由c 2=a 2+b 2,a =2,可得b 2=12,故双曲线的标准方程为x 24-y 212=1.2.椭圆x 24+y 2a =1与双曲线x 2a -y 22=1有相同的焦点,则a =________.答案 1解析 由题意知焦点在x 轴上,因此4-a =a +2, 所以a =1.经检验,a =1满足题意.故a =1.3.双曲线的焦点是(0,±6),且过点A (-2,-5),则双曲线的标准方程是________. 答案 y 220-x 216=1解析 由题意知,双曲线的焦点在y 轴上,且c =6. 设F 1(0,-6),F 2(0,6)分别为双曲线的焦点, AF 1=(-2)2+(-5+6)2=5, AF 2=(-2)2+(-5-6)2=55,根据双曲线的定义,2a =|AF 1-AF 2|=45, 所以a =25,b 2=c 2-a 2=16, 故所求双曲线的标准方程为y 220-x 216=1.4.若双曲线的两个焦点坐标分别是F 1(0,-5),F 2(0,5),双曲线上任意一点P 满足到两个焦点的距离之差的绝对值是6,则双曲线的标准方程是________. 答案 y 29-x 216=1解析 由题意得,焦点位于y 轴上,且c =5,2a =6,所以a =3,b 2=c 2-a 2=16,因此所求双曲线的标准方程是y 29-x 216=1.5.已知双曲线x 24-y 2m =1的一个焦点坐标为(3,0),则m =________.答案 5 解析 因为c =4+m =3,所以解得m =5.6.已知方程x 29-k +y 2k -3=1表示焦点在y 轴上的双曲线,则k 的取值范围是________.答案 (9,+∞)解析 由题意得⎩⎪⎨⎪⎧9-k <0,k -3>0,解得k >9.7.设椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个公共点,则cos ∠F 1PF 2=________. 答案 13解析 设PF 1=d 1,PF 2=d 2,则d 1+d 2=26,① |d 1-d 2|=23,②①2+②2,得d 21+d 22=18.①2-②2,得2d 1d 2=6.而c =2,∴cos ∠F 1PF 2=d 21+d 22-4c22d 1d 2=18-166=13.8.与双曲线x 24-y 22=1有相同焦点且过点P (2,1)的双曲线方程为________________.答案 x 23-y 23=1解析 ∵双曲线x 24-y 22=1的焦点在x 轴上,∴设所求双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).又∵两曲线有相同的焦点,∴a 2+b 2=c 2=4+2=6.① 又点P (2,1)在双曲线x 2a 2-y 2b2=1上,a b 由①②得,a 2=b 2=3,故所求双曲线方程为x 23-y 23=1. 9.已知双曲线x 2-y 2=1,点F 1,F 2为其左,右焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则PF 1+PF 2的值为________.答案 2 3解析 设P 在双曲线的右支上,PF 1=2+x ,PF 2=x (x >0),因为PF 1⊥PF 2,所以(x +2)2+x 2=(2c )2=8,所以x =3-1,x +2=3+1,所以PF 2+PF 1=3-1+3+1=2 3.10.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________.答案 x 216-y 29=1 解析 设焦点F 1(-c,0),F 2(c,0)(c >0),则由QF 1⊥QF 2,得kQF 1·kQF 2=-1,∴5c ·5-c=-1,∴c =5. 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), ∵双曲线过点(42,-3),∴32a 2-9b 2=1, 又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9.∴双曲线的标准方程为x 216-y 29=1. 11.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,若OQ →=12(OP →+OF →),则|OQ →|的值为________.答案 1或5解析 由题意得Q 为PF 的中点,设左焦点为F ′,其坐标为(-3,0),2若P 在双曲线的左支上,则OQ =12PF ′=12(PF -2a )=12×(6-2×2)=1; 若P 在双曲线的右支上,则OQ =12PF ′=12(PF +2a )=12(6+2×2)=5. 综上,|OQ →|=1或5.二、解答题12.设F 1,F 2是双曲线x 24a -y 2a=1(a >0)的两个焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,|PF 1→|·|PF 2→|=2,求双曲线的方程.解 ∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴|PF 1→|2+|PF 2→|2=|F 1F 2→|2=20a .①又||PF 1→|-|PF 2→||=4a .②①-②2,得2|PF 1→|·|PF 2→|=4a .∵|PF 1→|·|PF 2→|=2,∴a =1.∴双曲线的方程为x 24-y 2=1. 13.已知双曲线x 216-y 24=1的左,右焦点为F 1,F 2. (1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.解 (1)如图所示,不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0,则MF 1⊥MF 2,设MF 1=m ,MF 2=n ,由双曲线定义知,m -n =2a =8,①又m 2+n 2=(2c )2=80,②由①②得m ·n =8,∴S △MF 1F 2=12mn =4=12F 1F 2·h ,∴h =255. (2)设所求双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16), 由于双曲线C 过点(32,2),∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去). ∴所求双曲线C 的方程为x 212-y 28=1. 三、探究与拓展14.双曲线x 2m -y 2m -5=1的一个焦点到中心的距离为3,则m 的值为________. 答案 7或-2解析 (1)当焦点在x 轴上时,有m >5,则c 2=m +m -5=9,∴m =7;(2)当焦点在y 轴上时,有m <0,则c 2=-m +5-m =9,∴m =-2.综上,m =7或m =-2.15.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1,F 2为左,右焦点,且MF 1+MF 2=63,试判断△MF 1F 2的形状.解 (1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上, 且c =9-4=5,故设双曲线方程为x 2a 2-y 2b2=1,则有⎩⎪⎨⎪⎧ 9a 2-4b 2=1,a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=3,b 2=2. 所以双曲线的标准方程为x 23-y 22=1. (2)不妨设M 点在右支上,则有MF 1-MF 2=23, 又MF 1+MF 2=63,故解得MF 1=43,MF 2=23, 又F 1F 2=25,所以在△MF 1F 2中,MF 1边最长,cos ∠MF 2F 1=MF 22+F 1F 22-MF 212MF 2·F 1F 2<0, 又因为∠MF 2F 1∈(0°,180°), 所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的几何性质(一)
学习目标.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.
知识点一椭圆的范围、对称性和顶点坐标思考观察椭圆+
=(>>)的形状(如图),你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比
较特殊?
答案()范围:-≤≤,-≤≤;
()对称性:椭圆关于轴、轴、原点都对称;
()特殊点:顶点(-),(),(,-),(,).
梳理椭圆的几何性质
知识点二椭圆的离心率
思考如何刻画椭圆的扁圆程度?
答案用离心率刻画扁圆程度,越接近于,椭圆越接近于圆,反之,越扁.
梳理()焦距与长轴长的比称为椭圆的离心率.
记为:=.
()对于+=,越小,对应的椭圆越扁,反之,越接近于,就越接近于,从而越接近于,这时椭圆越接近于圆,于是,当且仅当=时,=,两焦点重合,图形变成圆,方程变为+=.(如图)
.椭圆+=(>>)的长轴长是.(×)
.椭圆的离心率越大,椭圆就越圆.(×)
.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为,则椭圆的方程为+=.(×)
.设为椭圆+=(>>)的一个焦点,为其上任一点,则的最大值为+.(为椭圆的半焦距)(√)
类型一由椭圆方程研究其几何性质
例求椭圆+=的长轴长、短轴长、离心率、焦点和顶点坐标.
解已知方程化成标准方程为+=,
于是=,=,==,
∴椭圆的长轴长和短轴长分别是=和=,
离心率==,又知焦点在轴上,
∴两个焦点坐标分别是(-,)和(,),
四个顶点坐标分别是(-),(),(,-)和().
引申探究
本例中若把椭圆方程改为“+=”,求其长轴长、短轴长、离心率、焦点和顶点坐标.
解由已知得椭圆标准方程为+=,
于是=,=,==.
∴长轴长=,短轴长=,
离心率==.。

相关文档
最新文档