二次根式拓展提高讲义及答案

合集下载

初中数学二次根式(讲义及答案)含答案

初中数学二次根式(讲义及答案)含答案

一、选择题1.下列计算正确的为( ). A .2(5)5-=- B .257+=C .64322+=+D .3622=2.若 3x - 有意义,则 x 的取值范围是 ( ) A .3x >B .3x ≥C .3x ≤D .x 是非负数 3.下列计算正确的是( )A .235+=B .422-=C .8=42D .236⨯=4.已知:x =3+1,y =3﹣1,求x 2﹣y 2的值( ) A .1B .2C .3D .435.下列运算中,正确的是( ) A .325+=B .321-=C .326⨯=D .3322÷=6.下列各式中正确的是( ) A .36=±6B .2(2)2--=-C .8=4D .2(7)-=77.设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a-的值为( ) A .621+- B .621-+ C .621-- D .621++8.当4x =时,22232343124312x x x x x x -+--+++的值为( )A .1B .3C .2D .39.若a 、b 、c 为有理数,且等式成立,则2a +999b +1001c 的值是( )A .1999B .2000C .2001D .不能确定 10.下列各式计算正确的是( ) A 235+=B .236=()C 824=D 236=二、填空题11.已知112a b +=,求535a ab ba ab b++=-+_____. 12.已知实数,x y 满足(22200820082008x x y y --=,则2232332007x y x y -+--的值为______.13.732x y -=-,则2x ﹣18y 2=_____.14.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.15.当x x 2﹣4x +2017=________.16.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.17.÷=________________ .18.已知:可用含x =_____.19.已知,n=1的值________.20.mn =________.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S =同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(12) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b cb c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.23.已知1,2y =. 【答案】1 【解析】 【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1 222.【点睛】本题考查的是二次根式的化简求值,把已知条件求出x、y,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.计算(1+(2+-(3÷(4)(【答案】(1)234)7.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+=+22=;(2==;÷(3)2b=2b=;4(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.26.观察下列各式:11111=+-=122111=+-=11236111=+-=113412请你根据上面三个等式提供的信息,猜想:(1=_____________(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:______________;(3【答案】(1)1120;(211(1)n n =++;(3)1156,过程见解析 【分析】(1)仿照已知等式确定出所求即可; (2)归纳总结得到一般性规律,写出即可; (3)原式变形后,仿照上式得出结果即可. 【详解】解:(1111114520=+-=; 故答案为:1120;(2111111(1)n n n n =+-=+++;11(1)n n =++;(31156== 【点睛】此题是一个阅读题目,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用28.计算:(1)-(2)【答案】(1)21 【分析】(1)先把二次根式化为最简二次根式,然后合并即可; (2)先利用二次根式的乘除法则运算,再合并即可. 【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可. 【详解】A 5=,故A 选项错误;B B 选项错误;C .++=222,故C 选项错误;D 2=,正确, 故选D . 【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.2.B解析:B 【分析】直接利用二次根式有意义的条件进而分析得出答案. 【详解】有意义的x 的取值范围是:x ≥3. 故选:B . 【点睛】本题考查二次根式有意义的条件,解题关键是正确掌握定义和二次根式有意义的条件.3.D解析:D 【分析】直接利用二次根式的混合运算法则分别判断得出答案. 【详解】解:AB 2=,故此选项不合题意;C ,故此选项不合题意;D =故选:D . 【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.4.D解析:D 【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可. 【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-== 故选:D . 【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.5.C解析:C 【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果. 【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D=,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.6.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A,故A错误;B12=,故B错误;C=C错误;D、2(=7,故D正确;故选:D.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.7.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a,∴b,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.8.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x x x x112323x x 将4x =代入得, 原式11423423 22111313113113 13331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.9.B解析:B【解析】因=,所以a=0,b=1,c=1,即可得2a+999b+1001c=999+1001=2000,故选B.点睛:本题考查了二次根式的性质与化简,将复合二次根式根据完全平方公式化简并比较系数是解题的关键.10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】A23B、错误,22312=();C8222232==D23236=⨯=故选:D.【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型.二、填空题11.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 12.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 13.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x2﹣4x+2017=(x ﹣2)2+2013 =()2+2013=3+2013=2016.故答案是:2016.解析:2016【解析】把所求的式子化成(x ﹣2)2+2013然后代入式子计算,即可得到:x 2﹣4x+2017=(x ﹣2)2+2013 =2+2013=3+2013=2016.故答案是:2016.点睛:此题主要考查了配方法的应用,解题关键是把式子配成完全平方,然后整体代入即可求解,考查了学生对整体思想的认识和应用,学生对整体思想不熟时出错的主要原因.16.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg溶液中纯果汁的含量,最后利=,求出m即可.【详解】,甲容器倒出mkg果汁中含有纯果汁makg,乙容器倒出mkg果汁中含有纯果汁mbkg,,=,整理得,-6b=5ma-5mb,∴(a-b)=5m(a-b),∴m【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.17.【解析】=,故答案为.解析:【解析】÷=()()2232===--,故答案为18.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 19.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.20.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321. mn=⨯=故答案为21.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

初中数学二次根式(讲义及答案)附解析

初中数学二次根式(讲义及答案)附解析

一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列运算错误的是( )A =B .=C .)216=D .)223= 3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列二次根式中,最简二次根式是( )A B C D5.下列各式中,运算正确的是( )A =﹣2B +C 4D .=26.下列运算正确的是( )A =B =C .3=D 2=7.化简二次根式 )A B C D8.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.若a b > )A .-B .-C .D .二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.)30m -≤,若整数a 满足m a +=a =__________.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.若2x ﹣3x 2﹣x=_____.15.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 16.已知2,n=1222m n mn +-的值________.17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.18.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫= ⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.2121=-+3232=+4343=+20202324320202019+++++……=___________. 三、解答题21.(1111242-=112393-=1134164-=;……写出④ ;⑤ ; (2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律;(3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析.【解析】【分析】 (1)根据题目中的例子直接写出结果;(2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.【详解】解:(1)由例子可得,④=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n.n.故答案为5=25 n ;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.23.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.24.计算(1+(2+-(3÷ (4)(【答案】(1)23)4;(4)7. 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+22=+=;(2==;(3)2b ÷2b =4=;(4)( (22=- =7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.25.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.26.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(23⨯⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A 3=,此项错误;B 2=-,此项错误;C 、27=≠D 2==,此项正确;故选:D .【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键. 2.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C.【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:AB,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.5.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C .【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.6.D解析:D【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断.【详解】解:AA 选项错误;B=B 选项错误;C、=C 选项错误;D2=,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a a aa a +-∴+<∴<-a a ∴==•=-故选B 【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A 12的算术平方根,故该项正确;B 、34<<,故该项正确;C =D =是无理数,故该项正确;故选:C .【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a 3b≥0∵a >b ,∴a >0,b <0a ab =-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.14.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 16.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.17.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.18.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n=-n 为正整数),则2020++,2020=+,=, 20202=-,2018,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

人教版初二下册数学第16章《二次根式》讲义第1讲二次根式认识性质(有答案)

人教版初二下册数学第16章《二次根式》讲义第1讲二次根式认识性质(有答案)

人教版初二下册数学第16章《二次根式》讲义第1讲二次根式认识性质(有答案)第一局部 知识梳理知识点一: 二次根式的概念形如〔〕的式子叫做二次根式。

必需留意:由于正数没有平方根,所以是为二次根式的前提条件知识点二:二次根式〔〕的非负性〔〕表示a 的算术平方根, 即0〔〕。

非负性:算术平方根,和相对值、偶次方。

非负性质的解题运用: 〔1〕、如假定,那么a=0,b=0; 〔2〕、假定,那么a=0,b=0; 〔3〕、假定,那么a=0,b=0。

知识点三:二次根式的性质第二局部 考点精讲精练考点1、二次根式概念 例1、以下各式:122211,2)5,3)2,4,5)(),1,7)2153x a a a --+---+其中是二次根式的是_________〔填序号〕. 例2、以下各式哪些是二次根式?哪些不是?为什么?〔121 〔219-〔321x +〔439 〔56a - 〔6221x x ---例3)()()230,2,12,20,3,1,2xx y y x xx x y +=--++中,二次根式有〔 〕A. 2个B. 3个C. 4个D. 5个例4、以下各式中,属于二次根式的有〔 〕例5、假定21x +的平方根是5±_____=.1、以下各式中,一定是二次根式的是〔 〕A B C D2中是二次根式的个数有______个 3、以下各式一定是二次根式的是〔 〕A B C D4、以下式子,哪些是二次根式, 1x、 x>0〕1x y +、〔x≥0,y ≥0〕 .51+x 、2+1x 、______个。

考点2、根式取值范围及运用 例1有意义,那么x 的取值范围是例2有意义的x 的取值范围例3、事先_____x ,式子有意义. 例4、在以下各式中,m 的取值范围不是全体实数的是〔 〕 A .1)2(2+-m B .1)2(2-m C .2)12(--m D .2)12(-m例5、假定y=5-x +x -5+2021,那么x+y=例6、实数a ,b ,c │a -=______.1、使代数式43--x x 有意义的x 的取值范围是〔 〕 A 、x>3 B 、x≥3 C 、 x>4 D 、x≥3且x≠42x 的取值范围是 3、假设代数式mnm 1+-有意义,那么,直角坐标系中点P 〔m ,n 〕的位置在〔 〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限 4、式子x x x 222+-+-有意义,x 为________ 5、yx是二次根式,那么x 、y 应满足的条件是〔 〕 A .0≥x 且0≥y B .0>y xC .0≥x 且0>yD .0≥yx 62()x y =+,那么x -y 的值为〔 〕A .-1B .1C .2D .37、假定x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值8、当a 1取值最小,并求出这个最小值。

八年级二次根式(教师讲义带答案)(2021年整理)

八年级二次根式(教师讲义带答案)(2021年整理)

八年级二次根式(教师讲义带答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级二次根式(教师讲义带答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级二次根式(教师讲义带答案)(word版可编辑修改)的全部内容。

第五章二次根式【知识网络】知识点一: 二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开方数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2。

二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似.这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数.注:二次根式的性质公式()是逆用平方根的定义得出的结论.上面的公式也可以反过来应用:若,则,如:,。

知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

二次根式(讲义及答案)及答案

二次根式(讲义及答案)及答案

一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-2.下列各式计算正确的是( ) A .235+=B .2222+=C .236⨯=D .1222= 3.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-14.下列各式中,正确的是( ) A .42=±B .822-=C .()233-=- D .342=5.二次根式23的值是( ) A .-3 B .3或-3 C .9 D .3 6.若31m -有意义,则m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2 D .m = 3 7.式子2x -在实数范围内有意义,则x 的取值范围是( )A .0x <B .0xC .2xD .2x8.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .69.化简(﹣3)2的结果是( ) A .±3B .﹣3C .3D .910.已知实数x 、y 满足222y x x =-+--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 13.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数). 15.把1m m-根号外的因式移到根号内,得_____________. 16.若x +y =5+3,xy =15-3,则x+y=_______. 17.已知20n 是整数,则正整数n 的最小值为___18.若a 、b 都是有理数,且2222480a ab b a -+++=,则ab =__________. 19.若实数123a =-,则代数式244a a -+的值为___. 20.如果0xy >,化简2xy -__________.三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简: (一)5353333⨯==⨯; (二)231)=3131(31)(31)-=-++-(; (三) 22(3)1(31)(31)=3131313131-+-===-++++.以上这种化简的方法叫分母有理化. (1)请用不同的方法化简5+3: ①参照(二)式化简5+3=__________. ②参照(三)式化简5+3=_____________ (2)+315+37+599+97+【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①;②; (2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.像552)=1a a =a (a ≥0)、b b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因552 +12﹣1,353﹣5因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1)33;(2)2332+--; (3)2018201720172016的大小,并说明理由. 【答案】(123(2)32(3)< 【解析】分析:(13×3=1,确定互为有理化因式,由此计算即可; (2)确定分母的有理化因式为23与23+3232然后分母有理化后计算即可;(3201820172017201620182017与20172016,20182017+20172016+,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222225.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.26.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.27.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab 的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可. 【详解】(1)∵a b ,∴a +ba ﹣b =,∴a 2﹣b 2=(a +b )(a ﹣b )==;(2)∵ab, ∴ab =)×)=3﹣2=1,则原式=22b a ab +=()22a b ab ab +-=(2211-⨯=10. 【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1 (2)∵1<a,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确;C.111a a1a a a÷⋅=⋅=,选项错误;D44=-=,选项错误.故选:B.2.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=2,故选项D错误.故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.A解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.1>.故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D 11223334=(2)2==,故该选项错误; 故选:B . 【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.D解析:D 【分析】根据二次根式的性质进行计算即可.【详解】|3|3=. 故选:D .【点睛】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩.6.B解析:B 【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1. 故选:B . 【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.D解析:D 【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 8.C解析:C【解析】=,22222=-=--+=251510x x,=.5故选C.9.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数) ∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。

中考数学二次根式(讲义及答案)含答案

中考数学二次根式(讲义及答案)含答案

一、选择题1.下列二次根式中是最简二次根式的为( ) A .12B .30C .8D .122.下列各式计算正确的是( ) A .1222= B .362÷=C .2(3)3=D .222()-=-3.下列二次根式中,是最简二次根式的是( ) A .12B .0.1C .12D .21a +4.下列各式一定成立的是( ) A .2()a b a b +=+ B .222(1)1a a +=+ C .22(1)1a a -=-D .2()ab ab =5.下列各式中正确的是( ) A .36=±6B .2(2)2--=-C .8=4D .2(7)-=7 6.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a 7.1272a -是同类二次根式,那么a 的值是( ) A .﹣2B .﹣1C .1D .28.751m +m 的值为( ) A .7B .11C .2D .19.已知实数x 、y 满足222y x x =--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定10.已知,5x y +=-,3xy =则y x x y x y的结果是( ) A .3B .3-C .32D .32-二、填空题11.比较实数的大小:(1)5?-______3 ;(251-_______12 12.定义:对非负实数x “四舍五入”到个位的值记为()f x z ,即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.13.观察下列等式:第1个等式:a 11=,第2个等式:a 2=,第3个等式:a 3,第4个等式:a 42=, …按上述规律,回答以下问题: (1)请写出第n 个等式:a n =__________. (2)a 1+a 2+a 3+…+a n =_________14.)30m -≤,若整数a 满足m a +=a =__________. 15.已知aa 3+5a 2﹣4a ﹣6的值为_____. 16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.已知x ,y 为实数,y 求5x +6y 的值________.18.已知4a|2|a -=_____.19.如果0xy >.20.能合并成一项,则a =______.三、解答题21.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.22.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.23.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.24.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2). 【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可; (2)利用完全平方公式和平方差公式展开,然后再进行合并即可. 【详解】(1)原式=1;(2)原式+2). 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.25.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.26.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.27.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用最简二次根式定义判断即可. 【详解】解:A =不是最简二次根式,本选项错误; BC =不是最简二次根式,本选项错误;D 2=故选:B . 【点睛】本题考查了最简二次根式,熟练掌握最简二次根式定义是解题的关键.2.C解析:C 【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题. 【详解】2,故选项A错误;=2,故选项B错误;C. 23=,故选项C正确;2=,故选项D错误;故选C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】AB10不是最简二次根式,故本选项不符合题意;C2,不是最简二次根式,故本选项不符合题意;D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.4.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D 、2()ab =|ab|,故此选项错误; 故选:B . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.5.D解析:D 【分析】直接利用二次根式的性质分别化简得出答案. 【详解】解:A 、36=6,故A 错误; B 、2211(2)=22--=,故B 错误; C 、822=,故C 错误; D 、2(7)-=7,故D 正确; 故选:D . 【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.6.A解析:A 【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.7.D解析:D 【分析】根据最简二次根式与同类二次根式的定义列方程组求解. 【详解】123由题意,得 7-2a=3,解得a=2, 故选D . 【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.8.C解析:C 【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.9.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题11.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<12=∵3=<<1 2故答案为:<,<.【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.12.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+,(2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 13.【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:=1-【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a 11=,第2个等式:a2=,第3个等式:a 3,第4个等式:a 42=, ……∴第n==(2)123(21)(32)(23)(1)n a a a a n n +++=-+-+-+++-=121n +++=1-;1-.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题14.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.15.-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可. 【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16.故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解.18.-5【分析】根据a的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵,∴a+3<0,2-a>0,∴-a-3-2+a=-5,故答案为:-5.【点睛】此解析:-5【分析】根据a 的取值范围化简二次根式及绝对值,再根据整式的加减法计算法则计算得到答案.【详解】∵4a ,∴a+3<0,2-a>0,|2|a -=-a-3-2+a=-5,故答案为:-5.【点睛】此题考查二次根式的化简,绝对值的化简,整式的加减法计算法则,正确化简代数式是解题的关键.19.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键. 20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a 的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

2024年中考数学复习专题讲义:二次根式(含答案)

2024年中考数学复习专题讲义:二次根式(含答案)

2024年中考数学复习专题讲义:二次根式知识点讲解1、二次根式的定义 一般地,形如a (a ≥0)的式子叫做二次根式。

2、二次根式的基本性质①2a =(a ≥0); a = (a ≥0); a = (a 取全体实数)。

3、二次根式的乘除(1)二次根式的乘法:①ab b a =⋅; ②b a ab ⋅= (a ≥0, b ≥0)。

(2)二次根式的除法:= = (a ≥0, b >0)。

4、最简二次根式 最简二次根式满足的条件:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。

5、二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并。

专题练习一、选择题1.下列二次根式中,是最简二次根式的是( )A .√12B .√8C .√13D .√0.22.若二次根式√x +2有意义,则x 的取值范围是( ).A .x >−2B .x ≥−2C .x <−2D .x ≥23.化简√(−3)2的结果是( )A .−3B .±3C .3D .94.估计(√27−√6)÷√3的值应在( )A .0到1之间B .1到2之间C .2到3之间D .3到4之间5.下列计算错误的是( )A .3√2−√2=3B .√60÷√5=2√3C .√25a +√9a =8√aD .√14×√7=7√26.若 x =√m −√n,y =√m +√n ,则 xy 的值是( ).A .2√mB .m −nC .m +nD .2√n 7.计算:√12×√13−√8÷√2的结果是( ) A .2 B .0 C .-2 D .−√28.用四张大小一样的长方形纸片拼成一个正方形 ABCD (如图),它的面积是 48, 已知长方形的一边长 AE =3√3, 图中空白部分是一个正方形,则这个小正方形的周长为( )A .2√3B .4√3C .8√3D .16√3二、填空题9.化简√3= 10.若√a +√3=3√3,则a = . 11.计算(2√2+1)(2√2−1)的结果等于 .12.若二次根式√x+3x 有意义,则x 的取值范围为 .13.当m = 时,二次根式√m −2取到最小值.三、解答题14.计算 (1)√16÷√2−√13×√6; (2)32√4x +2√x 9−x √1x +4√x4.15.已知2x =+2y =(1)试求22x y +的值; (2)试求x y y x-的值. 16.某居民小区有一块形状为长方形ABCD 的绿地,长方形绿地的长BC 为√162m ,宽AB 为√128m (即图中阴影部分),长方形花坛的长为(√13+1)m ,宽为(√13−1)m ,(1)长方形ABCD 的周长是多少?(结果化为最简二次根式)(2)除去修建花坛的地方.其他地方全修建成通道,通道上要铺上造价为50元每平方米的地砖,若铺完整个通道,则购买地砖需要花费多少元?17.已知x=2−√3,y=2+√3.(1)求x2+y2−xy的值;(2)若x的小数部分是a,y的整数部分是b,求ax−by的值.参考答案1.C2.B3.C4.B5.A6.B7.B8.C9.√33 10.1211.712.x ≥−3且x ≠013.214.解:(1)原式=√16÷2−√13×6=2√2−√2=√2;(2)原式=3√x +23√x −√x +2√x=143√x .15.(1)解:∵2x =, 2y =∴x+y=22+,xy=(22+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵2x =+,2y =-∴x+y=22+,x-y=((2222--=+=xy=(22=1∴()()22x y x yx y x yy x xy xy+---====16.(1)解:长方形ABCD的周长=2(√162+√128)=2(9√2+8√2)=34√2(m),答:长方形ABCD的周长是34√2m;(2)解:购买地砖需要花费=50[9√2×8√2−(√13+1)(√13−1)]=50(144−13+1)=50×132=6600(元)答:购买地砖需要花费6600元.17.(1)解:∵x=2−√3,y=2+√3,∴xy=(2−√3)(2+√3)=4−3=1,(x−y)2=(2−√3−2−√3)2=(−2√3)2=12,∴x2+y2−xy=(x−y)2+xy=12+1=13;(2)解:∵1<3<4,∴1<√3<2,∴3<2+√3<4,∴2+√3的整数部分是3,∴b=3,∵1<√3<2,∴−2<−√3<−1,∴0<2−√3<1,∴2−√3的整数部分是0,小数部分=2−√3−0=2−√3,∴a=2−√3,∴ax−by=(2−√3)(2−√3)−3(2+√3)=7−4√3+6−3√3=13−7√3,∴ax−by的值为13−7√3.)解:①(30x -2)x -②0020x x -22))(2)x -,又232x -+30x -+代数式当2x =时,代数式。

二次根式的概念和性质(提高)知识讲解

二次根式的概念和性质(提高)知识讲解

二次根式的概念和性质(提高)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简. 【要点梳理】要点一、二次根式及代数式的概念 1.二次根式:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式. 要点二、二次根式的性质 1、; 2.;3..要点诠释: 1.二次根式(a ≥0)的值是非负数。

一个非负数可以写成它的算术平方根的形式,即2(0a a a =≥).2a 2()a 要注意区别与联系:1).a 的取值范围不同,2)a 中a ≥02a a 为任意值. 2).a ≥0时,2()a 2a a ;a <0时,2)a 2a a -.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1. 定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变(合并同类二次根式的方法与整式加减运算中的合并同类项类似). 要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式. 【典型例题】类型一、二次根式的概念1.(天津期末)已知y=+﹣4,计算x ﹣y 2的值.【思路点拨】根据二次根式有意义的条件可得:,解不等式组可得x 的值,进而可求出y的值,然后代入x ﹣y 2求值即可. 【答案与解析】解:由题意得:,解得:x=, 把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x ﹣y 2=﹣16=﹣14.【总结升华】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 举一反三【变式】方程480x x y m -+--=,当0y >时,m 的取值范围是( )A .01m << B.m ≥2 C.2m < D.m ≤2【答案】 C.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三【变式】(铁东区校级月考)问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3. (罗平县校级模拟)已知,1≤x≤3,化简:=_______.【思路点拨】由题意1≤x≤3,可以判断1﹣x≤0;x﹣3≤0,然后再直接开平方进行求解.【答案】2.【解析】解:∵1≤x≤3,∴1﹣x≤0,x﹣3≤0,∴=x﹣1+3﹣x=2.【总结升华】此题主要考查二次根式的性质和化简,计算时要仔细,是一道基础题.【高清课堂:高清ID号: 381279关联的位置名称(播放点名称):经典例题4】4.已知c b a ,,为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=. 【答案】a b c ++. 【解析】c b a ,,为三角形的三边,0,0,0a b c b c a b c a ∴+->--<+->,即原式=a b c a c b b c a +-++-++-=a b c ++. 【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.类型三、最简二次根式5.已知0<a <b ,化简2232232a b b ab aa b a b a b+-+-+.【答案与解析】原式=222()()a b b a a b a b a b +--+=1()()()a b b a a b a b ab a b a b +-⨯+⨯-++=1a b ab-+. 【总结升华】2a a =成立的条件是a >0;若a <0,则2a a =-.类型四、同类二次根式6. 如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( ) A.a =2,b =1 B.a =1,b =2 C. a =1,b =-1 D. a =1,b =1【答案】 D. 【解析】根据题意,得,解之,得,故选D.【总结升华】同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a 、b 的二元一次方程组,此类问题都可如此.举一反三【变式】若最简根式与根式是同类二次根式,求a 、b 的值.【答案】同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简==|b|×由题意得,∴,∴a =1,b=1.二次根式的概念和性质(提高)巩固练习【巩固练习】一、选择题1. (贵港)式子在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≤1C .x >1D .x ≥1 2.使式子有意义的未知数x 有( )个A .0B .1C .2D .无数 3. 把mm 1-根号外的因式移到根号内,得( ). A .m B .m -C .m --D .m -4.(蓬溪县校级模拟)下列四个等式:①2(4)4-=;②(﹣)2=16;③()2=4;④2(4)4-=-.正确的是( ) A.①② B.③④ C.②④ D.①③5. 若 ,则等于( ) A .B .C .D .6.将a a --中的a 移到根号内,结果是( ) A .3a -- B. 3a - C.3a - D.3a 二. 填空题7. 若最简二次根式与是同类二次根式,则.8. (江干区一模)在,,,﹣,中,是最简二次根式的是_________.9.已知,求的值为____________.10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第 n(n ≥1)个等式写出来________________.12. (乐山)在数轴上表示实数a 的点如图所示,化简+|a ﹣2|的结果为 .三. 综合题13. 已知x x y 211221-+-+=,求22y xy x ++的值. 14. 若时,试化简.15. (武昌区期中)已知a 、b 、c 满足+|a ﹣c+1|=+,求a+b+c 的平方根.【答案与解析】一、选择题 1.【答案】C.【解析】依题意得:x ﹣1>0,解得x >1.2.【答案】B. 3.【答案】C. 4.【答案】D. 【解析】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确; ④==4≠﹣4,不正确.①③正确.故选:D .5.【答案】D. 【解析】 因为=22(4)a +,即222(4)4A a a =+=+.6.【答案】 A.【解析】因为a ≤0,所以a a --=23()()a a a a a ---=---=--.二、填空题 7.【答案】1;1. 【解析】12,1;2534a a a b a +=∴=+=+又,所以1b =. 8.【答案】52. 9.【答案】5.【解析】23100x x x -+=∴≠,13,x x ∴+=即21()9x x+=,2217x x ∴+=,即原式=725-=. 10.【答案】3.【解析】因为原式=21x x -++=213x x -++=.11.【答案】 11(1)22n n n n +=+++ . 12.【答案】 3.【解析】由数轴可得:a ﹣5<0,a ﹣2>0,则+|a ﹣2|=5﹣a +a ﹣2=3.三、解答题 13.【解析】因为1+21122y x x =--2x-1≥0,1-2x ≥0,即x=12,y=12则2234x xy y ++=. 14.【解析】 因为,所以原式==23523510x x x x x x x -+++-=-+++-=-. 15.【解析】解:由题意得,b ﹣c ≥0且c ﹣b ≥0,所以,b ≥c 且c ≥b , 所以,b=c ,所以,等式可变为+|a ﹣b+1|=0,由非负数的性质得,,解得,所以,c=2, a+b+c=1+2+2=5, 所以,a+b+c 的平方根是±.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式拓展提高(讲义)
一、知识点睛
1. 理解二次根式的双重非负性,辨识四类典型形式.
(1)若20x y z ,则_____x y _____z _____,,. (2)若出现2x 或x ,则x _____. (3)若x 和
x 同时存在,则x _____. (4)2_______x ;2()=_______x .
2. 根据数轴和线段的几何特征建等式. c b a C B A
如图,数轴上三点A ,B ,C 对应的实数分别为a ,b ,c ,若点A 与点B 关于点C 对称(即C 是线段AB 的中点),则线段AC =_______,BC =_______,因为AC =BC ,所以a ,b ,c 的数量关系是______________.
3. 完全平方公式在二次根式化简中的应用.
(1)222_________a ab b ±+=;
(2)若00m n >
,>,则 ()()22
22m mn n m mn n ++=++()2_________.m n =+=
4. 实数比较大小.
(1)作差法 (2)形似法 (3)乘方法 (4)分母有理化
二、精讲精练
1.若x ,y 为实数,且220x y ++-=,则2013x y ⎛⎫ ⎪⎝⎭的值为( )
A .1
B .-1
C .2
D .-2
2.已知212102
x y y ++++=,则y x =___________. 3.一个数的平方根是22+a b 和4a -6b +13,求这个数.
4.若a ,b 为实数,且满足()1110a b b +---=,则
20132012a b -=________.
5.若21--x 有意义,则x 的值为________.
6.化简()2
241121711a a a a +--+----=________. 7.若223y x x =-+--,则y x =________.
8.若224412-+-+=-x x y x ,则3x +4y =________. 9.当1<<4x 时,化简:2212816.x x x x -++-+
10.实数a 、b 、c 在数轴上的对应点如图所示: a b
c 0 化简:()()323a c b a b a c +--++
-.
11.化简:()2
244123x x x -+-
-.
12.如图,矩形ABCD 中,AB =3,AD =1,AB 在数轴上,若以
点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于点M ,则点M 所表示的数为( ) M
-1210D
C B A
A .10
B .51-
C .101-
D .5
13.如下图所示的数轴上,点B 与点C 关于点A 对称,A ,B
两点对应的实数是3和-1,则点C 所对应的实数是( )
C
B
A 310-1
A .1+3
B .2+3
C .23-1
D .23+1
14.数轴上A ,B 两点对应的实数分别是2和2,若点A 关于
点B 的对称点为点C , 则点C 所对应的实数为 .
15.若23x =+,则267____________.x x -+=
16.若20122=-x ,则245x x +-=__________.
17.已知2323=-=+x y ,,求22x xy y ++的值.
18.已知1110a a +
=+,求221a a
+的值.
19.化简下列各式:
(1)322+;
(2)423-;
(3)526+;
(4)620+;
(5)23-;
(6)962+.
20.比较实数大小.
(1)331-______4;
(2)____155137;++
(3)
165-______176-;(4)151-______173-;
(5)
512-______0.5; (6)7892
--______-8.
【阅读理解与创新探究】
我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非”.数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.
【思想应用】
实数与数轴上的点一一对应,为了在数轴上找到2这个点的位置,可以借助于勾股定理来构造直角三角形来解决.请你利用勾股定理在下图的数轴上找出点5.
3210-1-2-3
【思想类比1】 试比较x -y 与-x y (x >y >0)的大小,并说明理由. 小明受此启发,想用数形结合的思想来处理,联想到勾股定理,分别以y ,x y -为直角边作如图(1)所示的直角三角形,则其斜边长为x ,就能轻松解决上述问题,你能说明里面的道理吗?
___________________________________________. y x x -y
C
B
D E
A
图(1) 图(2)
【思想类比2】已知m,n均为正实数,且m+n=2.
求22
+++的最小值.
m n
14
如图(2),AB=2,AC=1,BD=2,AC⊥AB,BD⊥AB,点E 是线段AB上的动点,且不与端点重合,连接CE,DE,试表达CE和DE的长度,并据此解决上述最小值问题.
【探究迁移】代数式22
x x
++-+的最小值是____.
4(12)9
三、回顾与思考
______________________________________________________ ______________________________________________________ ______________________________________________________
【参考答案】
一、知识点睛
1.(1)0;0;0 (2)0 (3)0 (4)x ;x
2.c -a ;b -c ;2a b c
3.a b ;m n
二、精讲精练 1.B 2.-2 3.169 4.-2 5.±1 6.6 7.1
8 8.-7
9.3 10.2c -a 11.2 12.C 13.D 14.42 15.0 16.2003 17.15 18.9210
19.(1)21 (2)31 (3)3
2 (4)51 (5)6
22 (6)3
6 20.(1)> (2)< (3)< (4)< (5)> (6)<
【阅读理解和创新探究】
【思想应用】作图,略
【思想类比1】∵222x y y x ∴由勾股定理逆定理可得, ∴以x y 、y 、x 为三边长的三角形是直角三角形 ∴由三角形三边关系可得,
x y x y <
【思想类比2】设AE =m ,BE =n ,且m +n =2. 如图,可得CE =2
1m ,DE =24n . ∴CE +DE =21m +2
4n ∴连接CD ,则CD 长就是最小值 即CD =22122=13.
【探究迁移】13。

相关文档
最新文档