解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(六)带答案人教版高中数学

合集下载

解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(六)带答案人教版高中数学真题技巧总结提升

解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(六)带答案人教版高中数学真题技巧总结提升

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a bya x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________ 3.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为 ▲评卷人得分三、解答题4. 如图,已知椭圆C :22221(0)x y a b a b+=>>的长轴AB 长为4,离心率32e =,O为坐标原点,过B 的直线l 与x 轴垂直.P 是椭圆上异于A 、B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =,连结AQ 延长交直线l 于点M ,N 为MB 的中点.(1)求椭圆C 的方程;(2)证明:Q 点在以AB 为直径的圆O 上;(3)试判断直线QN 与圆O 的位置关系.5.如图,过椭圆的左右焦点12,F F 分别作长轴的垂线12,l l 交椭圆于1122,,,A B A B ,将12,l l 两侧的椭圆弧删除,再分别以12,F F 为圆心,线段1122,F A F A 的长度为半径作半圆,这样得到的图形称为“椭圆帽”,夹在12,l l 之间的部分称为“椭圆帽”的椭圆段,夹在12,l l 两侧的部分称为“椭圆帽”的圆弧段.(Ⅰ)若已知两个圆弧段所在的圆方程分别为22(2)1x y ±+=,求椭圆段的方程;(Ⅱ)在(Ⅰ)的条件下,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,若1120FM F N +=,求直线l 的方程; (Ⅲ)在(Ⅰ)的条件下,如图,已知l 为过1F 的一条直线,l 与“椭圆帽”的两AB xyM NQPH lO个交点为,M N ,P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,求PM PN的取值范围.分析:利用椭圆的第一定义不难求出长轴长2a ,从而求出椭圆方程;利用椭圆的第二定义,可求出M 点的坐标,易得直线方程;关注PM PN 的实质,涉及分类讨论. 解答:(Ⅰ)由题意:22222,21(22)14c a ==++=,则2222b a c =-=;则椭圆段的方程:221(22)42x y x +=-≤≤; (Ⅱ)由题意:1||1NF =,则1||2MF =,设00(,)M x y ,则0(22)2e x +=,00x ∴=,则(0,2)M ±,则直线l 的方程是:(2)y x =±+; (Ⅲ)211111111111()()P M P NP F F M P FF N P F P FF NP FF M=++=+++(1)P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,则N 必在“椭圆帽”的左侧圆弧段下半部分,则11||1,||1PF F N ==, 11110PF F N PF FM ==, 所以:11111||PM PN F M F NF M =+=-,设00(,)M x y (1)0[2,2]x ∈-时,M 在“椭圆帽”的椭圆段的上方部分,则102||2[1,3]2F M x =+∈ P则11||[2,0]PM PN FM =-∈-; (2)0[2,21]x ∈+时,M 在“椭圆帽”的右侧圆弧段的上方部分, 则2200(2)1x y -+=,且1||F M =22000(2)142[3,122]x y x ++=+∈+则11||[22,2]PM PN FM =-∈--; 综上可知:PM PN 的取值范围是11||[22,0]PM PN FM =-∈-. 说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,将其他的数学知识和数学思想方法与圆锥曲线综合,从一个更新颖的角度来考察圆锥曲线.8.已知:“过圆222:C x y r +=上一点00(,)M x y 的切线方程是200x x y y r +=.”(Ⅰ)类比上述结论,猜想过椭圆2222:1(0)x y C a b a b'+=>>上一点00(,)M x y 的切线方程(不要求证明);(Ⅱ)过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B两点,求过,A B 两点的直线方程;(Ⅲ)若过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B 两点,且AB 恰好通过椭圆的左焦点,证明:点M 在一条定直线上.分析:利用圆方程与椭圆方程结构的一致性,不难得出(Ⅰ)的结论,而(Ⅱ)的解决则体现了方法的类比. 解答:(Ⅰ)椭圆2222:1(0)x y C a b a b '+=>>上一点00(,)M x y 的切线方程是00221x x y ya b +=;(Ⅱ)设1122(,),(,)A x y B x y .由(Ⅰ)可知:过点11(,)A x y 的椭圆的切线1l 的方程是:11221x x y ya b+=; 过点22(,)B x y 的椭圆的切线2l 的方程是:22221x x y ya b+=; 因为12,l l 都过点00(,)M x y ,则10102210102211x x y y a b x x y y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则过,A B 两点的直线方程是:00221x x y ya b+= (Ⅲ)由(Ⅱ)知过,A B 两点的直线方程是:00221x x y ya b+=, 由题意:(,0)F c -在直线AB 上,则02()1x c a-=,则20a x c =- ∴点00(,)M x y 在椭圆的左准线上.说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,利用类比或其他的数学思想方法,从一个更新颖的角度来关注圆锥曲线的命题方向.6.有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a by a x 上一点>>=+处的切线方程为12020=+by y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A .B.(1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积7.已知圆O :222x y +=交x 轴于A ,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F .若P 是圆O 上一点,连结PF ,过原点O 作直线PF 的垂线交椭圆C 的左准线于点Q . (Ⅰ)求椭圆C 的标准方程;(5分)(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切;(5分)(Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由. (5分)【参考答案】***试卷处理标记,请不要删除xy OPFQAB评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. ;23.2 评卷人得分三、解答题4. 5.6.解:(1)设M 14),,(),(),)(,334(11221,1=+∈y y x x MA y x B y x A R t t 的方程为则 ∵点M 在MA 上∴13311=+ty x ①……………………3分 同理可得13322=+ty x ②…………………………5分 由①②知AB 的方程为)1(3,133ty x ty x -==+即............6分 易知右焦点F (0,3)满足③式,故AB 恒过椭圆C 的右焦点F (0,3) (8)分(2)把AB 的方程0167,14)1(322=--=+-=y y y x y x 化简得代入 ∴7167283631||=+⋅+=AB ……………………12分 又M 到AB 的距离33231|334|=+=d ∴△ABM 的面积21316||21=⋅⋅=d AB S ……………………15分 7.(本小题满分15分)解:(Ⅰ)因为22,2a e ==,所以c=1……………………(3分)则b=1,即椭圆C 的标准方程为2212x y +=………………………………(5分) (Ⅱ)因为P (1,1),所以12PF k =,所以2OQ k =-,所以直线OQ 的方程为y=-2x(7分)又椭圆的左准线方程为x=-2,所以点Q(2-,4) ……………………………(8分) 所以1PQ k =-,又1OP k =,所以1k k PQ OP -=⊥,即OP PQ ⊥, 故直线PQ 与圆O 相切…………………………………(10分) (Ⅲ)当点P 在圆O 上运动时,直线PQ 与圆O 保持相切……………………(11分)证明:设00(,)P x y (00,1x ≠±),则22002y x =-,所以001PF y k x =+,001OQ x k y +=-, 所以直线OQ 的方程为001x y x y +=-……………(13分)所以点Q(-2,0022x y +)…………………… (13分)所以002200000000000022(22)22(2)(2)PQ x y y y x x x xk x x y x y y +--+--====-+++,又00OP y k x =,所以1k k PQ OP -=⊥,即OP PQ ⊥,故直线PQ 始终与圆O 相切 …(15分)。

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(六)附答案人教版新高考分类汇编

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(六)附答案人教版新高考分类汇编
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.(汇编四川理)已知两定点 ,如果动点 满足 ,则点 的轨迹所包围的图形的面积等于
又以 为直径的圆的半径 ,即有 ,
所以直线 与圆 相切.…………………………8分
(3)由圆 的面积为 知圆半径为1,从而 ,…………………………10分
设 的中点 关于直线 : 的对称点为 ,
则 …………………………12分
解得 .所以,圆 的方程为 .…………………14分
6.
7.解:(1)由已知可设圆心坐标为 , 得 ,所以圆心坐标为 ,
(3)若圆 的面积为 ,求圆 的方程.
6.如图,已知椭圆 : 的长轴 长为4,离心率 , 为坐标原点,过 的直线 与 轴垂直. 是椭圆上异于 、 的任意一点, 轴, 为垂足,延长 到点 使得 ,连结 延长交直线 于点 , 为 的中点.(1)求椭圆 的方程;(2)证明: 点在以 为直径的圆 上;(3)试判断直线 与圆 的位置关系.
所以圆的方程为 ………………………………
(2)设 ,由已知得 ,则 ,………………
……………………………
解之得: ……………………………………………
(1)求椭圆C的焦点坐标和离心率;
(2)将|AB|表示为m的函数,并求|AB|的最大值.
5.在平面直角坐标系 中,如图,已知椭圆E: 的左、右顶点分别为 、 ,上、下顶点分别为 、 .设直线 的倾斜角的正弦值为 ,圆 与以线段 为直径的圆关于直线 对称.

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(六)含答案人教版新高考分类汇编

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(六)含答案人教版新高考分类汇编

高中数学专题复习《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编年高考浙江卷(文))如图F1.F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点()A.B分别是C1.C2在第二.四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A. 2 B. 3 C.32D.622.1 .(汇编年高考四川卷(文))从椭圆22221(0)x ya ba b+=>>上一点P向x轴作(第9题图)垂线,垂足恰为左焦点1F ,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且//AB OP (O 是坐标原点),则该椭圆的离心率是 ( )A .24B .12C .22D .323.(汇编江苏)抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1617B .1615C .87D .04.(汇编安徽理数)5、双曲线方程为2221x y -=,则它的右焦点坐标为( )A 、2,02⎛⎫⎪ ⎪⎝⎭B 、5,02⎛⎫⎪ ⎪⎝⎭C 、6,02⎛⎫⎪ ⎪⎝⎭D 、()3,05.(汇编四川文数)(3)抛物线28y x =的焦点到准线的距离是( ) (A ) 1 (B )2 (C )4 (D )86.(汇编)已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53 B .43 C .54 D .327.(汇编全国Ⅱ理9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .(22),B .(25),C .(25),D .(25),8.(汇编福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A .B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A A .33 B .32 C .22 D .23 9.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为A.2B.3C.4D. 510.已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是____________第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11. 椭圆1422=+y x 的长轴长等于 ▲ . 12.已知平面上定点F 1、F 2及动点M .命题甲:“a MF MF 2||||21=-(a 为常数)”;命题乙:“ M 点轨迹是F 1、F 2为焦点的双曲线”.则甲是乙的 ▲ .条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中的一个)13.椭圆()012222>>=+b a by a x ,直线l 过右焦点F 与椭圆相交于B A ,两点,倾斜角为3π,若FB AF 2=,则离心率为 . 14.抛物线24y x =上有两点A,B 分别在x 轴的上下两侧,F 为焦点,FA=2,FB=5,若在AOB 这段曲线上存在点P 使APB 面积最大,则此时点P 的坐标是15.若抛物线y 2=2x 上的一点M 到坐标原点O 的距离为3,则M 到该抛物线焦点的距离为________。

解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(二)带答案人教版高中数学新高考指导

解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(二)带答案人教版高中数学新高考指导

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为 ▲3.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.评卷人得分三、解答题4.如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q . (1)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线1QR AF 交12F F 于点R ,记1PRF∆的外接圆为圆C .①求证:圆心C 在定直线7480x y ++=上;②圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.5.如图,椭圆0C :22221(0x y a b a b +=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<。

解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(二)带答案人教版高中数学真题技巧总结提升

解析几何综合问题圆与椭圆双曲线抛物线等40分钟限时练(二)带答案人教版高中数学真题技巧总结提升

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .若90APB ∠=,则椭圆离心率e 的取值范围是▲ .3.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 的值为 . 评卷人得分三、解答题4.已知椭圆()22220y x C a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C相交于A 、B 两点,且(13)B --,. (1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440x mx y y m-+++-=与D 有公共点,试求实数m 的最小值.5.已知双曲线()222210,0x y a b a b-=>>左右两焦点为12,F F ,P 是右支上一点,2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤=∈⎢⎥⎣⎦.(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-16.已知椭圆1:C 22221(0)x y a b a b+=>>的右焦点为F ,上顶点为A ,P 为1C 上任一点,MN 是圆2:C 22(3)1x y +-=的一条直径.若与AF 平行且在y 轴上的截距为32-的直线l 恰好与圆2C 相切.(Ⅰ)求椭圆1C 的离心率;(7分)(Ⅱ)若PM PN ⋅的最大值为49,求椭圆1C 的方程.(8分)7.中心在原点,焦点在x 轴上的椭圆C 的焦距为2,两准线间的距离为10.设A(5,0), B(1,0).(1)求椭圆C 的方程;(4分)(2)过点A 作直线与椭圆C 只有一个公共点D ,求过B ,D 两点,且以AD 为切线的圆的方程;(6分)(3)过点A 作直线l 交椭圆C 于P ,Q 两点,过点P 作x 轴的垂线交椭圆C 于另一点S .若→AP= t →AQ (t >1),求证:→SB= t →BQ (6分)【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(六)带答案人教版高中数学高考真题汇编辅导班专用

解析几何综合问题圆与椭圆双曲线抛物线等单元过关检测卷(六)带答案人教版高中数学高考真题汇编辅导班专用

高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0 C .22x +y -x=0D .22x +y -2x=0(汇编福建理)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.以椭圆 22221x y a b+=(a>b>0)的右焦点为圆心的圆经过原点O ,且与该椭圆的右准线交与A ,B 两点,已知△OAB 是正三角形,则该椭圆的离心率是 ▲ .3.若抛物线212y x =与圆222210x y ax a +-+-=有且只有两个不同的公共点,则实数a 的取值范围为___错 评卷人得分三、解答题4.(汇编年高考课标Ⅰ卷(文))已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长是,求||AB .请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的 方框涂黑. 5.定义变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3arctan 4θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;(2)当3arctan 4θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩(2k πθ≠,k Z ∈)下的不动点的存在情况和个数.6.已知点P (4,4),圆C :22()5(3)x m y m -+=<与椭圆E :22221(0)x y a b a b +=>>有一个公共点A (3,1),F 1、F 2分别是椭圆的左、右焦点,直线PF 1与圆C 相切. (Ⅰ)求m 的值与椭圆E 的方程; (Ⅱ)设Q 为椭圆E 上的一个动点,求AP AQ ⋅的取值范围.7.已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ). (Ⅰ)当m +n >0时,求椭圆离心率的范围; (Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题QPOyxF 1A C F 21.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为021)1(2222=+-⇔=+-y x x y x 。

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(六)附答案新高考高中数学

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(六)附答案新高考高中数学

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考湖北卷(理))已知04π
θ<<,则双曲线22
122:1cos sin x y C θθ-=与22
2222:1sin sin tan y x C θθθ
-=的 ( )
A .实轴长相等
B .虚轴长相等
C .焦距相等
D .离心率相等 2.(汇编年高考重庆文)设11229(,),(4,),(,)5
A x y
B
C x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是 “128x x +=”的( A )
(A )充要条件 (B )必要不充分条件
(C )充分不必要条件 (D )既非充分也非必要。

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(六)带答案人教版高中数学真题技巧总结提升

圆锥曲线与方程椭圆双曲线抛物线40分钟限时练(六)带答案人教版高中数学真题技巧总结提升

高中数学专题复习
《圆锥曲线与方程椭圆双曲线抛物线》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.若AB 是过椭圆中心的一条弦,M 是椭圆上任意一点,且
AM ,BM 与坐标轴不平行,
,分别表示直线AM ,BM 的斜率,则=( )
A. B. C.
D.
2.1 .(汇编年高考湖北卷(理))已知04π
θ<<,则双曲线
22122:1cos sin x y C θθ-=与22
2222:1sin sin tan y x C θθθ
-=的 ( ) A .实轴长相等 B .虚轴长相等
C .焦距相等
D .离心率相等 3.(汇编宁夏理)已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,
的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分
一、选择题
1.以抛物线2
4y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .2
2
x +y +2x=0 B .2
2
x +y +x=0 C .
22x +y -x=0
D .2
2
x +y -2x=0(汇编福建理)
第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.已知圆22
670x y x +--=与抛物线2
2(0)y px p =>的准线相切,则p 的值
为 .
3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相
切,则直线l 的方程是______________________.
评卷人
得分
三、解答题
4.在平面直角坐标系xOy 中,已知双曲线1C :122
2
=-y x .
(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;
(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆12
2
=+y x 相切,求证:
OQ OP ⊥;
(3)设椭圆2C :142
2
=+y x ,若M 、N 分别是1C 、2C 上的动点,且
ON OM ⊥,求证:O 到直线MN 的距离是定值. 【汇编高考真题上海理22】
(4+6+6=16分)
5.已知,A B 分别是直线33y x =
和33
y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C
(1)求轨迹C 的方程;
(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。

若,,RM MQ RN NQ λμ==证明:λμ+为定值。

6.定义变换T :cos sin ,
sin cos ,
x y x x y y θθθθ'⋅+⋅=⎧⎨
'⋅-⋅=⎩可把平面直角坐标系上的点(,)P x y 变换
到这一平面上的点(,)P x y '''.特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P '与点P 重合,则称点P 是曲线M 在变换T 下的不动点.
(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为 2. 求该椭圆C 的标准方程. 并求出当3
arctan 4
θ=时,其两个焦点1F 、2F 经变换公式T 变换后得到的点1F '和2F '的坐标;
(2)当3arctan 4
θ=时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标; (3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换
T :cos sin ,sin cos ,x y x x y y θθθθ'⋅+⋅=⎧⎨
'⋅-⋅=⎩
(2k π
θ≠,k Z ∈)下的不动点的存在情况和个数.
7.若椭圆22
221(0)x y a b a b
+=>>的左右焦点分别为12,F F ,椭圆上的点到焦点的最
短距离为1,椭圆的离心率为
4
5
,以原点为圆心、短轴长为直径作圆O ,过圆O 外一点P 作圆O 的两条切线,PA PB 。

(1)求椭圆的方程;(2)若2PA PF =,求PO 的最小值;(3)在(2)的条件下,若点P 在椭圆内,求12PF PF 的范围。

【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.D 抛物线的焦点为)0,1(F ,又圆过原点,所以1=R ,方程为
021)1(2222=+-⇔=+-y x x y x 。

第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分
二、填空题
2.
3.x =-1或5x +12y -31=0. 评卷人
得分
三、解答题
4

过点A 与渐近线x y 2=平行的直线方程为22,2 1.2y x y x ⎛⎫
=+=+ ⎪ ⎪⎝⎭

1=ON ,22=
OM ,则O 到直线MN 的距离为3
3
. 设O 到直线MN 的距离为d .
【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为
2,它的渐近线为
x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档
题 . 5.
6.(理)解:(1)设椭圆C 的标准方程为22
221x y a b
+=(0a b >>),由椭圆定
义知焦距2222c c =⇒=
,即222a b -=…①.
又由条件得224a b +=…②,故由①、②可解得23a =,2
1b =.
即椭圆C 的标准方程为2
213
x y +=. 且椭圆C 两个焦点的坐标分别为()12,0F -和(
)
1
2,0F .
对于变换T :cos sin ,sin cos x y x x y y θθθθ'⋅+⋅=⎧⎨'⋅-⋅=⎩,当3arctan 4θ=时,可得43,55
34,
5
5x y x x y y ⎧'+=⎪⎪⎨⎪'-=⎪⎩
设()111,F x y '和()222,F x y '分别是由()12,0F -和(
)
1
2,0F 的坐标由变换公式T 变
换得到.于是,114342
(2)0,555
3432
(2)0555x y ⎧=⋅-+⋅=-⎪⎪⎨⎪=⋅--⋅=-⎪⎩,即1F '的坐标为4232,55⎛⎫
-- ⎪ ⎪⎝⎭
; 又2
24342
20,5553432
20555x y ⎧=⋅+⋅=⎪⎪⎨⎪=⋅-⋅=⎪⎩
即2F '的坐标为4232,55⎛⎫
⎪ ⎪⎝⎭
. (2)设(,)P x y 是椭圆C 在变换T 下的不动点,则当3
arctan
4
θ=时, 有43553455x y x x y y ⎧+=⎪⎪⎨⎪-=⎪⎩⇒3x y =,由点(,)P x y C ∈,即(3,)P y y C ∈
,得:2
2(3)13
y y += ⇒123y x y ⎧
=±⎪⎨⎪=⎩
,因而椭圆C 的不动点共有两个,分别为31,22⎛⎫ ⎪⎝⎭和31,22⎛⎫-- ⎪⎝⎭.
(3) 设(,)P x y 是双曲线在变换T 下的不动点,则由
cos sin ,sin cos ,x y x x y y θθθθ⋅+⋅=⎧⎨
⋅-⋅=⎩()()sin 1cos ,
sin 1cos ,
y x x y θθθθ⋅=-⋅⎧⎪⇒⎨⋅=+⋅⎪⎩ 因为2k πθ≠
,k Z ∈,故1cos sin tan sin 1cos 2
y x θθθ
θθ-===+.
不妨设双曲线方程为
221x y m n +=(0mn <),由tan 2
y x θ=代入得 则有2
22
2tan tan 2211x n m x x m n mn
θθ⎛⎫⋅+ ⎪⎝⎭+=⇔=, 因为0mn <,故当2
tan 02
n m θ
+=时,方程
2
2tan 21n m x mn
θ
+=无解;
当2
tan 02
n m θ
+≠时,要使不动点存在,则需220tan
2
mn
x n m θ
=
>+,
因为0mn <,故当2tan 02
n m θ
+<时,双曲线在变换T 下一定有2个不动点,否
则不存在不动点. 进一步分类可知:
(i )当0n <,0m >时,即双曲线的焦点在x 轴上时,
2
2
tan 0tan 2
2
n
n m m
θ
θ
⇒+<⇒<-
; 此时双曲线在变换T 下一定有2个不动点;
(ii )当0n >,0m <时,即双曲线的焦点在y 轴上时,
2
2
tan 0tan 02
2
n
n m m
θ
θ
⇒+<⇒>-
>. 此时双曲线在变换T 下一定有2个不动点. 7.。

相关文档
最新文档