2018年中考数学专题《相似三角形》复习冲刺训练含答案解析

合集下载

2018中考数学专题汇编:相似三角形 (含解析)

2018中考数学专题汇编:相似三角形 (含解析)

2018中考数学相似三角形课时练一.选择题1.(2018•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元2.(2018•铜仁市)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.163.(2018•临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.4.(2018•崇明县一模)如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:15.(2018•随州)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C. 1 D.6.(2018•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=7.(2018•扬州)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③8.(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD 交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.29.(2018•泸州)如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.10.(2018•恩施州)如图所示,在正方形ABCD中,G为CD边中点,连接AG 并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1211.(2018•达州)如图,E,F是平行四边形ABCD对角线AC上两点,AE=CF=AC.连接DE,DF并延长,分别交AB,BC于点G,H,连接GH,则的值为()A.B.C.D.112.(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二.填空题13.(2018•北京)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.14.(2018•包头)如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB=1,则S△ADF的值相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF为.三.解答题15.(2018•株洲)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB 和AD,其中AM=AN.(1)求证:Rt△ABM≌Rt△AND;(2)线段MN与线段AD相交于T,若AT=,求tan∠ABM的值.16.(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.17.(2018•上海)已知:如图,正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE﹣BE;(2)联结BF,如课=.求证:EF=EP.18.(2018•杭州)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB 于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.19.(2018•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.20.(2018•济宁)如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.21.(2018•聊城)如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)若正方形边长是5,BE=2,求AF的长.答案提示1.【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.2.【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.3.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B4.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE :S△BFA=9:16.故选:B.5.【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S 四边形BCED,可得出=,结合BD=AB﹣AD即可求出的值,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴()2=.∵S△ADE =S四边形BCED,∴=,∴===﹣1.故选:C.6.【分析】由GE∥BD、GF∥AC可得出△AEG∽△ABD、△DFG∽△DCA,根据相似三角形的性质即可找出==,此题得解.【解答】解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.7.【分析】(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.8.【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.9.【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可;【解答】解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是解析式,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.10.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG ∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.10.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.11.【分析】首先证明AG:AB=CH:BC=1:3,推出GH∥AC,推出△BGH∽△BAC,可得==()2=()2=,=,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形∴AD=BC,DC=AB,∵AC=CA,∴△ADC≌△CBA,∴S△ADC =S△ABC,∵AE=CF=AC,AG∥CD,CH∥AD,∴AG:DC=AE:CE=1:3,CH:AD=CF:AF=1:3,∴AG:AB=CH:BC=1:3,∴GH∥AC,∴△BGH∽△BAC,∴==()2=()2=,∵=,∴=×=,故选:C.12.【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△CEH≌△CBH,Rt△HFE≌Rt△HFA,利用全等三角形的性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.13.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.14.【分析】由3AE=2EB可设AE=2a、BE=3a,根据EF∥BC得=()2=,结合S△AEF =1知S△ADC=S△ABC=,再由==知=,继而根据S△ADF=S△ADC可得答案.【解答】解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,=1,∵S△AEF=,∴S△ABC∵四边形ABCD是平行四边形,=S△ABC=,∴S△ADC∵EF∥BC,∴===,∴==,=S△ADC=×=,∴S△ADF故答案为:.15.【分析】(1)利用HL证明即可;(2)想办法证明△DNT∽△AMT,可得由AT=,推出,在Rt △ABM中,tan∠ABM=.【解答】解:(1)∵AD=AB,AM=AN,∠AMB=∠AND=90°∴Rt△ABM≌Rt△AND(HL).(2)由Rt△ABM≌Rt△AND易得:∠DAN=∠BAM,DN=BM∵∠BAM+∠DAM=90°;∠DAN+∠ADN=90°∴∠DAM=∠AND∴ND∥AM∴△DNT∽△AMT∴∵AT=,∴∵Rt△ABM∴tan∠ABM=.16.【分析】根据角平分线定义和平行线的性质求出∠D=∠CBD,求出BC=CD=4,证△AEB∽△CED,得出比例式,求出AE=2CE,即可得出答案.【解答】解:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∵AB∥CD,∴∠D=∠ABD,∴∠D=∠CBD,∴BC=CD,∵BC=4,∴CD=4,∵AB∥CD,∴△ABE∽△CDE,∴=,∴=,∴AE=2CE,∵AC=6=AE+CE,∴AE=4.17.【分析】(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用=和AF=BE得到=,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.【解答】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABE和△DAF中,∴△ABE≌△DAF,∴BE=AF,∴EF=AE﹣AF=AE﹣BE;(2)如图,∵=,而AF=BE,∴=,∴=,∴Rt△BEF∽Rt△DFA,∴∠4=∠3,而∠1=∠3,∴∠4=∠1,∵∠5=∠1,∴∠4=∠5,即BE平分∠FBP,而BE⊥EP,∴EF=EP.18.【分析】(1)想办法证明∠B=∠C,∠DEB=∠ADC=90°即可解决问题;(2)利用面积法:•AD•BD=•AB•DE求解即可;【解答】解:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.19.【分析】由BC∥DE,可得=,构建方程即可解决问题.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米.20.【分析】(1)结论:CF=2DG.只要证明△DEG∽△CDF即可;(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC 的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK;【解答】解:(1)结论:CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴==,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC 的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意:CD=AD=10,ED=AE=5,DG=,EG=,DH==,∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,在Rt△DCK中,DK===2,∴△PCD的周长的最小值为10+2.21.【分析】(1)根据ASA证明△ABE≌△BCF,可得结论;(2)根据(1)得:△ABE≌△BCF,则CF=BE=2,最后利用勾股定理可得AF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵AB=BC=5,由(1)得:△ABE≌△BCF,∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF====.。

专题03 相似三角形的存在性问题-玩转压轴题,争取满分之备战2018年中考数学解答题高端精品(解析版)

专题03 相似三角形的存在性问题-玩转压轴题,争取满分之备战2018年中考数学解答题高端精品(解析版)

玩转压轴题,争取满分之备战2018年中考数学解答题高端精品专题三 相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。

难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。

2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。

【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2017年湖北鄂州中考)已知,抛物线23y ax bx =++(a <0)与x 轴交于A (3,0)、B 两点,与y 轴交于点C ,抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12. (1)求抛物线的解析式及顶点D 的坐标;(2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使12PAC ACD S S ∆∆=,求点P 的坐标; (4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.【解析】试题分析:(1)由对称轴求出B 的坐标,由待定系数法求出抛物线解析式,即可得出顶点D 的坐标;(2)由勾股定理和勾股定理的逆定理证出△ACD 为直角三角形,∠ACD =90°.得出AD 为△ACD 外接圆的直径,再证明△AED 为直角三角形,∠ADE =90°.得出AD ⊥DE ,即可得出结论;(3)求出直线AC 的解析式,再求出线段AD 的中点N 的坐标,过点N 作NP ∥AC ,交抛物线于点P ,求出直线NP 的解析式,与抛物线联立,即可得出答案;学=科网(4)由相似三角形的性质和直角三角形的性质即可得出答案.试题解析:(1)∵抛物线的对称轴是直线x =1,点A (3,0),∴根据抛物线的对称性知点B 的坐标为(﹣1,0),OA =3,将A (3,0),B (﹣1,0)代入抛物线解析式中得: 9330{30a b a b ++=-+=,解得: 1{ 2a b =-=,∴抛物线解析式为223y x x =-++;当x =1时,y =4,∴顶点D (1,4).(3)设直线AC 的解析式为y =kx +b ,根据题意得: 30{ 3k b b +==,解得: 1{ 3k b =-=,∴直线AC 的解析式为y =﹣x +3,∵A (3,0),D (1,4),∴线段AD 的中点N 的坐标为(2,2),过点N 作NP ∥AC ,交抛物线于点P ,设直线NP 的解析式为y =﹣x +c ,则﹣2+c =2,解得:c =4,∴直线NP 的解析式为y =﹣x +4,由y =﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x x,∴y y∴P,;(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣13);综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣13).【名师点睛】本题是二次函数综合题目,考查了待定系数法求二次函数和一次函数的解析式、勾股定理、勾股定理的逆定理、切线的判定、相似三角形的性质等知识;本题综合性强,有一定难度.【举一反三】(2017年山东省济宁附中二模)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,(点A 在点B的左侧),与直线AC交于点C(2,3),直线AC与抛物线的对称轴l相交于点D,连接BD.(1)求抛物线的函数表达式,并求出点D的坐标;(2)如图2,若点M、N同时从点D出发,均以每秒1个单位长度的速度分别沿DA、DB运动,连接MN,将△DMN沿MN翻折,得到△D′MN,判断四边形DMD′N的形状,并说明理由,当运动时间t为何值时,点D′恰好落在x轴上?(3)在平面内,是否存在点P(异于A点),使得以P、B、D为顶点的三角形与△ABD相似(全等除外)?若存在,请直接写出点P的坐标,若不存在,请说明理由.学科!网(3)由△ABD为等腰直角三角形及△PBD与△ABD相似且不全等,知△PBD是以BD为斜边的等腰直角三角形,结合图形即可得答案.解:(1)将点A(﹣1,0)、C(2,3)代入y=﹣x2+bx+c,得:10{423b cb c--+=-++=,解得:2{3bc==,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,设直线AC的函数解析式为y=kx+b,将A(﹣1,0)、C(2,3)代入y=kx+b,得:{23k bk b-+=+=,解得:1{1kb==,∴直线AC的函数解析式为y=x+1,又∵点D是直线AC与抛物线的对称轴的交点,∴x D=1,y D=1+1=2,∴点D的坐标为(1,2).(2)四边形DMD′N是正方形,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴令y=0,得﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0)、B(3,0),∴AB=1+3=4,而AD2+BD2=AB2,∴△ABD是等腰直角三角形,∴∠DAB=∠DBA=45°,∠ADB=90°,由翻折可知:D′M=DM、DN=ND′,又∵DM=DN,∴四边形MDND′为菱形,∵∠MDN=90°,∴四边形MDND′是正方形;设DM=DN=t,当点D落在x轴上的点D′处时,∵四边形MDND′为正方形,∴∠D′NB=90°,在Rt△D′NB中,D′N=t,t,BD′=2,∴t2+(t)2=22,∴t1=t2时,点D恰好落在x轴上的D′处.(3)存在,如图,由(2)知△ABD为等腰直角三角形,∵△PBD与△ABD相似,且不全等,∴△PBD是以BD为斜边的等腰直角三角形,∴点P的坐标为(1,0)或(2,3).点睛:本题主要考查二次函数综合运用,熟练掌握待定系数法求函数解析式、翻折的性质、等腰直角三角形的判定好性质、正方形的判定与性质及勾股定理是解题的关键.类型二【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2017年广东省深圳市模拟)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线2=++经过O,D,C三点.y ax bx c(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【解析】试题分析:(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB-BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;试题解析:(1)∵四边形ABCO 为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,由题意,得△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD ,由勾股定理易得EO=6,∴AE=10﹣6=4,设AD=x ,则BD=ED=8﹣x ,由勾股定理,得()22248x x +=﹣ , 解得,x=3,∴AD=3,∵抛物线2y ax bx c =++过点D (3, 10),C (8, 0),O (0, 0), ∴9310{ 6480a b a b +=+=,解得 23{ 163a b =-=, ∴抛物线的解析式为: 221633y x x =-+;(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5,而CQ=t ,EP=2t ,∴PC=10﹣2t ,当∠PQC=∠DAE=90°,△ADE∽△QPC, ∴CQ CP AE DE =,即 10245t t -=, 解得4013t =, 当∠QPC=∠DAE=90°,△ADE∽△PQC, ∴PC CQ AE DE =,即 10245t t -=, 解得257t =, 学科=网 ∴当4013t =或257t =时,以P 、Q 、C 为顶点的三角形与△ADE 相似; (3)假设存在符合条件的M 、N 点,分两种情况讨论:①EC 为平行四边形的对角线,由于抛物线的对称轴经过EC 中点,若四边形MENC 是平行四边形,那么M 点必为抛物线顶点; 则: 3243M ⎛⎫ ⎪⎝⎭,;而平行四边形的对角线互相平分,那么线段MN 必被EC 中点(4,3)平分,则1443N ⎛⎫- ⎪⎝⎭,; ②EC 为平行四边形的边,则EC//MN ,EC =MN ,设N (4,m ),则M (4﹣8,m+6)或M (4+8,m ﹣6);将M (﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时 N (4,﹣38)、M (﹣4,﹣32);将M (12,m ﹣6)代入抛物线的解析式中,得:m=﹣26,此时 N (4,﹣26)、M (12,﹣32);综上,存在符合条件的M 、N 点,且它们的坐标为:①()1432M --,, ()1438N -,; ②()21232M -,, 2(426N -,); ③33243M ⎛⎫ ⎪⎝⎭,, 31443N ⎛⎫-⎪⎝⎭,. 【名师点睛】本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.【举一反三】(2017年云南昆明市官渡区一中模拟)如图,已知一次函数y=0.5x+1的图象与x 轴交于点A,与y 轴交于点B,二次函数y=0.5x 2+bx+c 的图象与一次函数y=0.5x+1的图象交于点B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0).(1)求二次函数的解析式;(2)在在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在动点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动时间t 的值;若不存在,请说明理由;(3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△AB D 相似?若存在,求a 的值;若不存在,说明理由.【解析】试题分析:(1)根据一次函数的解析式可找出点B 的坐标,再根据点A 、D 的坐标利用待定系数法即可求出二次函数的解析式;(2)假设存在,则点P 的坐标为(t ,0).联立直线与抛物线解析式成方程组,解方程组求出点C 的坐标,根据点B 、P 的坐标利用两点间的距离公式即可求出PB 、PC 、BC 的长度,再利用勾股定理即可得出关于t 的一元二次方程,解方程即可得出结论;(3)假设存在,则AP=2t ,AQ=at .由一次函数解析式即可找出点A 的坐标,结合点B 、D 的坐标即可得出AB 、AD 的长度,分△PAQ ∽BAD 和△PAQ ∽△DAB 两种情况考虑,根据相似三角形的性质即可得出关于a 的一元一次方程,解方程即可求出a 值,此题得解.试题解析:(1)将B(0,1),D(1,0)的坐标代入y=12x2+bx+c , 得: 1{ 102c b c =++=, 解得: 3{ 21b c =-=, 故解析式为213y x x 122=-+; (2)设符合条件的点P 存在,令P(a,0):当P 为直角顶点时,如图:过C 作CF ⊥x 轴于F ;∵Rt△BOP∽Rt△PCF,∴BO OP PF CF=,即143aa=-,整理得a2−4a+3=0,解得a=1或a=3;故可得t=1或3.(3)存在符合条件的t值,使△APQ与△ABD相似,①当△APQ∽△ABD时, AP AQ AB AD=,解得:②当△APQ∽△ADB时, AP AQ AD AB=,解得:∴存在符合条件的a值,使△APQ与△ABD相似类型三【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2017年江苏省徐州市中考数学模拟)如图,已知:在平面直角坐标系中,直线l与y轴相交于点A(0,m)其中m<0,与x轴相交于点B(4,0).抛物线y=ax2+bx(a>0)的顶点为F,它与直线l相交于点C,其对称轴分别与直线l和x轴相交于点D和点E.(1)设a=12,m=﹣2时,①求出点C、点D的坐标;②抛物线y=ax2+bx上是否存在点G,使得以G、C、D、F四点为顶点的四边形为平行四边形?如果存在,求出点G的坐标;如果不存在,请说明理由.(2)当以F、C、D为顶点的三角形与△BED相似且满足三角形FAC的面积与三角形FBC面积之比为1:3时,求抛物线的函数表达式.【解析】试题分析:(1)①根据待定系数法,可得抛物线的解析式,根据配方法,可得顶点坐标;根据解方程组,可得C点坐标,根据自变量与函数值的对应关系,可得D点坐标;②根据菱形的性质,可得G点坐标,根据平行四边形的判定,可得答案;(2)根据待定系数法,可得b与a的关系,根据配方法,可得顶点坐标,根据平行线分线段成比例,可得OH的长,根据自变量与函数值的对应关系,可得C点坐标,根据相似三角形的对应角相等,可得∠FCD=90°,根据相思三角形的性质,可得关于a的方程,根据抛物线的开口向上,可得a的值.试题解析:(1)①如图1,,当a=12时,将B点坐标代入,得y=12x2﹣2x=12(x﹣2)2﹣2顶点坐标为(2,﹣2);当m=﹣2时,一次函数的解析式为y=12x﹣2.联立抛物线与直线,得1 2x2﹣2x=12x﹣2,解得x=1,当x=1时,y=﹣32,即C点坐标为(1,﹣32).当x=2时,y=﹣1,即D点坐标为(2,﹣1);②假设存在G点,使得以G、C、D、F四点为顶点的四边形是平行四边形.则CG与DF互相平分,而EF是抛物线的对称轴,且点G在抛物线上∴CG⊥DF,∴DCFG是菱形,∴点C关于EF的对称点G(3,﹣32).设DF与CG与DF相交于O′点,则DO′=O′F=12,CO′=O′G=1,∴四边形DCFG是平行四边形.∴抛物线y=ax2+bx上存在点G,使得以G、C、D、F四点为顶点的四边形为平行四边形,点G的坐标为(3,﹣32);(2)如图2,,∵抛物线y=ax2+bx的图象过(4,0)点,16a+4b=0,∴b=﹣4a.∴y=ax2+bx=ax2﹣4ax=a(x﹣2)2﹣4a的对称轴是x=2,∴F点坐标为(2,﹣4a).∵三角形FAC的面积与三角形FBC面积之比为1:3,BC:AC=3:1.过点C作CH⊥OB于H,过点F作FG∥OB,FG与HC交于G点.则四边形FGHE是矩形.由HC∥OA,得BC:AC=3:1.由HB:OH=3:1,OB=4,OE=EB,得HE=1,HB=3.将C点横坐标代入y=ax2﹣4ax,得y=﹣3a.∴C(1,﹣3a),∴HC=3a,又F(2,﹣4a).∴GH=4a,GC=a.在△BED中,∠BED=90°,若△FCD与△BED相似,则△FCD是直角三角形∵∠FDC=∠BDE<90°,∠CFD<90°,∴∠FCD=90°.∴△BHC∽△CGF,∴BH HC CG GF=,∴331aa=,∴a2=1,∴a=±1.∵a>0,∴a=1.∴抛物线的解析式为y=x2﹣4x.【名师点睛】本题考查了二次函数综合题,利用解方程组是求C点坐标的关键;利用菱形的对角线垂直且互相平分是求G 点的关键;利用相似三角形的性质的出关于a的方程是解题关键,又利用了平行线分线段成比例.【举一反三】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点D的坐标为(﹣3,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.【解析】试题分析:(1)设交点式y=a (x ﹣1)(x+3),然后把B 点坐标代入求出a 即可得到抛物线解析式;(2)先解方程﹣43x 2﹣83x+4=4,解得x 1=0,x 2=﹣2,则﹣2<m <0,设P (m ,﹣43 m 2﹣83m+4),G (m ,4),则可用m 表示PG ;(3)易得△DEH∽△DOB,则判定△PGB 与△BOD,由于∠PGB=∠DOB,根据相似三角形的判定方法,当PG BG OB OD = 时,△PGB∽△BOD,则△PGB∽△HED,当PG BG OD OB=时,△PGB∽△DOB,则△PGB∽△DEH,然后分别利用相似比列关于m 的方程,再解方程求出m ,从而得到满足条件的m 的值.试题解析:(1)设抛物线解析式为y=a (x ﹣1)(x+3),把B (0,4)代入得a•(﹣1)•3=4,解得a=﹣43, 所以抛物线解析式为y=﹣43(x ﹣1)(x+3), 即y=﹣43x 2﹣83x+4;(3)∵HE∥OB,∴△DEH∽△DOB,∵∠PGB=∠DOB,∴当PG BG OB OD=时,△PGB∽△BOD,则△PGB∽△HED, 即2483343m m m --=- ,整理得m 2+m=0,解得m 1=0(舍去),m 2=﹣1, 当PG BG OD OB=时,△PGB∽△DOB,则△PGB∽△DEH, 即2483334m m m --=-,整理得16m 2+23m=0,解得m 1=0(舍去),m 2=﹣2316 , 综上所述,在(2)的条件下,存在点P ,使得以P 、B 、G 为顶点的三角形与△DEH 相似,此时m 的值为﹣1或﹣2316.【新题训练】1.如图,抛物线()20y ax bx c a =++≠的顶点坐标为()2,1-,并且与y 轴交于点()0,3C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO 相似.若存在,求出点E 的坐标;若不存在,请说明理由.【解析】试题分析:(1)设抛物线的表达式为y=a (x-2)2-1(a≠0),将点C 的坐标代入即可得出答案;(2)由直线BC 的解析式知,∠OBC=∠OCB=45°.又由题意知∠EFD=∠COB=90°,所以只有△EFD∽△COB,根据这种情况求点E 的坐标即可.试题解析:(1)该抛物线的顶点坐标为()2,1-,所以该抛物线的解析式为()221y a x =--,又该抛物线过点()0,3C ,代入()221y a x =--得: 413a -=,解得1a =,故该抛物线的解析式为()22214y x x x =--=-+3.(2)假设存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似.由(1)知,该抛物线的解析式是y=x 2-4x+3,即y=(x-1)(x-3),∴该抛物线与x 轴的交点坐标分别是A (1,0),B (3,0).∵C (0,3),∴易求直线BC 的解析式为:y=-x+3.∴∠OBC=∠OCB=45°.又∵点D 是对称轴上的一点,∴D (2,1).如图,连接DF .∵EF ∥y 轴,∴只有∠EFD=∠COB=90°.∵以D 、E 、F 为顶点的三角形与△BCO 相似,∴∠DEF=∠FDE=45°,∴只有△EFD ∽△COB .设E (x ,-x+3),则F (x ,1),∴1=x 2-4x+3,解得,当当∴E 1(、E 2(.∠EDF=90°;易知,直线AD :y=x-1,联立抛物线的解析式有:x 2-4x+3=x-1,解得 x 1=1、x 2=4;当x=1时,y=-x+3=2;当x=4时,y=-x+3=-1;∴E 3(1,2)、E 4(4,-1).∴综上,点E 的坐标为(1,2)或(4,-1).点睛:本题是二次函数综合题,解题时,利用了待定系数法求二次函数的解析式.注意解答(2)时,只有△EFD∽△COB 一种情况.2.平面直角坐标系xOy 中,对称轴平行与y 轴的抛物线过点()1,0A 、()3,0B 和()4,6C .(1)求抛物线的表达式.(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交于点D 、E (点D 在点E 的左边),且使ACD AEC ∽(顶点A 、C 、D 依次对应顶点A 、E 、C ),试求k 的值,并说明方向.【解析】试题分析:(1)利用待定系数法直接求出抛物线的解析式;(2)设出D ,E 坐标,根据平移,用k 表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63-2k ,进而利用相似三角形得出比例式建立方程即可求出k(2)设点(),0D m , (),0E n .∵()1,0A ,∴ 1AD m =-, 1AE n =-.由(1)知,抛物线的解析式为()22286222y x x x =-+=--. ∴将此抛物线先沿x 轴方向向右平移6个单位,得到()22262y x =---,即()2282y x =-=.∴再沿y 轴方向平移k 个单位,则()2282y x k =---;令0y =,则()22820x k ---=,∴22321260x x k -+-=. ∴16m n +=, 632k mn =-(韦达定理). ∵()1,0A , ()4,6C , ∴()22412645AC =-⨯+=. ∵ACD ∽AEC , ∴AC AD AE AC=, ∴2AC AD AE =⋅.∴()()()45111m n mn m n =--=-++, ∴45631612k =--+. ∴k=6,即:k=6,向下平移6个单位.3.已知:关于x 的二次函数y=x 2+bx+c 经过点(﹣1,0)和(2,6).(1)求b 和c 的值.(2)若点A (n ,y 1),B (n+1,y 2),C (n+2,y 3)都在这个二次函数的图象上,问是否存在整数n ,使123111310y y y ++=?若存在,请求出n ;若不存在,请说明理由. (3)若点P 是二次函数图象在y 轴左侧部分上的一个动点,将直线y=﹣2x 沿y 轴向下平移,分别交x 轴、y 轴于C 、D 两点,若以CD 为直角边的△PCD 与△OCD 相似,请求出所有符合条件点P 的坐标.【解析】试题分析:(1)利用待定系数法即可解决问题.(2)求出y 1,y 2,y 3代入解方程即可解决问题,注意运算技巧.(3)当D 为直角顶点时,由图象可知不存在点P ,使得△PCD 为直角三角形,当C 为直角顶点,CD 为直角边时,作PE ⊥OC 于E .分两种情形①CD=2PC ,②PC=2CD ,设直线y=-2x 向下平移m 个单位,则直线CD 解析式为y=-2x-m ,求出点P 坐标(用m 表示),代入抛物线解析式即可解决问题.试题解析:(1)把(-1,0)和(2,6)代入y=x 2+bx+c 中,得10{ 426b c b c -+++==,解得1{ 0b c ==, ∴b=1,c=0.(3)当D 为直角顶点时,由图象可知不存在点P ,使得△PCD 为直角三角形,当C 为直角顶点,CD 为直角边时,作PE ⊥OC 于E .设直线y=-2x 向下平移m 个单位,则直线CD 解析式为y=-2x-m , ∴点D 坐标(0,-m ),点C 坐标(-2m ,0), ∴OD=m ,OC=2m , ∴OD=20C ,∵△PCD 与△OCD 相似,∴CD=2PC 或PC=2CD ,①当CD=2PC 时,∵∠PCD=90°,∴∠PCE+∠DCO=90°,∠DCO+∠CDO=90°,∴∠PCE=∠CDO ,∵∠PEC=∠COD=90°,∴△COD ∽△PEC , ∴2CD OD CO PC EC PE===, ∴EC=2m ,PE=4m , ∴点P 坐标(-m ,-4m ),代入y=x 2+x , 得-4m =m 2-m ,解得m=34或(0舍弃) ∴点P 坐标(-34,-316). ②PC=2CD 时,由12CD OD CO PC EC PE ===, ∴EC=2m ,PE=m ,∴点P 坐标(-52m ,-m ),代入y=x 2+x ,得-m=254m 2-52m , 解得m=625和(0舍弃),∴点P 坐标(-35,-625).4.如图,二次函数22y ax bx =++的图像与x 轴交于点A ()1,0-、B ()4,0,与y 轴交于点C . (1)a = ; b = ;学-科网(2)点P 为该函数在第一象限内的图像上的一点,过点P 作PQ BC ⊥于点Q ,连接PC , ①求线段PQ 的最大值;②若以P 、C 、Q 为顶点的三角形与ABC ∆相似,求点P 的坐标.【解析】试题分析:(1)设交点式y=a (x+1)(x-4),再展开可得到-4a=2,解得a=-12,即可得到b 的值; (2)①作PN ⊥x 轴于N ,交BC 于M ,如图,先利用待定系数法求出直线BC 的解析式为y=-12x+2,设P (t ,-12t 2+32t+2),则M (t ,-12t+2),用t 表示出PM=-12t 2+2t ,再证明△PQM ∽△BOC ,利用相似比得到2,然后利用二次函数的性质解决问题;②讨论:当∠PCQ=∠OBC 时,△PCQ ∽△CBO ,PC ∥x 轴,利用对称性可确定此时P 点坐标;当∠CPQ=∠OBC 时,△CPQ ∽△CBO ,则∠CPQ=∠MPQ ,所以△PCM 为等腰三角形,则PC=PM ,利用两点间的距离公式得到t 2+(-12t 2+32t+2-2)2=(-12t 2+2t )2,然后解方程求出t 得到此时P 点坐标.试题解析:(1)设抛物线解析式为y=a(x+1)(x −4), 即y=ax 2−3ax −4a , 则−4a=2,解得a=−12, 则b=-3a=32; (2)(2)①作PN ⊥x 轴于N ,交BC 于M ,如图,当x=0时,y=-12x 2+32x+2=2,则C(0,2), 设直线BC 的解析式为y=mx+n ,把C(0,2),B(4,0)得2{ 40n m n =+=,解得1{ 22m n =-=,∴直线BC 的解析式为y=12-x+2, 设P(t , 12-t 2+32t+2),则M(t , 12-t+2), ∴PM=−12t 2+32t+2−(−12t+2)=− 12t 2+2t ,∵∠NBM=∠NPQ , ∴△PQM ∽△BOC , ∴=PQ PM OB BC ,即, ∴PQ=2−2)2∴当t=2时,线段PQ②当∠PCQ=∠OBC 时,△PCQ ∽△CBO , 此时PC ∥OB,点P 和点C 关于直线x=32对称, ∴此时P 点坐标为(3,2); 当∠CPQ=∠OBC 时,△CPQ ∽△CBO , ∵∠OBC=∠NPQ , ∴∠CPQ=∠MPQ ,而PQ ⊥CM ,∴△PCM 为等腰三角形, ∴PC=PM ,∴t 2+(−12t 2+32t+2−2)2=(−12t 2+2t)2,解得t=32,此时P 点坐标为(32, 258),综上所述,满足条件的P 点坐标为(3,2)或(32, 258). 点睛:本题考查了二次函数综合题,熟练掌握二次函数图象上点的坐标特征和二次函数的性质和等腰三角形的性质;会利用待定系数法求一次函数和二次函数的解析式;能运用相似比计算线段的长或表示线段之间的关系;能利用分类讨论的思想解决数学问题.5.如图,抛物线28y ax bx =+-交x 轴于A , B 两点,交y 轴于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称交于点E ,连接CE ,点A , D 的坐标分别为()2,0-, ()6,8-. (1)求抛物线的解析式,并分别求出点B 和点E 的坐标.(2)在抛物线上是否存在点F ,使FOE ≌FCE ,若存在,求出点F 的坐标;若不存在,请说明理由.【解析】试题分析:(1)利用待定系数法求抛物线的函数表达式和直线DE 的解析式,利用配方法求抛物线的对称轴,即点E 的横坐标为x=3,代入直线DE 中可求得E 的纵坐标,根据对称性求得点B 的坐标; (2)如图,根据△FOE ≌△FCE ,对应边相等,得FC=FO ,所以F 在OC 的中垂线上,点F 纵坐标为-4,代入抛物线后求得点F 的坐标试题解析:(1)∵抛物线28y ax bx =+-经过点()2,0A -, ()6,8D -,∴4280{36688a b a b --=+-=-,计算得出1{23a b ==-,∴抛物线的函数表达式21382y x x =--, ∵()221125383222y x x x ==-=--,∴抛物线的对称轴为直线3x =.又抛物线与x 轴交于A , B 两点,点A 的坐标为()2,0-. ∴点B 的坐标为()8,0,设直线l 的函数表达式为y kx =. ∵点()6,8D -,计算得出43k =-, ∴直线l 的函数表达式为43y x =-, ∵点E 为直线l 和抛物线对称轴的交点, ∴点E 的横坐标为3,纵坐标不4343-⨯=-, ∴点E 的坐标为()3,4-.6.已知直线y=2x ﹣5与x 轴和y 轴分别交于点A 和点B ,抛物线y=﹣x 2+bx+c 的顶点M 在直线AB 上,且抛物线与直线AB 的另一个交点为N .(1)如图,当点M 与点A 重合时,求抛物线的解析式; (2)在(1)的条件下,求点N 的坐标和线段MN 的长;(3)抛物线y=﹣x 2+bx+c 在直线AB 上平移,是否存在点M ,使得△OMN 与△AO B 相似?若存在,直接写出点M 的坐标;若不存在,请说明理由.【解析】试题分析:(1)①首先求得直线与x轴,y轴的交点坐标,利用二次函数的对称轴的公式即可求解;②N在直线上同时在二次函数上,因而设N的横坐标是a,则在两个函数上对应的点的纵坐标相同,据此即可求得a的值,即N的坐标,过N作NC⊥x轴,垂足为C,利用勾股定理即可求得MN的长;(2)△AOB的三边长可以求得OB=2OA,AB y=-x2+bx+c在直线AB上平移,则MN的长度不变,根据(1)的结果是MN是AB边上的高的二倍,当OM⊥AB或ON⊥AB时,两个三角形相似,据此即可求得M的坐标.试题解析:(1)①∵直线y=2x-5与x轴和y轴交于点A和点B,∴A(52,0),B(0,-5).当顶点M与点A重合时,∴M(52,0).∴抛物线的解析式是:y=−(x−52)2.即y=−x2+5x−254.②∵N在直线y=2x-5上,设N(a,2a-5),又N在抛物线y=−x2+5x−254上,∴2a−5=−a2+5a−254.解得a1=12,a2=52(舍去)∴N(12,−4).过N作NC⊥x轴,垂足为C.∵N(12,−4),∴C(12,0).∴NC=4.MC=OM−OC=52−12=2.∴MN ; (2)设M (m ,2m -5),N (n ,2n -5). ∵A (52,0),B (0,-5),∴OA=52,OB=5,则OB=2OA ,2=, 当∠MON =90°时,∵AB≠MN ,且MN 和AB 边上的高相等,因此△OMN 与△AOB 不能全等, ∴△OMN 与△AOB 不相似,不满足题意.当∠OMN =90°时,OA OMOB MN =,即12,解得则m 2+(2m -5)2=2,解得m =2,∴M (2,-1);当∠ONM =90°时,OA ON OB MN =,即12ON MN=,解得ON则n 2+(2n -5)2=2,解得n =2, ∵OM 2=ON 2+MN 2,即m 2+(2m -5)2=5+(2,解得:m =4,则M 的坐标是M (4,3).故M 的坐标是:(2,-1)或(4,3).【点睛】本题着重考查了待定系数法求二次函数解析式,注意到MN 是AB 边上的高的二倍,当OM ⊥AB 或ON ⊥AB 时,两个三角形相似是解题的关键.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把抛物线解析式化为顶点式可求得A点坐标,联立直线与抛物线解析式,解方程组,可求得B、C的坐标;(2)由A、B、C三点的坐标可求得AB、BC和AC的长,可判定△ABC为直角三角形,且可得=,可证得结论;(3)设M(x,0),则P(x,﹣x2+2x),从而可表示出OM和PM的长,分=和=两种情况,分别得到关于x的方程,可求得x的值,可求得P点坐标.【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+1,∴A(1,1),联立直线与抛物线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)证明:∵A(1,1),B(2,0),C(﹣1,﹣3),∴AB==,BC==3,AC==2,∴AB2+BC2=2+18=20=AC2,∴△ABC是以AC为斜边的直角三角形,∴∠ABC=∠ODC,∵C(﹣1,﹣3),∴OD=1,CD=3,∴==,∴△ODC∽△ABC;(3)设M(x,0),则P(x,﹣x2+2x),∴OM=|x|,PM=|﹣x2+2x|,∵∠OMP=∠ABC=90°,∴当以△OPM与△ABC相似时,有=或=两种情况,①当=时,则=,解得x=或x=,此时P点坐标为(,)或(,﹣);②当=时,则=,解得x=5或x=﹣1(与C点重合,舍去),此时P点坐标为(5,﹣15);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(5,﹣15).8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.【考点】HF:二次函数综合题.【分析】(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.由△ABE∽△MPB,得=,求出PM,根据△BPQ的面积y=•BQ•PM计算即可问题.(2)观察图象(1)(2),即可解决问题.(3)分三种情形讨论①P在BE上,②P在DE上,③P在CD上,分别求解即可.(4)由∠BIH=∠BCG=90°,推出B、I、C、G四点共圆,推出∠BGH=∠BCI,由△GBH∽△CBI,可得=,由此只要求出GH即可解决问题.【解答】解:(1)观察图象可知,AD=BC=5×2=10,BE=1×10=10,ED=4×1=4,AE=10﹣4=6在Rt△ABE中,AB===8,如图1中,作PM⊥BC于M.∵△ABE∽△MPB,∴=,∴=,∴PM=t,当0<t≤5时,△BPQ的面积y=•BQ•PM=•2t•t=t2.(2)由(1)可知BC=BE=10,ED=4.(3)①当P在BE上时,点C在C处时,∵BE=BC=10,∴当AE=AP=6时,△PQB与△ABE相似,∴t=6.②当点P在ED上时,观察图象可知,不存在△.③当点P在DC上时,设PC=a,当=时,∴=,∴a=,此时t=10+4+(8﹣)=14.5,∴t=14.5s时,△PQB与△ABE相似.(4)如图3中,设EG=m,GH=n,∵DE∥BC,∴=,∴=,∴m=,在Rt△BIG中,∵BG2=BI2+GI2,∴()2=62+(8+n)2,∴n=﹣8+或﹣8﹣(舍弃),∵∠BIH=∠BCG=90°,∴B、I、C、G四点共圆,∴∠BGH=∠BCI,∵∠GBF=∠HBI,∴∠GBH=∠CBI,∴△GBH∽△CBI,(也可以先证明△BFI∽△GFC,想办法推出△GFB∽△CFI,推出∠BGH=∠BCI)∴=,∴=,∴IC=﹣.9.如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C (5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.【考点】HF:二次函数综合题.【解答】解:(1)∵抛物线对称轴为x=1,∴﹣=1,解得a=,把A点坐标代入可得+1+c=0,解得c=﹣,∴抛物线表达式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣1)2﹣2,。

2018届初三中考数学专题复习-相似三角形--专项训练题-含答案

2018届初三中考数学专题复习-相似三角形--专项训练题-含答案

2018届初三中考数学专题复习 相似三角形 专项训练题An 2 AE在厶 ABC 中,DE // BC ,若DB = 3,则=(2.如图,在厶ABC 中, DE// BC, MN // AB ,则图中与厶ABC 相似的三角形有()A . 1个B . 2个C . 3个D . 4个3. 如图,四边形ABCD 的对角线AC, BD 相交于点O ,且将这个四边形分成①,②, ③,④四个三角形.若 OA : OC= OB : OD,贝卩下列结论中一定正确的是()A .①和②相似B .①和③相似C .①和④相似D .②和④相似4. 在Rt A ABC 和 Rt A A ' B ' C 中,/ C =Z C' = 90° ,若添加一个条件,使得 Rt △ ABC s Rg A ' B ' C ,则下列条件中不符合要求的是()1.如图,A-iB -2 D -3 ACA . /A = Z A B. ZB = Z BAB _ AC AB _ AC C A B^A Z C D A C B f C5. 如图,在△ ABC 中,AD 是中线,BC = 8,/ B =Z DAC ,则线段AC 的长为(A . 4B . 4 2() A . 2 : 3B. 2 : 3C . 4 : 9D . 8 : 27AB 27. 已知△ ABC A B ,,厂亍3, AB 边上的中线 CD = 4 cm,贝卩A B &上的中线8. 如图,点D , E 分别是△ ABC 的边AB, BC 上的点,且DE// AC, AE, CD 相交于点O ,若 S DOE • S COA = 1 • 25 ,则 S BDE 与 S CDE 的比是(6. 如果两个相似三角形对应边的比为 2 : 3,那么这两个相似三角形面积的比是6 cmB.8 cmC . 8 cmD . 12 cmC . 6D . 4 3A. 1 :3 B .1 :BA为15米,然后在A 处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为(出□C A BA.10 米B .点 O ,右 Sx DOE :乐CQA = 1 : 25,贝S Sx BDE 与 S^CDE 的比是()的长为则当B‘ C已知/ ACB = Z ABD = 90° , AB = .6, AC = 2,贝S AD =1如图,在?ABCD 中,点E 是CD 的延长线上一点,BE 与AD 交于点F , DE = 2CD.时, 图中两直角三角形相似.DA . 1 : 3B . 1 :4 11.如图,已知AB// CD//果 AC : CN3 : 5, BF = 9,C . 1 : 5D . 1 : 25EF,它们依次交直线l i , I 2于点A , C, E 和点B, D, F ,如 那么DF =12. 如图,AB// CD, AD 与BC 交于点O , 已知AB = 4, CD= 3, OD= 2,那么线段 OA14.15. R \D时,△ ABC^A A B‘ C .13.中,A B'= 1, C A'= 2,(1)求证:△ ABFCEB;参考答案:1---10 CCBDB CABAB12. 13. 1.5 14. 3 2或 315. 解:(1) T 四边形 ABCD^平行四边形,二 AB// CD / A =Z C,「./ ABF =Z E ,•••△ ABF^A CEB(2) v AB// CD •△ ABF ^A DEF ,由(1)知,△ ABF ^A CEBABF ^A CE 盼DEFDE 2 1 2 1 . rilil△ DEF 二 =(二I =(;) — , .・ CEB — 9x 2— 18,同理可得 S ^ABF — 2x 4— 8,•S ^ CEB EC 3 911. 45 ~8S?ABCD= S^ABF+ S^ CEB一S^ DEF—18 + 8-2 —24。

2018届初三中考数学专题复习相似三角形专项训练题含答案

2018届初三中考数学专题复习相似三角形专项训练题含答案

2018届初三中考数学专题复习相似三角形专项训练题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届初三中考数学专题复习相似三角形专项训练题含答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届初三中考数学专题复习相似三角形专项训练题含答案的全部内容。

2018届初三中考数学专题复习相似三角形专项训练题1. 如图,在△ABC中,DE∥BC,若错误!=错误!,则错误!=( )A。

错误! B。

错误! C.错误! D。

错误!2. 如图,在△ABC中,DE∥BC,MN∥AB,则图中与△ABC相似的三角形有( )A.1个 B.2个 C.3个 D.4个3。

如图,四边形ABCD的对角线AC,BD相交于点O,且将这个四边形分成①,②,③,④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )A.①和②相似 B.①和③相似 C.①和④相似 D.②和④相似4. 在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,若添加一个条件,使得Rt△ABC∽Rt△A′B′C′,则下列条件中不符合要求的是( )A.∠A=∠A′ B.∠B=∠B′C.错误!=错误! D。

错误!=错误!5。

如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4 B.4错误! C.6 D.4错误!6. 如果两个相似三角形对应边的比为2∶3,那么这两个相似三角形面积的比是( )A.2∶3 B。

错误!∶错误! C.4∶9 D.8∶277。

已知△ABC∽△A′B′C′,错误!=错误!,AB边上的中线CD=4 cm,则A′B′边上的中线C′D′为( )A.6 cm B。

2018 初三数学中考总复习 相似三角形及其应用 专题复习练习 含答案

2018 初三数学中考总复习  相似三角形及其应用  专题复习练习 含答案

2018 初三数学中考总复习 相似三角形及其应用 专题复习练习1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( A )A.34B.43C.916D.1692. △ABC 与△DEF 的相似比为1∶4,则△ABC 与△DEF 的周长比为( C )A .1∶2B .1∶3C .1∶4D .1∶163.已知△ABC∽△DEF,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( A )A.34B.43C.916D.1694. 如图,在△ABC 中,DE ∥BC ,AD DB =12,则下列结论中正确的是( C )A.AE AC =12B.DE BC =12C.△ADE 的周长△ABC 的周长=13D.△ADE 的面积△ABC 的面积=135.如图,在△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( C )6.如图,点F 在平行四边形ABCD 的边AB 上,射线CF 交DA 的延长线于点E ,在不添加辅助线的情况下,与△AEF 相似的三角形有( C )A .0个B .1个C .2个D .3个7.当下,户外广告已对我们的生活产生直接的影响.图中的AD 是安装在广告架AB 上的一块广告牌,AC 和DE 分别表示太阳光线.若某一时刻广告牌AD 在地面上的影长CE =1 m ,BD 在地面上的影长BE =3 m ,广告牌的顶端A 到地面的距离AB =20 m ,则广告牌AD 的高AD 为( A )A .5 m B.203 m C .15 m D.607m 8.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半,若AB =2,则此三角形移动的距离AA′是( A )A.2-1B.22 C .1 D.129.如图,身高为1.6米的小华站在离路灯灯杆8米处测得影长为2米,则灯杆的高度为__8__米.10.如图,△ABC 中,AB =5,BC =3,CA =4,D 为AB 的中点,过点D 的直线与BC 所在的直线交于点E ,若直线DE 截△ABC 所得的三角形与△ABC 相似,则DE=__2或103__.11.如图,矩形EFGH 内接于△ABC,且边FG 落在BC 上.若BC =3,AD =2,EF =23EH ,那么EH 的长为__32__.12.如图,某一时刻一根2米长的竹竿EF 影长GE 为1.2米,此时,小红测得一棵被风吹斜的柏树与地面成30°角,树顶端B 在地面上的影子点D 与B 到垂直地面的落点C 的距离是3.6米,则树长AB 是多少米?解:如图,CD =3.6米,∵△BDC ∽△FGE ,∴BC CD =EF GE ,即BC 3.6=21.2,∴BC =6米,在Rt △ABC 中,∵∠A =30°,∴AB =2BC =12米,即树长AB 是12米13.在一次数学测验活动中,小明到操场测量旗杆AB 的高度.他手拿一支铅笔MN ,边观察边移动(铅笔MN 始终与地面垂直).如示意图,当小明移动到D 点时,眼睛C 与铅笔、旗杆的顶端M ,A 共线,同时,眼睛C 与它们的底端N ,B 也恰好共线.此时,测得DB =50 m ,小明的眼睛C 到铅笔的距离为0.65 m ,铅笔MN 的长为0.16 m ,请你帮助小明计算出旗杆AB 的高度.(结果精确到0.1 m)解:过点C 作CF⊥AB,垂足为F ,交MN 于点E ,则CF =DB =50 m ,CE =0.65 m ,∵MN ∥AB ,∴△CMN ∽△CAB ,∴CE CF =MN AB ,∴AB =MN·CF CE =0.16×500.65≈12.3(m),∴旗杆AB 的高度约为12.3 m14.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DF CG. (1)求证:△ADF∽△ACG;(2)若AD AC =12,求AF FG的值.解:(1)∵∠AED=∠B,∠DAE =∠CAB,∴∠ADF =∠C,∵AD AC =DF CG,∴△ADF ∽△ACG (2)∵△ADF∽△ACG,∴AD AC =AF AG ,又∵AD AC =12,∴AF AG =12,∴AF FG=115.数学兴趣小组测量校园内旗杆的高度,有以下两种方案:方案一:小明在地面上直立一根标杆EF ,沿着直线BF 后退到点D ,使眼睛C 、标杆的顶点E 、旗杆的顶点A 在同一直线上(如图1).测量:人与标杆的距离DF =1米,人与旗杆的距离DB =16米,人的目高和标杆的高度差EG =0.9米,人的高度CD =1.6米.方案二:小聪在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米.(如图2) 请你结合上述两个方案,根据符合题意的示意图,求出旗杆的高度.解:方案一:如图1,由已知得:CD∥EF∥AB,∴△ECG ∽△ACH ,∴CG CH =EG AH,即116=0.9AH,解得AH =14.4米,∴AB =AH +BH =14.4+1.6=16(米),答:旗杆的高度是16米方案二:如图2,延长AC ,BD 相交于点E ,则CD∶DE=1∶1.5,得DE =1.5CD=3米,由已知CD∥AB,∴△ABE ∽△CDE ,∴CD AB =DE BE ,即2AB =324,解得AB =16米.答:旗杆的高度是16米16. 如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆AB 落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆CD 落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是____投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.解: (1) 平行(2)过点E 作EM ⊥AB 于M ,过点G 作GN ⊥CD 于N ,则MB =EF =2,ND =GH =3,ME =BF =10,NG =DH =5,所以AM =10-2=8,由平行投影可知,AM ME =CN NG ,即810=CD -35, 解得CD =7,即电线杆的高度为7米。

2018中考相似三角形经典练习试题和的答案解析

2018中考相似三角形经典练习试题和的答案解析

相似三角形分类练习题(1)一、填空题1、如图,DE 是9BC 的中位线,那么4ADE 面积与z\ABC 面积之比是AD 12、如图,4ABC 中,DE//BC, AS 2且£但「8加,那么凡的= _________________________ 邮.3、如图,z^ABC 中,ZACB = 90° CD±AB,D 为垂足,AD = 8cm ,DB = 2cm ,那么 CD =cm4、如图,4ABC 中,D 、E 分别在 AC 、AB 上,且 AD:AB = AE:AC = 1:2 , BC = 5cm , WJ DE =题一 1国 颗一 2国 褒一 M 图 埋一 4图 墨一 b 图 思一 6图 题一 10国5、如图,AD 、BC 相交于点 O, AB//CD, OB = 2cm , OC=4cm , ^AOB 面积为 4.5cm 2,那么4 DOC 面积为 cm 2.6、如图,4ABC 中,AB = 7, AD =4, /B=/ACD,那么 AC =7、如果两个相似三角形对应高之比为 4:5,那么它们的面积比为 o 8、如果两个相似三角形面积之比为 1:9,那么它们对应高之比为 o9、两个相似三角形周长之比为 2:3,面积之差为10cm 2,那么它们的面积之和为 cm?.口 -S10、如图,4ABC 中,DE//BC, AD:DB=2:3,那么 皿-橙荒此前= 二、选择题1、两个相似三角形对应边之比是 1:5,那么它们的周长比是(). (A) 1:君;(B) 1:25; (C) 1:5; (D) B1.2、如果两个相似三角形的相似比为 1:4,那么它们的面积比为().(A) 1:16; (B) 1:8; (C) 1:4; (D) 1:2.锐角三角形ABC 的高CD 和高BE 相交于O,那么与ADOB 相似的三角形个数是().(B) 2; (C) 3; (D) 4.(A) 1:9; (B) 1:81 ; (C) 3:1 ; (D) l:3o三、如图,4ABC 中,DE//BC, BC = 6,梯形DBCE 面积是z\ADE 面积的2倍,求DE 长.3、如图,(A) 1;4、如图, 梯形 ABCD , AD //BC, AC 和BD 相交于O 点, 共同£皿“:品3 = 1:9,那么%8:为叼=甄二4四、如图,4ABE 中,AD:DB=5:2, AC:CE=4:3,求BF:FC的值.五、如图,直角梯形ABCD 中,ABXBC, BC //AD , BC<AD , BC = q , AB = 8 , AC LCD,求AD 〔用的式子表示〕六、如图,4ABC 中,点D 在BC 上,/DAC = /B, BD = 4, DC=5, DE//AC 交AB 于点E,求DE长.七、如图,ABCD是矩形,AH =2, HD =4, DE = 2, EC= 1 , F是BC上任一点〔F与点B、点C不重合〕,过F作EH的平行线交AB于G,设BF为# ,四边形HGFE面积为,写出?与彳的函数关系式,并指出自变量A的取值范围.相似三角形分类练习题〔2〕一、填空题ace._ = =__ =41、:b d丁,且那么&十八/=2、在一张比例尺为1:5000的地图上,某校到果园的图距为8cm ,那么学校到果园的实际距离为_______ m3、如图,4ABC 中,/ACB = 90° ,CD 是斜边AB 上的高,AD=4cm, BD = 16cm,那么CD =_______ c mo4、如图,/ACD = /B, AC= 6, AD =4,那么AB5、如图ABCD是平行四边形,F是DA延长线上一点,连CF交BD于G,交AB于E,那么图中相似三角形〔包括全等三角形在内〕共有________ 对.6、如图,MBC中,BC=15cm ,DE、FG均平行于BC且将9BC面积分成三等分,那么FG =cm.7、如图,AF //BE//CD, AF=12, BE=19, CD =28,那么FE:ED 的值等于s • s8、如图,AABC, DE //GF//BC,且AD = DG = GB,那么 '樟度翎10、如图,4ABC 重心为G, 3BC 和为BC 在BC 边上高之比为 (A) /1 = /2; (B) /2 = /C; (C) /1 = /BAC; (D) /2 =/B3、如图,AB//A' B' , BC//B' C' , AC//A' C',那么图中相似三角形组数为( (A) 5; (B) 6; (C) 7; (D) 8. BE 和CD 相交于点F, DF:FC=1:3,那么叫理:'©c = ( ) 0 三、?BC 中,AB = AC, AD 是底边BC 上高,BE 是AC 上中线,BE 和AD 相交于F, BC = 10 , AB= 13,求 BF 长.四、如图,ABFE 、EFCD 是全等的正方形,M 是CF 中点,DM 和AC 相交于N ,正方形边长为口, 求AN 的长.(用仪的式子表示)五、如图,AABC 中,AD ±BC, D 是垂足,E 是 BC 中点,FE± BC 交 AB 于 F, BD = 6, DC = 4, AB=8,求 BF 长.h p …A儿 _____ 口B zik — £ I P I Cc B t n .: n F 'MIEN*3晒 + S JI 兆V = ~~T六、如图,^ABC 中,〃 = 90° ,DEFG 是*BC 中内接矩形,AB = 3,AC = 4, 匕,求矩形DEFG 周长.AD = 3cm , BC = 6cm , CD = 4cm ,现要截出矩形 EFCG, ,设BE=x ,矩形EFCG 周长为y ,(1)写出?与工的(2)才取何值,矩形EFCG 面积等于直角梯形ABCD 的相似形〔3〕一、填空题1、如果两个相似三角形的周长比为 2:3,那么面积比为9、如图,ABCD 是正方形,E 是DC 上一点,DE:EC= 5:3, AELEF, WJ AE:EF=二、选择题1、两个相似三角形的相似比为 4:9, (A) 2:3; (B) 4:9; (C) 4:81 ;2、如图,D 是?BC 边BC 上一点, 那么这两个相似三角形的面积比为( (D) 16:81.△ABDsWAB,那么(). 4、如图,AABC 中,DE //BC, (A) 1:3; (B) 1:世 1:9; (D) 1:18.题六国七、如图,有一块直角梯形铁皮ABCD, (E 点在AB 上,与点A 、点B 不重合) 函数关系式,并指出自变量了取值范围; 5分O;(C) BE D C 0S-fE32、两个相似三角形相似比为2:3,且面积之和为13cm2,那么它们的面积分别为L3、三角形的三条边长分别为5cm , 9cm , 12cm ,那么连结各边中点所成三角形的周长为cm4、如图,PQ//BA, PQ = 6, BP=4, AB = 8,那么PC 等于AD _15、如图,4ABC 中,DE//BC, 万,、F=2cm2,贝〔J % 用地5=cm2.题T图题T图圈一6困6、如图,C为线段AB上一点,AACM > 3BN都是等边三角形,假设AC = 3, BC = 2,那么WCD与9ND面积比为7、AABC 中,〃ACB = 90° ,CD 是斜边AB 上的高,AB=4cm , AC = 2>^cm ,那么AD =cm.8、如图,平行四边形ABCD的对角线AC与BD相交于O, E是CD的中点,AE交BD于F,那么DF:FO=9、如图,AF //BE//CD, AB:BC=1:2, AF = 15, CD = 21,贝U BE=10、如图,DC //MN //PQ //AB, DC = 2, AB = 3.5 , DM =MP =PA,那么MN =; PQ =二、选择题1、如图,要使△ACD S/BCA,必须满足().AC _ AB CD _BC(A) CD AC; (B) AD AC; (C)AD2 = CDBD; (D)AC2=CDBC.2、如图,9BC中,CD LAB于D, DELAC于E, ZACB = 90°,那么与ABC相似的三角形个数为().(A) 2; (B) 3; (C) 4; (D) 5.3、如图,4ABC中,D是AC中点,AF//DE,工^濡皿的小飞,那么5但;“皿=().(A) 1:2; (B) 2:3; (C) 3:4; (D) 1:1.4、如图,平行四边形ABCD中,O i、02、03为对角线BD上三点,且BO i = 01.2 = 02.3 =03D,连结AO i并延长交BC于点E,连结E03并延长交AD于F,那么AD:FD等于().(A) 19:2 ; (B) 9:1 ; (C) 8:1 ; (D) 7:1.三、如图,矩形ABCD中,AB = 10cm , BC = 12cm , E为DC中点,AFLBE于点F,求AF长.四、如图,D、E分别是9BC边AB和AC上的点,/1 = /2,求证:ADAB=AEAC.五、如图,ABCD是平行四边形,点E在边BA延长线上,连CE交AD于点F, /ECA=/D,求证:ACBE=CEAD.六、如图,4ABC 中,/ACB=90° ,BC=8, AC=12, /BCD = 30°,求线段CD 长.七、如图,等腰梯形ABCD 中,AD //BC, AB=DC = 5, AD=6, BC=12, E 在AD 上,AE = 2, F为AB上任一点(点F与点A、点B不重合),过F作EC平行线交BC于G,设BF=k,四边形EFGC面积为,,(1)写出,与二的函数关系式;(2) K取何值,EGXBCo相似三角形分类练习题(3)一、填空题1、假设纱一加二°,贝U▼=x-y _ y_ _ + ♦2、I3彳,那么丁=3、如图,/B=/ACD, u旧= 2:1,那么AC:AB =4、如图,DE//BC, AD=4cm , DE = 2cm , BC = 5cm ,贝U AB =cm5、如图,DE//BC, AD:DB=1:2,那么小DE与?BC面积之比为6、如图,梯形ABCD 中,DC //EF//AB, DE = 4, AE = 6, BC = 5,那么BF =7、如图,平行四边形 ABCD 中,对角线AC 、BD 相交于O, BC=18, E 为OD 中点,连结CE 并延长交AD 于F,那么DF =AD _BC _ AC _ 58、如图,AABC 和ABED 中,假设砧 1 BS DE 弓,且3BC 和z^BED 周长之差为10cm ,那么4 ABC 周长为 cm9、如图,△ACB S /ECD, AC:EC = 5:3, 1诚c = i8,那么 Me =510、如图,AABC 中,BE 平分/ABC, BD = DE, AD =万 cm , BD = 2cm,那么 BC =cm11、如图,ABCD 是平行四边形,BC = 2CE,那么用厘〜凡^^二12、如图,AABC 中,DE//BC, BE 、CD 相交于F,且用"^ =变心用,那么$山:氏皿=13、如图,4ABC 中,BC=15cm , DE 、FC 平行于BC,且将z\ABC 面积三等分,那么 DE+FC = _______ c m14、将长为^cm 的线段进行黄金分割,那么较长线段与较短线段之差为 cm115、如图,平行四边形 ABCD 中,延长AB 至ij E,使BE= 2 AB,延长CD 至U F,使DF = DC, EF 交BC 于G ,交AD 于H ,那么又期:“斑抹= 二、选择题1、如图,4ABC 中,DE//BC,那么以下等式中不成立的是〔〕2、两个相似三角形周长分别为 8和6,那么它们的面积比为〔(A) 4:3;(B) 16:9; (C) 2:仃;(D) 仃:及.3、如图,DE//BC, AB = 15 , AC = 9, BD = 4,那么 AE 长是()(A)AD _ AE AD _ AE AB = AC. g DB = EC. AD = DE DB BC .AD(D) 1-1" DEBCA题一 5图 蛊- 6徙一 i"2 22- 6-(A) 5;⑻(A) 2:1 ; (B) 2:3; (C) 4:9; (D) 5:4.5、如图,在边长为"的正方形ABCD 的一边BC 上,任取一点E,彳EF±AE 交CD 于点F,如 果BE= x , CF= ,那么用x 的代数式表示产是().y = - 一 + z y = - - x y ~x 2 + -j = x 2 + -(A) g ; (B) 口 ; (C)鼻;(D)阴.1、:3 4 6 ,求+ £的值.2、如图,菱形ABCD 边长为3 ,延长AB 至ij E 使BE=2AB ,连结EC 并延长交AD 延长线于点F, 求AF 的长.3、如图,4ABC 中,DE//BC,心皈 :端心用觉:时=1:2 , BC =2^ ,求DE 长.4、如图,直角梯形 ABCD 中,DALAB, AB //DC , ZABC = 60° , ABC 平分线 BE 交 AD 于 E, CEXBE, BE=2,求 CD 长.5、如图,ABCD 是边长为"的正方形,E 是CD 中点,AE 和BC 的延长线相交于F, AE 垂直平 分线交AE 、BC 于H 、G,求线段FG 长.6、如图,z\ABC 中,AB>AC,边AB 上取一点D,在边AC 上取一点E,使AD=AE,直线DE BP BD=_ 的延长线和BC 延长线交于点P,求证:°尹CE o 四、(此题8分)如图,AABC 中,AB = AC, AD ±BC, D 为垂足,E 为 AC 中点,BE 交 AD 于 G, AD = 18cm , BE=15cm ,求小BC 面积.17工4、如图,DE//BC,11-B DC B控五图五、如图,4ABC中,点M在BC边上移动〔不与点B、C重合〕,作ME//CA交AB于E,作BM = xMF //BA交AC于F, S©c = 10cm2,设BC ,四边形AEMF面积为y,写出尸与x的函数关系式,并指出工取值范围.。

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。

初中数学《相似三角形》压轴30题含解析

初中数学《相似三角形》压轴30题含解析

相似三角形(压轴必刷30题专项训练)一.填空题(共9小题)1(2020秋•虹口区校级月考)一张等腰三角形纸片,底边长为15cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第6张.【分析】设第x 张为正方形,如图,△ADE ∽△ABC ,则DE BC =AM AN,从而计算出x 的值即可.【解答】解:如图,设第x 张为正方形,则DE =3(cm ),AM =(22.5-3x )(cm ),∵△ADE ∽△ABC ,∴DE BC =AM AN ,即315=22.5-3x 22.5,解得x =6.故答案为:6.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质以及正方形的性质,注:相似三角形的对应边之比等于对应边上的高之比.2(2019秋•浦东新区校级月考)如图,在平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果BE BC=23,那么BF FD =23.【分析】由平行四边形的性质可证△BEF ∽△DAF ,再根据相似三角形的性质得BE :DA =BF :DF 即可解.【解答】解:ABCD 是平行四边形,∴BC ∥AD ,BC =AD∴△BEF ∽△DAF∴BE :DA =BF :DF∵BC =AD∴BF :DF =BE :BC =2:3.【点评】本题考查了平行四边形的性质及相似三角形的判定定理和性质.3(2017秋•虹口区校级月考)如图,直角三角形ABC 中,∠ACB =90°,AB =10,BC =6,在线段AB上取一点D ,作DF ⊥AB 交AC 于点F ,现将△ADF 沿DF 折叠,使点A 落在线段DB 上,对应点记为A 1;AD 的中点E 的对应点记为E 1,若△E 1FA 1∽△E 1BF ,则AD =165.【分析】利用勾股定理列式求出AC ,设AD =2x ,得到AE =DE =DE 1=A 1E 1=x ,然后求出BE 1,再利用相似三角形对应边成比例列式求出DF ,然后利用勾股定理列式求出E 1F ,然后根据相似三角形对应边成比例列式求解得到x 的值,从而可得AD 的值.【解答】解:∵∠ACB =90°,AB =10,BC =6,∴AC =AB 2-BC 2=102-62=8,设AD =2x ,∵点E 为AD 的中点,将△ADF 沿DF 折叠,点A 对应点记为A 1,点E 的对应点为E 1,∴AE =DE =DE 1=A 1E 1=x ,∵DF ⊥AB ,∠ACB =90°,∠A =∠A ,∴△ABC ∽△AFD ,∴AD AC =DF BC ,即2x 8=DF 6,解得DF =32x ,在Rt △DE 1F 中,E 1F =DF 2+DE 12=3x 22+x 2=13x 2,又∵BE 1=AB -AE 1=10-3x ,△E 1FA 1∽△E 1BF ,∴E 1F A 1E 1=BE 1E 1F ,∴E 1F 2=A 1E 1•BE 1,即(13x 2)2=x (10-3x ),解得x =85,∴AD 的长为2×85=165.故答案为:165.【点评】本题考查了相似三角形的性质,主要利用了翻折变换的性质,勾股定理,相似三角形对应边成比例,综合题,熟记性质并准确识图是解题的关键.4(2021秋•普陀区校级月考)如图,在△ABC 中,4AB =5AC ,AD 为△ABC 的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG =FD ,连接EG 交AC 于点H .若点H 是AC 的中点,则AG FD的值为43.【分析】解题关键是作出辅助线,如解答图所示:第1步:利用角平分线的性质,得到BD =54CD ;第2步:延长AC ,构造一对全等三角形△ABD ≌△AMD ;第3步:过点M 作MN ∥AD ,构造平行四边形DMNG .由MD =BD =KD =54CD ,得到等腰△DMK ;然后利用角之间关系证明DM ∥GN ,从而推出四边形DMNG 为平行四边形;第4步:由MN ∥AD ,列出比例式,求出AG FD的值.【解答】解:已知AD 为角平分线,则点D 到AB 、AC 的距离相等,设为h .∵BD CD =S △ABD S △ACD =12AB ⋅h 12AC ⋅h =AB AC =54,∴BD =54CD .如图,延长AC ,在AC 的延长线上截取AM =AB ,则有AC =4CM .连接DM .在△ABD 与△AMD 中,AB =AM ∠BAD =∠MAD AD =AD ∴△ABD ≌△AMD (SAS ),∴MD =BD =54CD .过点M 作MN ∥AD ,交EG 于点N ,交DE 于点K .∵MN ∥AD ,∴CK CD =CM AC =14,∴CK =14CD ,∴KD =54CD .∴MD =KD ,即△DMK 为等腰三角形,∴∠DMK =∠DKM .由题意,易知△EDG 为等腰三角形,且∠1=∠2;∵MN ∥AD ,∴∠3=∠4=∠1=∠2,又∵∠DKM =∠3(对顶角)∴∠DMK =∠1,∴DM ∥GN ,∴四边形DMNG 为平行四边形,∴MN =DG =2FD .∵点H 为AC 中点,AC =4CM ,∴AH MH=23.∵MN ∥AD ,∴AG MN =AH MH ,即AG 2FD =23,∴AG FD =43.故答案为:43.方法二:如图,有已知易证△DFE ≌△GFE ,故∠5=∠B +∠1=∠4=∠2+∠3,又∠1=∠2,所以∠3=∠B ,则可证△AGH ∽△ADB设AB =5a ,则AC =4a ,AH =2a ,所以AG /AD =AH /AB =2/5,而AD =AG +GD ,故GD /AD =3/5,所以AG :GD =2:3,F 是GD 的中点,所以AG :FD =4:3.【点评】本题是几何综合题,难度较大,正确作出辅助线是解题关键.在解题过程中,需要综合利用各种几何知识,例如相似、全等、平行四边形、等腰三角形、角平分线性质等,对考生能力要求较高.5(2022秋•普陀区校级月考)如图,点A 1,A 2,A 3,A 4在射线OA 上,点B 1,B 2,B 3在射线OB 上,且A 1B 1∥A 2B 2∥A 3B 3,A 2B 1∥A 3B 2∥A 4B 3.若△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,则图中三个阴影三角形面积之和为10.5.【分析】已知△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,且两三角形相似,因此可得出A 2B 2:A 3B 3=1:2,由于△A 2B 2A 3与△B 2A 3B 3是等高不等底的三角形,所以面积之比即为底边之比,因此这两个三角形的面积比为1:2,根据△A 3B 2B 3的面积为4,可求出△A 2B 2A 3的面积,同理可求出△A 3B 3A 4和△A 1B 1A 2的面积.即可求出阴影部分的面积.【解答】解:△A 2B 1B 2,△A 3B 2B 3的面积分别为1,4,又∵A 2B 2∥A 3B 3,A 2B 1∥A 3B 2,∴∠OB 2A 2=∠OB 3A 3,∠A 2B 1B 2=∠A 3B 2B 3,∴△B 1B 2A 2∽△B 2B 3A 3,∴B 1B 2B 2B 3=12=A 2B 2A 3B 3,∴A 2A 3A 3A 4=12.∵S △A 2B 2A 3S △B 2A 3B3=12,△A 3B 2B 3的面积是4,∴△A 2B 2A 3的面积为=12×S △A 2B 2B 3=12×4=2(等高的三角形的面积的比等于底边的比).同理可得:△A 3B 3A 4的面积=2×S △A 3B 2B 3=2×4=8;△A 1B 1A 2的面积=12S △A 2B 1B 2=12×1=0.5.∴三个阴影面积之和=0.5+2+8=10.5.故答案为:10.5.【点评】本题的关键是利用平行线证明三角形相似,再根据已给的面积,求出相似比,从而求阴影部分的面积.6(2017秋•徐汇区校级月考)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;⋯,依此类推,则S n 可表示为 12n +1 .(用含n 的代数式表示,其中n 为正整数)【分析】连接D 1E 1,设AD 1、BE 1交于点M ,先求出S △ABE 1=1n +1,再根据AB D 1E 1=BM ME 1=n +1n 得出S △ABM :S △ABE 1=(n +1):(2n +1),最后根据S △ABM :1n +1=(n +1):(2n +1),即可求出S n .【解答】解:如图,连接D 1E 1,设AD 1、BE 1交于点M ,∵AE1:AC =1:(n +1),∴S △ABE 1:S △ABC =1:(n +1),∴S △ABE 1=1n +1,∵AB D 1E 1=BM ME 1=n +1n ,∴BM BE 1=n +12n +1,∴S △ABM :S △ABE 1=(n +1):(2n +1),∴S △ABM :1n +1=(n +1):(2n +1),∴S n =12n +1.故答案为:12n +1.【点评】此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.7(2018秋•南岗区校级月考)已知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则MC AM的值是 2或23 .【分析】由菱形的性质易证两三角形相似,但是由于点E 的位置未定,需分类讨论.【解答】解:分两种情况:(1)点E 在线段AD 上时,△AEM ∽△CBM ,∴MC AM =BC AE=2;(2)点E在线段AD的延长线上时,△AME∽△CMB,∴MCAM =BCAE=23.【点评】本题考查了相似三角形的性质以及分类讨论的数学思想;其中由相似三角形的性质得出比例式是解题关键.注意:求相似比不仅要认准对应边,还需注意两个三角形的先后次序.8(2020秋•虹口区校级月考)如图,在△ABC中,∠ACB的内、外角平分线分别交BA及其延长线于点D、E,BC=2.5AC,则ABAD+ABAE=5.【分析】根据CD平分∠ACB,可得ABDA=BCAC,根据CE平分∠ACB的外角,可得DEAE=BCAC,进而可得结果.【解答】解:∵CD平分∠ACB,∴AB DA =BC AC,∴BD+DADA =BC+ACAC,∴AB DA =BC+ACAC,①∵CE平分∠ACB的外角,∴DE AE =BC AC,∴BE-AEAE =BC-ACAC,∴AB AE =BC-ACAC,②①+②得,AB AD +ABAE=BC+ACAC+BC-ACAC=2BCAC=2×2.5=5.故答案为:5.【点评】主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用相似三角形的性质来分析、判断、推理或解答.9(2022秋•黄浦区校级月考)如图,在等腰△ABC中,AB=AC,点P在BA的延长线上,PA=1 4AB,点D在BC边上,PD=PC,则CDBC的值是 34 .【分析】过点P 作PE ∥AC 交DC 延长线于点E ,根据等腰三角形判定与性质,平行线的性质可证PB =PE ,再证△PCE ≌△PDB ,可得BD =CE ,再利用平行线分线段成比例的PA AB=CE BC ,结合线段的等量关系以及比例的性质即可得出结论.【解答】解:如图,过点P 作PE ∥AC 交DC 延长线于点E ,∵AB =AC ,∴∠B =∠ACB ,∵AC ∥PE ,∴∠ACB =∠E ,∴∠B =∠E ,∴PB =PE ,∵PC =PD ,∴∠PDC =∠PCD ,∴∠BPD =∠EPC ,∴在△PCE 和△PDB 中,PC =PD ∠BPD =∠EPC PB =PE,∴△PCE ≌△PDB (SAS ),∴BD =CE ,∵AC ∥PE ,∴PA AB =CE BC ,∵PA =14AB ,∴CE BC =14,∴BD BC =14,∴CD BC =34.故答案为:34.【点评】本题考查了等腰三角形的判定与性质,平行线分线段成比例,以及全等三角形的判定,解决问题的关键是正确作出辅助线,列出比例式.二.解答题(共21小题)10(2017秋•虹口区校级月考)在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 为AB 的中点,EC 与AD交于点G ,点F 在BC 上.(1)如图1,AC :AB =1:2,EF ⊥CB ,求证:EF =CD .(2)如图2,AC :AB =1:,EF ⊥CE ,求EF :EG 的值.【分析】(1)根据同角的余角相等得出∠CAD =∠B ,根据AC :AB =1:2及点E 为AB 的中点,得出AC =BE ,再利用AAS 证明△ACD ≌△BEF ,即可得出EF =CD ;(2)作EH ⊥AD 于H ,EQ ⊥BC 于Q ,先证明四边形EQDH 是矩形,得出∠QEH =90°,则∠FEQ =∠GEH ,再由两角对应相等的两三角形相似证明△EFQ ∽△EGH ,得出EF :EG =EQ :EH ,然后在△BEQ 中,根据正弦函数的定义得出EQ =12BE ,在△AEH 中,根据余弦函数的定义得出EH =32AE ,又BE =AE ,进而求出EF :EG 的值.【解答】(1)证明:如图1,在△ABC 中,∵∠CAB =90°,AD ⊥BC 于点D ,∴∠CAD =∠B =90°-∠ACB .∵AC :AB =1:2,∴AB =2AC ,∵点E 为AB 的中点,∴AB =2BE ,∴AC =BE .在△ACD 与△BEF 中,∠CAD =∠B ∠ADC =∠BFE =90°AC =BE,∴△ACD ≌△BEF ,∴CD =EF ,即EF =CD ;(2)解:如图2,作EH ⊥AD 于H ,EQ ⊥BC 于Q ,∵EH ⊥AD ,EQ ⊥BC ,AD ⊥BC ,∴四边形EQDH 是矩形,∴∠QEH =90°,∴∠FEQ =∠GEH =90°-∠QEG ,又∵∠EQF =∠EHG =90°,∴△EFQ ∽△EGH ,∴EF :EG =EQ :EH .∵AC :AB =1:3,∠CAB =90°,∴∠B =30°.在△BEQ 中,∵∠BQE =90°,∴sin B =EQ BE =12,∴EQ =12BE .在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,∴cos∠AEH=EHAE =32,∴EH=32AE.∵点E为AB的中点,∴BE=AE,∴EF:EG=EQ:EH=12BE:32AE=1:3=3:3=33.【点评】本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度.解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形.11(2021秋•杨浦区校级月考)如图,已知在菱形ABCD,点E是AB的中点,AF⊥BC于点F,连接EF、ED、DF,DE交AF于点G,且DE⊥EF.(1)求证:AE2=EG•ED;(2)求证:BC2=2DF•BF.【分析】(1)根据直角三角形的性质得到AE=FE,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB =90°,然后证明△AEG∽△DEA,即可得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∵DE⊥EF,∴∠FEG=90°,∴∠DAG=∠FEG,∵∠AGD=∠FGE,∴∠EFG=∠ADG,∴∠EAG=∠ADG,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴AE DE =EG AE,∴AE2=EG•ED;(2)∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴EF DE =EGEF,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴AB DF =BF EF,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=12AB=12BC,∴BC DF =BF12BC,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.12(2021秋•杨浦区校级月考)如图,已知在平行四边形ABCD中,AE:ED=1:2,点F为DC的中点,连接BE、AF,BE与AF交于点H.(1)求EH:BH的值;(2)若△AEH的面积为1,求平行四边形ABCD的面积.【分析】(1)延长AF,BC交于点G,证明△ADF≌△GCF(AAS),可得AD=CG=BC,所以BG=2BC,根据AE:ED=1:2,可得AE:AD=1:3,AE:BG=1:6,,证明△AEH∽△GBH,即可解决问题;(2)在△AEH中,设AE=x,AE边上的高为h,△BGH中,BG边上的高为h′,可得平行四边形ABCD的高为h+h′,BC=3x,根据△AEH的面积为1,可得x•h=2,所以h′=6h,进而可以求平行四边形ABCD 的面积.【解答】解:(1)如图,延长AF,BC交于点G,∵四边形ABCD是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠DCG ,∠DAF =∠G ,∵点F 为DC 的中点,∴DF =CF ,在△ADF 和△GCF 中,∠D =∠FCG ∠DAF =∠G DF =CF,∴△ADF ≌△GCF (AAS ),∴AD =CG ,∴AD =CG =BC ,∴BG =2BC ,∵AE :ED =1:2,∴AE :AD =1:3,∴AE :BG =1:6,∵AD ∥BC ,∴△AEH ∽△GBH ,∴EH :BH =AE :BG =1:6;(2)在△AEH 中,设AE =x ,AE 边上的高为h ,△BGH 中,BG 边上的高为h ′,∴平行四边形ABCD 的高为h +h ′,BC =3x ,∵△AEH 的面积为1,∴12x •h =1,∴x •h =2∵△AEH ∽△GBH ,∴h :h ′=1:6,∴h ′=6h ,∴h +h ′=7h ,∴平行四边形ABCD 的面积=BC •(h +h ′)=3x •7h =21xh =42.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,平行线分线段成比例等知识,添加恰当辅助线构造相似三角形是解题的关键.13(2021春•徐汇区校级月考)如图,在菱形ABCD 中,点E 在对角线AC 上,点F 在BC 的延长线上,EF =EB ,EF 与CD 相交于点G ;(1)求证:EG •GF=CG •GD ;(2)联结DF ,如果EF ⊥CD ,那么∠FDC 与∠ADC 之间有怎样的数量关系?证明你的结论.【分析】(1)先证明△BCE ≌△DCE ,得∠EDC =∠EBC ;利用此条件再证明∠DGE ∽△FGC ,即可得到EG •GF =CG •GD.(2)利用第(1)题的结论,可证明△DGE ∽△FGC ,再利用三角形内角外角关系,即可得到∠ADC 与∠FDC 的关系.【解答】解:(1)证明:∵点E 在菱形ABCD 的对角线AC 上,∴∠ECB =∠ECD ,∵BC =CD ,CE =CE ,∴△BCE ≌△DCE ,∴∠EDC =∠EBC ,∵EB =EF ,∴∠EBC =∠EFC ;∴∠EDC =∠EFC ;∵∠DGE =∠FGC ,∴△DGE ∽△FGC ;∴EGCG =GD FG∴EG •GF =CG •GD ;(2)∠ADC =2∠FDC .证明:∵EG CG =GD FG ,∴EG DG =CG FG,又∵∠DGF =∠EGC ,∴△CGE ∽△FGD ,∵EF ⊥CD ,DA =DC ,∴∠DAC =∠DCA =∠DFG =90°-∠FDC ,∴∠ADC =180°-2∠DAC =180°-2(90°-∠FDC )=2∠FDC .【点评】本题主要考查了全等三角形的判定及性质、相似三角形的判定及性质、菱形的性质等知识点的综合应用,解题时注意:相似三角形的对应角相等,对应边成比例.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.14(2021秋•宝山区校级月考)如图,四边形DEFG 是△ABC 的内接正方形,AB =BC =6cm ,∠B =45°,则正方形DEFG 的面积为多少?【分析】过A 作AH ⊥BC 于H ,交GF 于M ,于是得到△ABH 是等腰直角三角形,求得AH =BH =2222AB =32cm ,由△AGF ∽△ABC ,得到GF BC =AM AH,求得GF =(62-6)cm ,即可得到结论.【解答】解:过A 作AH ⊥BC 于H ,交GF 于M ,∵∠B =45°,∴AH =BH =22AB =32cm ,∵GF ∥BC ,∴△AGF ∽△ABC ,∴GF BC =AM AH,即GF 6=32-GF 32,∴GF =(62-6)cm ,∴正方形DEFG 的面积=GF 2=(62-6)2=(108-722)cm .【点评】本题考查了相似三角形的判定与性质,正方形的四条边都相等的性质,利用相似的性质:对应边的比值相等求出正方形的边长是解答本题的关键.15(2021秋•松江区月考)如图,在平行四边形ABCD 中,点E 为边BC 上一点,联结AE 并延长AE 交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F .求证:DF FC =DM CD.【分析】由GF ∥BC ,根据平行线分线段成比例定理,可得DF FC,又由四边形ABCD 是平行四边形,可得AB =CD ,AB ∥CD ,继而可证得DM AB =DG BG ,则可证得结论.【解答】证明:∵GF ∥BC ,∴DF FC =DG BG,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴DM AB =DG BG ,∴DF FC =DM CD.【点评】此题考查了平行分线段成比例定理以及平行四边形的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16(2021秋•松江区月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,DE 的延长线与BC 的延长线交于点F .(1)求证:FD FC =BD DC ;(2)若BC FC =54,求BD DC的值.【分析】(1)根据直角三角形斜边上中线性质求出DE =EC ,推出∠EDC =∠ECD ,求出∠FDC =∠B ,根据∠F =∠F 证△FBD ∽△FDC ,即可;(2)根据已知和三角形面积公式得出S △BDC S △FDC =54,S △BDF S △FDC =94,根据相似三角形面积比等于相似比的平方得出S △BDFS △FDC =BD DC 2=94,即可求出BD DC.【解答】(1)证明:∵CD ⊥AB ,∴∠ADC =90°,∵E 是AC 的中点,∴DE =EC ,∴∠EDC =∠ECD ,∵∠ACB =90°,∠BDC =90°∴∠ECD +∠DCB =90°,∠DCB +∠B =90°,∴∠ECD =∠B ,∴∠FDC =∠B ,∵∠F =∠F ,∴△FBD ∽△FDC ,∴FD FC =BD DC(2)解:∵BC FC =54,∴S △BDCS △FDC =54,∴S △BDFS △FDC =94,∵△FBD ∽△FDC ,∴S △BDF S △FDC =BD DC2=94,∴BD DC=32.【点评】本题考查了相似三角形的性质和判定,三角形的面积,注意:相似数据线的面积比等于相似比的平方,题目比较好,有一定的难度.17(2021春•黄浦区校级月考)如图,四边形ABCD 是矩形,E 是对角线AC 上的一点,EB =ED 且∠ABE =∠ADE .(1)求证:四边形ABCD 是正方形;(2)延长DE 交BC 于点F ,交AB 的延长线于点G ,求证:EF •AG =BC •BE .【分析】(1)根据邻边相等的矩形是正方形即可证明;(2)由AD ∥BC ,推出EF DE =EC EA ,同理DC AG =EC EA,由DE =BE ,四边形ABCD 是正方形,推出BC =DC,可得EFBE =BCAG解决问题;【解答】(1)证明:连接BD.∵EB=ED,∴∠EBD=∠EDB,∵∠ABE=∠ADE,∴∠ABD=∠ADB,∴AB=AD,∵四边形ABCD是矩形,∴四边形ABCD是正方形.(2)证明:∵四边形ABCD是矩形∴AD∥BC,∴EF DE =EC EA,同理DCAG=ECEA,∵DE=BE,四边形ABCD是正方形,∴BC=DC,∴EF BE =BC AG,∴EF•AG=BC•BE.【点评】本题考查相似三角形的判定和性质、矩形的性质、正方形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18(2021秋•浦东新区校级月考)如图,在△ABC中,DE∥BC,EF∥CD,求证:AD2=AF•AB.【分析】由DE∥BC,EF∥CD,可得△ADE∽△ABC,△AFE∽△ADC,然后由相似三角形的对应边成比例,证得结论.【解答】证明:∵DE∥BC,EF∥CD,∴△ADE∽△ABC,△AFE∽△ADC,∴AD:AB=AE:AC,AF:AD=AE:AC,∴AD:AB=AF:AD,∴AD2=AF•AB.【点评】此题考查了相似三角形的判定与性质.注意掌握相似三角形的对应边成比例.19(2020秋•浦东新区月考)在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若DE=3,BC=8,求△FCD的面积.【分析】(1)由DE⊥BC,D是BC的中点,根据线段垂直平分线的性质,可得BE=CE,又由AD=AC,易得∠B=∠DCF,∠FDC=∠ACB,即可证得△ABC∽△FCD;(2)首先过A作AG⊥CD,垂足为G,易得△BDE∽△BGA,可求得AG的长,继而求得△ABC的面积,然后由相似三角形面积比等于相似比的平方,求得△FCD的面积.【解答】(1)证明:∵D是BC的中点,DE⊥BC,∴BE=CE,∴∠B=∠DCF,∵AD=AC,∴∠FDC=∠ACB,∴△ABC∽△FCD;(2)解:过A作AG⊥CD,垂足为G.∵AD=AC,∴DG=CG,∴BD:BG=2:3,∵ED⊥BC,∴ED∥AG,∴△BDE∽△BGA,∴ED:AG=BD:BG=2:3,∵DE=3,∴AG=92,∵△ABC∽△FCD,BC=2CD,∴S△FCDS△ABC=(CDBC)2=14.∵S△ABC=12×BC×AG=12×8×92=18,∴S△FCD=14S△ABC=92.【点评】此题考查了相似三角形的判定与性质以及等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20(2021春•静安区校级月考)已知:如图,在菱形ABCD中,点E在边BC上,点F在BA的延长线上,BE=AF,CF∥AE,CF与边AD相交于点G.求证:(1)FD=CG;(2)CG2=FG•FC.【分析】(1)根据菱形的性质得到∠FAD =∠B ,根据全等三角形的性质得到FD =EA ,于是得到结论;(2)根据菱形的性质得到∠DCF =∠BFC ,根据平行线的性质得到∠BAE =∠BFC ,根据全等三角形的性质得到∠BAE =∠FDA ,等量代换得到∠DCF =∠FDA ,根据相似三角形的判定和性质即可得到结论.【解答】证明:(1)∵在菱形ABCD 中,AD ∥BC ,∴∠FAD =∠B ,在△ADF 与△BAE 中,AF =BE ∠FAD =∠B AD =BA,∴△ADF ≌△BAE ,∴FD =EA ,∵CF ∥AE ,AG ∥CE ,∴EA =CG ,∴FD =CG ;(2)∵在菱形ABCD 中,CD ∥AB ,∴∠DCF =∠BFC ,∵CF ∥AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE ,∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA ,又∵∠DFG =∠CFD ,∴△FDG ∽△FCD ,∴FD FC=FG FD ,FD 2=FG •FC ,∵FD =CG ,∴CG 2=FG •FC .【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,菱形的性质,熟练掌握相似三角形的性质是解题的关键.21(2021秋•浦东新区校级月考)如图,梯形ABCD 中,AD ∥BC ,BC =2AD ,点E 为边DC 的中点,BE 交AC 于点F .求:(1)AF :FC 的值;(2)EF :BF 的值.【分析】(1)延长BE 交直线AD 于H ,如图,先由AD ∥BC 得到△DEH ∽△CEB ,则有DH BC =DE CE,易得DH =BC ,加上BC =2AD ,所以AH =3AD ,然后证明△AHF ∽△CFB ,再利用相似比可计算出AF :FC 的值;(2)由△DEH ∽△CEB 得到EH :BE =DE :CE =1:1,则BE =EH =12BH ,由△AHF ∽△CFB 得到FH :BF =AF :FC =3:2;于是可设BF =2a ,则FH =3a ,BH =BF +FH =5a ,EH =52a ,接着可计算出EF =FH -EH =12a ,然后计算EF :BF 的值.【解答】解:(1)延长BE 交直线AD 于H ,如图,∵AD ∥BC ,∴△DEH ∽△CEB ,∴DH BC =DE CE,∵点E 为边DC 的中点,∴DE =CE ,∴DH =BC ,而BC =2AD ,∴AH =3AD ,∵AH ∥BC ,∴△AHF ∽△CFB ,∴AF :FC =AH :BC =3:2;(2)∵△DEH ∽△CEB ,∴EH :BE =DE :CE =1:1,∴BE =EH =12BH ,∵△AHF ∽△CFB ,∴FH :BF =AF :FC =3:2;设BF =2a ,则FH =3a ,BH =BF +FH =5a ,∴EH =52a ,∴EF =FH -EH =3a -52a =12a ,∴EF :BF =12a :2a =1:4.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用相似三角形的性质时,主要通过相似比得到线段之间的关系.22(2021秋•浦东新区校级月考)已知:如图,在△ABC 中,BD 是∠ABC 的平分线,过点D 作DE ∥CB ,交AB 于点E ,AD DC =13,DE =6.(1)求AB 的长;(2)求S △ADE S △BCD.【分析】(1)由∠ABD =∠CBD ,DE ∥BC 可推得∠EDB =∠CBD ,进而推出∠ABD =∠EDB ,由此可得BE =DE =6,由DE ∥BC 可得AE EB =AD DC=13,进而证得AE =2,于是可得结论;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,由平行线分线段成比例定理和相似三角形的性质可得h 1h 2=AD DE =13,DE BC =14,进而证得结论.【解答】解:(1)BD 平∠ABC ,∴∠ABD =∠CBD ,∵DE ∥BC ,∴∠EDB =∠CBD ,∴∠ABD =∠EDB ,∴BE =DE =6,∵DE ∥BC ,∴AE EB =AD DC =13,∴AE 6=13,∴AE =2,∴AB =AE +BE =8;(2)△ADE 看成以DE 为底,高为h 1,△BCD 看成以BC 为底,高为h 2,∵DE ∥CB ,∴△AED ∽△ABC ,∴h 1h 2=AD DE =13,DE BC =14,∴S △ADE S △BCD =12DE ⋅h 112BC ⋅h 2=112.【点评】本题主要考查了等腰三角形的性质,平行线分线段成比例定理和相似三角形的性质,三角形的面积等知识,熟练应用平行线分线段成比例定理和相似三角形的性质是解决问题的关键.23(2022春•长宁区校级月考)已知:如图,在平行四边形ABCD 中,AC 、DB 交于点E ,点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .(1)求证:EFBF =AB DB;(2)如果BD 2=2AD •DF ,求证:平行四边形ABCD 是矩形.【分析】(1)由已知条件和平行四边形的性质易证△ADB ∽△EBF ,再由相似三角形的性质:对应边的比值相等即可证明:EF BF =AB DB;(2)由(1)可得BD 2=2AD •BF ,又因为BD 2=2AD •DF ,所以可证明BF =DF ,再由等腰三角形的性质可得∠DEF =90°,所以∠ADC =∠DEF =90°,进而可证明平行四边形ABCD 是矩形.【解答】解:(1)证明:∵平行四边形ABCD ,∴AD ∥BC ,AB ∥DC∴∠BAD +∠ADC =180°,又∵∠BEF +∠DEF =180°,∴∠BAD +∠ADC =∠BEF +∠DEF ,∵∠DEF =∠ADC ,∴∠BAD =∠BEF ,∵AD ∥BC ,∴∠EBF =∠ADB ,∴△ADB ∽△EBF ,∴EF BF =AB DB;(2)∵△ADB ∽△EBF ,∴AD BD =BE BF,在平行四边形ABCD 中,BE =ED =12BD ,∴AD •BF =BD •BE =12BD 2,∴BD 2=2AD •BF ,又∵BD 2=2AD •DF ,∴BF =DF ,∴△DBF 是等腰三角形,∵BE =DE ,∴FE ⊥BD ,即∠DEF =90°,∴∠ADC =∠DEF =90°,∴平行四边形ABCD 是矩形.【点评】本题考查了平行四边形的性质、相似三角形的判断和性质以及矩形的判断,其中(2)小题证明△DBF 是等腰三角形是解题的关键.24(2021秋•宝山区校级月考)已知,如图,在梯形ABCD中,AD∥BC,BC=6,点P是射线AD上的点,BP交AC于点E,∠CBP的角平分线交AC于点F,且CF=13AC时.求AP+BP的值.【分析】延长BF交射线AP于M,根据AD∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出AP+BP=AM,再根据AC=13CF求出AE=2CF,然后根据△MAF和△BCF相似,利用相似三角形对应边成比例列式求解即可.【解答】解:如图,延长BF交射线AP于M,∵AD∥BC,∴∠M=∠CBM,∵BF是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴AP+BP=AP+PM=AM,∵CF=13AC,则AF=2CF,由AD∥BC得,△MAF∽△BCF,∴AMBC =AFCF=2,∴AM=2BC=2×6=12,即AP+BP=12.【点评】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BF构造出相似三角形,求出AP+BP=AM并得到相似三角形是解题的关键,也是本题的难点.25(2020秋•虹口区校级月考)已知:如图,已知△ABC与△ADE均为等腰三角形,BA=BC,DA= DE.如果点D在BC边上,且∠EDC=∠BAD.点O为AC与DE的交点.(1)求证:△ABC∽△ADE;(2)求证:DA•OC=OD•CE.【分析】(1)根据三角形的外角的性质和角的和差得到∠B=∠ADE,由于BABC=DADE=1,根据得到结论;(2)根据相似三角形的性质得到∠BAC=∠DAE,于是得到∠BAD=∠CAE=∠CDE,证得△COD∽△EOA,根据相似三角形的性质得到OCOE =ODOA,由∠AOD=∠COE,推出△AOD∽△COE,根据相似三角形的性质即可得到结论.【解答】证明:(1)∵∠ADC =∠ABC +∠BAD =∠ADE +∠EDC ,∴∠B =∠ADE ,∵BA BC=DA DE =1,∴△ABC ∽△ADE ;(2)∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∴∠BAD =∠CAE =∠CDE ,∵∠COD =∠EOA ,∴△COD ∽△EOA ,∴OC OE =OD OA,∵∠AOD =∠COE ,∴△AOD ∽△EOC ,∴DA :CE =OD :OC ,即DA •OC =OD •CE .【点评】本题考查了相似三角形的判定和性质,三角形的外角的性质,熟练掌握相似三角形的判定定理是解题的关键.26(2021秋•金山区校级月考)已知:如图,在梯形ABCD 中,AD ∥BC ,点E 在边AD 上,CE 与BD 相交于点F ,AD =4,AB =5,BC =BD =6,DE =3.(1)求证:△DFE ∽△DAB ;(2)求线段CF 的长.【分析】(1)AD ∥BC ,DE =3,BC =6,DF FB =DE BC=36=12,DF DA =DE DB .又∠EDF =∠BDA ,即可证明△DFE ∽△DAB .(2)由△DFE ∽△DAB ,利用对应边成比例,将已知数值代入即可求得答案.【解答】证明:(1)∵AD ∥BC ,DE =3,BC =6,∴DF FB =DE BC =36=12,∴DF BD =12,∵BD =6,∴DF =2.∵DA =4,∴DF DA =24=12,DE DB =36=12.∴DF DA=DE DB .又∵∠EDF =∠BDA ,∴△DFE ∽△DAB .(2)∵△DFE ∽△DAB ,∴EF AB =DE DB .∵AB =5,∴EF 5=36,∴EF =52=2.5.∵DE ∥BC ,∴CFEF =BC DE .∴CF 2.5=63,∴CF =5.(或利用△CFB ≌△BAD ).【点评】此题考查学生对梯形和相似三角形的判定与性质的理解和掌握,第(2)问也可利用△CFB ≌△BAD 求得线段CF 的长,不管学生用了哪种方法,只要是正确的,就要积极地给予表扬,以此激发学生的学习兴趣.27(2020秋•宝山区月考)如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知△ABC 的边BC =15,高AH =10,求正方形DEFG 的边长和面积.【分析】高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,所以AM =10-x ,再证明△ADG ∽△ABC ,则利用相似比得到x 15=10-x 10,然后根据比例的性质求出x ,再计算x 2的值即可.【解答】解:高AH 交DG 于M ,如图,设正方形DEFG 的边长为x ,则DE =MH =x ,∴AM =AH -MH =10-x ,∵DG ∥BC ,∴△ADG ∽△ABC ,∴DG BC =AM AH,即x 15=10-x 10,∴x =6,∴x 2=36.答:正方形DEFG 的边长和面积分别为6,36.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.28(2021秋•闵行区校级月考)如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,M 是CD 上的点,DH ⊥BM 于H ,DH 的延长线交AC 的延长线于E .求证:(1)△AED ∽△CBM ;(2)AE •CM =AC •CD .【分析】(1)由于△ABC 是直角三角形,易得∠A +∠ABC =90°,而CD ⊥AB ,易得∠MCB +∠ABC =90°,利用同角的余角相等可得∠A =∠MCB ,同理可证∠1=∠2,而∠ADE =90°+∠1,∠CMB =90°+∠2,易证∠ADE =∠CMB ,从而易证△AED ∽△CBM ;(2)由(1)知△AED ∽△CBM ,那么AE :AD =CB :CM ,于是AE •CM =AD •CB ,再根据△ABC 是直角三角形,CD 是AB 上的高,易知△ACD ∽△CBD ,易得AC •CD =AD •CB ,等量代换可证AE •CM =AC •CD .【解答】证明:(1)∵△ABC 是直角三角形,∴∠A +∠ABC =90°,∵CD ⊥AB ,∴∠CDB =90°,即∠MCB +∠ABC =90°,∴∠A =∠MCB ,∵CD ⊥AB ,∴∠2+∠DMB =90°,∵DH ⊥BM ,∴∠1+∠DMB =90°,∴∠1=∠2,又∵∠ADE =90°+∠1,∠CMB =90°+∠2,∴∠ADE =∠CMB ,∴△AED ∽△CBM ;(2)∵△AED ∽△CBM ,∴AE BC =AD CM,∴AE •CM =AD •CB ,∵△ABC 是直角三角形,CD 是AB 上的高,∴△ACD ∽△CBD ,∴AC :AD =CB :CD ,∴AC •CD =AD •CB ,∴AE •CM =AC •CD .【点评】本题考查了相似三角形的判定和性质、直角三角形斜边上的高所分成的两个三角形与这个直角三角形相似.解题的关键是证明∠A =∠MCB 以及∠ADE =∠CMB .29(2022秋•徐汇区校级月考)如图,在直角坐标平面内有点A (6,0),B (0,8),C (-4,0),点M 、N 分别为线段AC 和射线AB 上的动点,点M 以2个单位长度/秒的速度自C 向A 方向做匀速运动,点N 以5个单位长度/秒的速度自A 向B 方向做匀速运动,MN 交OB 于点P .(1)求证:MN :NP 为定值;(2)若△BNP 与△MNA 相似,求CM 的长;(3)若△BNP 是等腰三角形,求CM 的长.【分析】(1)过点N 作NH ⊥x 轴于点H ,然后分两种情况进行讨论,综合两种情况,求得MN :NP 为定值53.(2)当△BNP 与△MNA 相似时,当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,所以△BNP ∽△MNA ∽△BOA ,所以AM AN =AB AO ,所以10-2k 5k =106,k =3031,即CM =6031;当点M 在OA 上时,只可能是∠NBP =∠NMA ,所以∠PBA =∠PMO ,根据题意可以判定不成立,所以CM =6031.(3)由于等腰三角形的特殊性质,应分三种情况进行讨论,即BP =BN ,PB =PN ,NB =NP 三种情况进行讨论.【解答】证明:(1)过点N 作NH ⊥x 轴于点H ,设AN =5k ,得:AH =3k ,CM =2k ,①当点M 在CO 上时,点N 在线段AB 上时:∴OH =6-3k ,OM =4-2k ,∴MH =10-5k ,∵PO ∥NH ,∴MN NP =MH OH=10-5k 6-3k =53,②当点M 在OA 上时,点N 在线段AB 的延长线上时:∴OH =3k -6,OM =2k -4,∴MH =5k -10,∵PO ∥NH ,∴MN NP =MH OH=5k -103k -6=53;解:(2)当△BNP 与△MNA 相似时:①当点M 在CO 上时,只可能是∠MNB =∠MNA =90°,∴△BNP ∽△MNA ∽△BOA ,∴AMAN =AB AO,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习冲刺训练相似三角形一、选择题1.已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A. B. C. D.2.如图,边长为4的等边△ABC中,DE为中位线,则△ADE的面积为()A. B. C. D.3.如图,D是△ABC一边BC上一点,连接AD,使△ABC∽△DBA的条件是()A. AC:BC=AD:BDB. AC:BC=AB:ADC. AB2=CD•BCD. AB2=BD•BC4.如图,已知点D、E分别在△ABC的边AB、AC上,DE∥BC,点F在CD延长线上,AF∥BC,则下列结论错误的是()A. =B. =C. =D. =5.如果两个相似三角形的相似比是1:,那么这两个相似三角形的面积比是()A. 2:1B. 1:C. 1:2D. 1:46.如图,点F是矩形ABCD的边CD上一点,射线BF交AD的延长线于点E,则下列结论错误的是()A. B. C. D.7.(2014•宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A. 2:3B. 2:5C. 4:9D. :8.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A. B. C. 或 D. 或9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A. B. C. ﹣1 D. +110.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A. 3:2:1B. 5:3:1C. 25:12:5D. 51:24:1011.如图,将△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,则下列结论错误的是()A. AE⊥AFB. EF︰AF=︰1C. AF2=FH·FED. FB︰FC=HB︰EC12.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A. 1:3B. 1:4C. 1:5D. 1:25二、填空题13.如果两个相似三角形的周长的比为1:4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为________14.在阳光下,身高1.6m的小林在地面上的影长为2m,在同一时刻,测得学校的旗杆在地面上的影长为12m,则旗杆的高度为________m.15.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60°;③△BOD∽△COE.16.若正方形ABCD的边长为4,E为BC边上一点,BE=3,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为________.17. 如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为________.18.如图,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当△BOC 和△AOB相似时,C点坐标为________ .19.(2017•东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是________.20.综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC距离为21米的B处,然后沿着射线CB退后到点E,这时恰好在镜子里看到山头A,利用皮尺测量BE=2.1米.若小宇的身高是1.7米,则假山AC的高度为________ 米三、解答题21.在△ABC中,M是AB上一点,若过M的直线所截得的三角形与原三角形相似,试说明满足条件的直线有几条,画出相应的图形加以说明.22.如图,已知矩形OABC中,OA=2,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在x轴上的D点,作EG⊥OC,垂足为G,请证明△EGD∽△DCF,并求出k的值.23.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

(1)求抛物线的解析式;(2)设抛物线顶点为D,求四边形AEDB的面积;(3)△AOB与△DBE是否相似?如果相似,请给以证明;如果不相似,请说明理由。

24.已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.(1)如图2,当四边形EFGH为正方形时,求CF的长和△FCG的面积;(2)如图1,设AE=x,△FCG的面积=y,求y与x之间的函数关系式与y的最大值.(3)当△CG是直角三角形时,求x和y值.答案解析一、选择题1.【答案】C【解析】【分析】∵∠AED=∠B,∠A=∠A,∴△ADE∽△ACB,∴.故选C.【点评】本题考查了相似三角形的判定和性质,两角相等,两三角形相似。

2.【答案】A【解析】【分析】作AF⊥BC于F,由等边三角形的性质求出AF的值,从而求出△ABC的面积,再由相似三角形的性质就可以求出△ADE的面积.【解答】解:作AF⊥BC于F,∵△ABC中是等边三角形,∴BF=FC=BC,且AB=BC=AC=4∴BF=FC=2∴在Rt△ABC中,由勾股定理,得AF=2,S△ABC=×2×4=4.∵DE为△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,S△ADE=.∴A答案正确,故选A.3.【答案】D【解析】【解答】解:∵∠B=∠B,∴当时,△ABC∽△DBA,当AB2=BD•BC时,△ABC∽△DBA,故选D.【分析】根据相似三角形的对应边比例且夹角相等进行判断,要注意相似三角形的对应边和对应角.4.【答案】A【解析】【解答】解:∵AF∥BC,DE∥BC,∴AF∥DE,∴= ,,∴,故A错误,∵AF∥DE,∴,故B正确,∵DE∥BC,∴,故C正确,∵AF∥DE,∴,∵AF∥BC,∴,∴,故D正确,故选A.【分析】由AF∥BC,DE∥BC,得到AF∥DE,根据平行线分线段成比例定理即可得到结论.5.【答案】C【解析】【解答】解:这两个相似三角形的面积比=12:()2=1:2.故选C.【分析】直接根据似三角形的面积的比等于相似比的平方进行计算即可.6.【答案】C【解析】【解答】解:∵四边形ABCD为矩形,∴AD∥BC,CD∥AB∵DE∥BC,∴,所以B选项结论正确,C选项错误;∵DF∥AB,∴,所以A选项的结论正确;,而BC=AD,∴,所以D选项的结论正确.故选C.【分析】先根据矩形的性质得AD∥BC,CD∥AB,再根据平行线分线段成比例定理,由DE∥BC得到,则可对B、C进行判断;由DF∥AB得,则可对A进行判断;由于,利用BC=AD,则可对D进行判断.7.【答案】C【解析】【解答】解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD= ,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.【分析】先求出△CBA∽△ACD,得出= ,得出△ABC与△DCA的面积比= .8.【答案】C【解析】【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+ DM2=1,解得DM= ;②DM与BE是对应边时,DM= DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM= .∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故答案为:C.【分析】根据正方形的性质,由四边形ABCD是正方形,得到AB=BC,E为中点,得到AB=2BE,又△ABE 与以D、M、N为顶点的三角形相似,所以①DM与AB是对应时,DM=2DN,根据勾股定理得到DM2+DN2=MN2,DM2+ DM2,求出DM;②DM与BE是对应边时,DM= DN,由勾股定理得到DM2+DN2=MN2,即DM2+4DM2,求出DM,得出结论△ABE与以D、M、N为顶点的三角形相似. 9.【答案】C【解析】【分析】根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD的长.【解答】∵∠A=∠DBC=36°,∠C公共角,∴△ABC∽△BDC,且AD=BD=BC.设BD=x,则BC=x,CD=2﹣x.由于=,∴.整理得:x2+2x﹣4=0,解方程得:x=﹣1±,∵x为正数,∴x=﹣1+=-1.故选C.【点评】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长.10.【答案】D【解析】【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH= K,∴BH:HG:GM= k:12k:5k=51:24:10故选D.【分析】连接EM,根据已知可得△BHD∽△BME,△CEM∽△CDA,根据相似比从而不难得到答案.11.【答案】C【解析】【分析】由旋转得到△AFB≌△AED,根据相似三角对应边的比等于相似比,即可求得.【解答】由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,所以A正确;∴△AEF是等腰直角三角形,有EF:AF=:1,所以B正确;∵HB∥EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,所以D正确.∵△AEF与△AHF不相似,∴AF2=FH•FE不正确.故选C.【点评】本题利用了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质求解.12.【答案】B【解析】【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴= ,∵DE∥AC,∴= = ,∴= ,∴S△BDE与S△CDE的比是1:4,故选:B.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到= ,= = ,结合图形得到= ,得到答案.二、填空题13.【答案】1:4【解析】【解答】解:∵两个相似三角形的周长的比为1:4,∴两个相似三角形的相似比为1:4,∴周长较小的三角形与周长较大的三角形对应角平分线的比为1:4,故答案为:1:4.【分析】根据相似三角形周长的比等于相似比、相似三角形对应角平分线的比等于相似比解答即可.14.【答案】9.6【解析】【解答】利用在同一时刻身高与影长成比例得出比例式,即可得出结果.设旗杆的高度为xm.根据在同一时刻身高与影长成比例可得:,解得:x=9.6.故答案为:9.6.【分析】利用在同一时刻身高与影长成比例得出比例式,即可得出结果。

相关文档
最新文档