高考数学新增分大一轮复习第八章立体几何与空间向量8.6空间向量及其运算讲义含解析0411111
高考数学一轮复习第八章立体几何8.6空间向量及其运算课件新人教A版

(1)× (2)× (3)√ (4)× (5)×
关闭
答案
知识梳理
-8-
知识梳理 双基自测
12345
2.若 x,y∈R,有下列命题:
①若 p=xa+yb,则 p 与 a,b 共面;
②若 p 与 a,b 共面,则 p=xa+yb;
③若������������=x������������+y������������,则 P,M,A,B 共面;
因为异面直线所成角的范围是
0,
π 2
,所以异面直线
AG 与
CE 所成角的余弦值为23.
-15-
考点1
考点2
考点3
考点 1 空间向量的线性运算
例 1 如图,在平行六面体 ABCD-A1B1C1D1 中,设
������������1=a,������������=b,������������=c,M,N,P 分别是 AA1,BC,C1D1 的中点,试用 a,b,c 表示以下各向量:(1)������������;(2)������1������;(3)������������ + ������������1.
122=√6187,则|������������|=2√17.
关闭
解析 答案
知识梳理 双基自测
知识梳理
12345
-10-
4.(教材习题改编P98T10)如图,在棱长为1的正方体ABCD-
A1B1C1D1中,M,N分别是A1B1和BB1的中点,则直线AM和CN所成角
的余弦值为
.
关闭
2 5
答案
知识梳理 双基自测
考点1
考点2
考点3
-18-
对点训练 1 在三棱锥 O-ABC 中,M,N 分别是 OA,BC 的中点,G 是△ABC 的重心,用基向量������������, ������������, ������������表示������������, ������������.
2020版高考数学一轮复习第八章立体几何8.6空间向量及其运算课件新人教A版

知识梳理
-4-
知识梳理 双基自测
12345
3.两个向量的数量积
(1)两个向量的夹角
已知两个非零向量a,b,在空间任取一点O,作 ������������=a,������������=b, 则
∠AOB叫做向量a,b的夹角,记作 <a,b> ,其范围
是 0≤<a,b>≤π
,若<a,b>=
π 2
,则向量a,b
������
2 1
+������22
+������32
·
������12 +������22 +������32
知识梳理
-6-
知识梳理 双基自测
12345
5.常用结论 (1)对空间任一点 O,若������������=x������������+y������������(x+y=1),则 P,A,B 三点共 线. (2)对空间任一点 O,若������������=x������������+y������������+z������������(x+y+z=1),则 P,A,B,C 四点共面.
向量表示
坐标表示
数量积 a·b 共线 a=λb(b≠0) 垂直 a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3
a1=λb1,a2=λb2,a3=λb3 a1b1+a2b2+a3b3=0
模 夹角
|a|
������12 + ������22 + ������32
<a,b>(a≠0,b≠0)
cos<a,b>= ������1������1+������2������2+������3������3
高考数学一轮复习 第8章 立体几何 第6节 空间向量及其运算课件 理

a=(a1,a2,a3),b=(b1,b2,b3) a+b= 8 _(_a_1_+_b_1_,_a_2_+__b_2,__a_3_+__b_3)_____ a-b= 9 __(_a1_-__b_1,__a_2-__b_2_,__a_3-__b_3_) ____
数量积 共线 垂直
a·b=a1b1+a2b2+a3b3 a∥b⇒ 10 ___a_1=__λ_b_1,__a_2_=_λ_b_2_,_a_3_=__λ_b3____ (λ∈R,b≠0)
a⊥b⇔ 11 ___a_1_b1_+__a_2b_2_+__a3_b_3_=_0____________
夹角公式
a1b1+a2b2+a3b3 cos〈a,b〉= 12 ____a_21_+__a_22_+__a_23___b_21_+__b_22+__b_23_
12/11/2021
第九页,共四十九页。
故选 C.
12/11/2021
第十七页,共四十九页。
2
12/11/2021
课 堂 ·考 点 突 破
第十八页,共四十九页。
考点一 空间向量及其运算
|题组突破|
1.如图所示,在平行六面体 ABCD-A1B1C1D1 中,M 为 A1C1 与 B1D1
的交点.若A→B=a,A→D=b,A→A1=c,则下列向量中与B→M相等的是( )
►常用结论 a1=λb1,
设 a=(a1,a2,a3),b=(b1,b2,b3),则 a∥b(b≠0)⇔a2=λb2,这一形式不能随便 a3=λb3.
写成ab11=ab22=ab33.只有在 b 与三个坐标轴都不平行时,才能这样写,这是因为:若 b 与坐 标平面 xOy 平行,则 b3=0,这样ab33就无意义了.
高考数学一轮复习 第八章 立体几何8.6空间向量及其运算教学案 理 新人教A版

高考数学一轮复习 第八章 立体几何8.6空间向量及其运算教学案 理 新人教A 版考纲要求1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b≠0),a∥b 的充要条件是存在实数λ,使得______.(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使________.(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得______________.其中,{a ,b ,c }叫做空间的一个______.推论:设O ,A ,B ,C 是不共面的四点,则对空间任一点P ,都存在唯一的一个有序实数组{x ,y ,z },使OP →=____________.2.两个向量的数量积(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA =a ,OB =b ,则______叫做向量a ,b 的夹角,记作〈a ,b 〉.通常规定____≤〈a ,b 〉≤____.若〈a ,b 〉=____,则称向量a ,b 互相垂直,记作a⊥b .(2)两向量的数量积.两个非零向量a ,b 的数量积a·b =______________. (3)向量的数量积的性质(e 是单位向量):①a·e =|a|______________;②a⊥b ⇔a·b =____;③|a |2=a·a =____;④|a·b |____|a||b|. (4)向量的数量积满足如下运算律:①(λa )·b =λ(a·b );②a ·b =______(交换律); ③a ·(b +c )=____________(分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则 a±b =____________________; λa =________________(λ∈R ); a·b =________________;a⊥b ⇔a 1b 1+a 2b 2+a 3b 3=____;a∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); |a |2=a·a ⇒|a |=a 21+a 22+a 23(向量模与向量之间的转化);cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23b 21+b 22+b 23.(2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则A B →=(x 2-x 1,y 2-y 1,z 2-z 1), |AB →|=x 2-x 12+y 2-y 12+z 2-z 12.1.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ).A .0B .1C .2D .3 2.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值为( ).A .1 B.15 C.35 D.753.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ).A .2,12B .-13,12C .-3,2D .2,24.已知四边形ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为________.5.已知a =(1,2,-2),b =(0,2,4),则a ,b 的夹角的余弦值为__________.一、空间向量的线性运算【例1-1】 如图所示,在平行六面体ABCD A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 分别表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→.【例1-2】已知O 是空间中任意一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =__________.方法提炼空间向量的概念及运算是由平面向量延伸而来的,要用类比的思想去掌握.在空间向量的加、减、数乘等线性运算中,要选择适当的向量为基底,用基向量表示出相关向量后再进行向量的运算,同时还要以相应的图形为指导.请做演练巩固提升1 二、空间向量的数量积【例2】已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设AB →=a ,AC →=b ,(1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值;(3)若k a +b 与k a -2b 互相垂直,求实数k 的值. 方法提炼1.两个向量的数量积,其结果是数量,而不是向量,这是与空间向量的加、减、数乘等线性运算最大的区别.2.利用两空间向量的数量积运算公式,可以求向量的模、求两个向量的夹角、证明两个向量垂直等.请做演练巩固提升3三、空间向量的坐标运算【例3-1】 已知:a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c , 求:(1)a ,b ,c ;(2)a +c 与b +c 所成角的余弦值.【例3-2】 如图,在直三棱柱ABC A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,AA 1的中点.(1)求|BN →|;(2)求cos 〈BA 1→,CB 1→〉的值; (3)求证:A 1B ⊥C 1M . 方法提炼空间向量的坐标运算使向量的运算摆脱了形的制约,可以将空间元素的位置关系转化成数量关系,将逻辑推理转化成数量计算,可以化繁为简,因此是处理空间问题的一种重要工具和方法.请做演练巩固提升2正确构建空间直角坐标系【典例】 (12分)如图所示,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点A的坐标是⎝ ⎛⎭⎪⎫32,12,0,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°.(1)求OD →的坐标;(2)设AD →和BC →的夹角为θ,求cos θ的值.规范解答:(1)如图所示,过D 作DE ⊥BC ,垂足为E .在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD = 3.∴DE =CD sin 30°=32. OE =OB -BD cos 60°=1-12=12.∴D 点坐标为⎝ ⎛⎭⎪⎫0,-12,32,即OD →的坐标为⎝⎛⎭⎪⎫0,-12,32.(6分)(2)依题意,OA →=⎝ ⎛⎭⎪⎫32,12,0,OB →=(0,-1,0),OC →=(0,1,0),∴AD →=OD →-OA →=⎝ ⎛⎭⎪⎫-32,-1,32,BC →=OC →-OB →=(0,2,0).(8分)由AD →和BC →的夹角为θ,得cos θ=AD →·BC →|AD →||BC →|=-32×0+-1×2+32×0⎝ ⎛⎭⎪⎫-322+-12+⎝ ⎛⎭⎪⎫32202+22+02=-105. ∴cos θ=-105.(12分) 答题指导:解答空间向量的计算问题时,还有以下几点容易造成失分,在备考时要高度关注:(1)对向量运算法则特别是坐标运算的法则掌握不熟练导致失误; (2)不能熟练地运用向量共线、垂直的充要条件将问题转化. 另外,平时要重视运算的训练,强化计算速度及准确度的训练以及熟练掌握向量运算的方法.1.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且分MN 所成的比为2,现用基向量OA →,OB →,OC →表示向量OG →,设OG →=xOA →+yOB →+zOC →,则x ,y ,z 的值分别是( ).A .x =13,y =13,z =13B .x =13,y =13,z =16C .x =13,y =16,z =13D .x =16,y =13,z =132.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ).A .-2B .-143 C.145D .23.如图,在30°的二面角αl β的棱上有两点A ,B ,点C ,D 分别在α,β内,且AC ⊥AB ,BD ⊥AB ,AC =BD =AB =1,则CD 的长度为________.4.已知O (0,0,0),A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是__________.5.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(2)求BD1与AC夹角的余弦值.参考答案基础梳理自测知识梳理1.(1)a =λb (2)p =x a +y b (3)p =x a +y b +z c 基底 x OA +y OB +z OC2.(1)∠AOB 0 π π2(2)|a||b|cos 〈a ,b 〉 (3)①cos 〈a ,e 〉 ②0 ③a 2④≤(4)②b·a ③a·b +a·c3.(1)(a 1±b 1,a 2±b 2,a 3±b 3) (λa 1,λa 2,λa 3) a 1b 1+a 2b 2+a 3b 3 0 基础自测1.A 解析:①错,向量a ,b 所在的直线可能重合;②错,向量a ,b 可以平行移动到同一平面内;③错,如从三棱锥的一个顶点出发的三条棱所对应的三个向量;④错,a ,b ,c 要求不共面.2.D 解析:k a +b =(k -1,k,2),2a -b =(3,2,-2). ∵(k a +b )⊥(2a -b ),∴3(k -1)+2k -4=0,解得k =75.3.A 解析:∵a ∥b ,∴2μ-1=0,∴μ=12,排除C ,D 两项.代入A ,B 选项验证可得,λ=2成立. 4.(5,13,-3) 解析:设D (x ,y ,z ),则AB =DC ,∴(-2,-6,-2)=(3-x,7-y ,-5-z ). ∴⎩⎪⎨⎪⎧3-x =-2,7-y =-6,-5-z =-2.解得⎩⎪⎨⎪⎧x =5,y =13,z =-3.∴D (5,13,-3).5.-215 5 解析:∵a ·b =1×0+2×2+(-2)×4=-4,且|a |=12+22+(-2)2=3,|b |=0+22+42=25,∴cos θ=a ·b |a ||b |=-43×25=-215 5.考点探究突破【例1-1】 解:(1)AP =1AA +11A D +1D P =a +c +12b .(2)1A N =1A A +AB +BN =-a +b +12c .(3)MP +1NC =1MA +11A D +1D P +NC +1CC =12a +c +12b +12c +a =32a +12b +32c . 【例1-2】 -1 解析:∵A ,B ,C ,D 四点共面, ∴OA =m OB +n OC +p OD , 且m +n +p =1.由条件知OA =(-2x )OB +(-3y )OC +(-4z )OD , ∴(-2x )+(-3y )+(-4z )=1. ∴2x +3y +4z =-1.【例2】 解:(1)∵c ∥BC ,∴c =k BC ,k ∈R .又∵BC =(-2,-1,2), ∴可设c =(-2k ,-k,2k ).又∵|c |=4k 2+k 2+4k 2=3|k |=3, ∴k =±1.∴c =(-2,-1,2)或c =(2,1,-2).(2)∵a =AB =(1,1,0),b =AC =(-1,0,2), ∴a ·b =-1,|a |=2,|b |=5,∴cos θ=a ·b |a ||b |=-110=-1010.(3)∵k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4), ∵k a +b 与k a -2b 互相垂直,∴(k a +b )·(k a -2b )=(k -1)(k +2)+k 2-8=0,解得k =2或k =-52.【例3-1】 解:(1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1). 又因为b ⊥c ,所以b ·c =0, 即-6+8-z =0,解得z =2, 于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1),因此a +c 与b +c 所成角的余弦值为cos θ=5-12+338·38=-219.【例3-2】 解:如图所示,建立以C 为原点的空间直角坐标系C xyz ,(1)依题意得B (0,1,0),N (1,0,1),则|BN |=(1-0)2+(0-1)2+(1-0)2= 3.(2)依题意得A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2), ∴1BA =(1,-1,2),1CB =(0,1,2). ∴1BA ·1CB =3,|1BA |=6,|1CB |=5, ∴cos〈1BA ,1CB 〉=1111||BA CB BA CB ⋅=3010. (3)证明:依题意得C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2,∴1C M =⎝ ⎛⎭⎪⎫12,12,0. 又1A B =(-1,1,-2),∴1A B ·1C M =-12+12+0=0.∴1A B ⊥1C M ,即A 1B ⊥C 1M . 演练巩固提升1.D 解析:由题图可知OG =OM +MG ,而MG =23MN ,MN =MA +AB +BN=12OA +OB -OA +12BC =-12OA +OB +12(OC -OB ) =-12OA +12OB +12OC .OG =12OA +21113222OA OB OC ⎛⎫-++ ⎪⎝⎭=16OA +13OB +13OC . ∴x =16,y =13,z =13.2.D 解析:a -λb =(λ-2,1-2λ,3-λ). 由a ⊥(a -λb )得-2(λ-2)+1-2λ+9-3λ=0, 解得λ=2.3.3- 3 解析:∵BD ⊥AB ,CA ⊥AB , ∴AC 与BD 的夹角为30°. ∵|CD |=|CA +AB +BD |,∴|CD |2=|CA +AB +BD |2=|CA |2+|AB |+|BD |2+2CA ·AB +2AB ·BD +2CA ·BD=3+2|CA |·|BD |cos 150°=3- 3.∴|CD |=3- 3. 4.⎝ ⎛⎭⎪⎫43,43,83 解析:设OQ =λOP =(λ,λ,2λ), 则QA =(1-λ,2-λ,3-2λ),QB =(2-λ,1-λ,2-2λ).∴QA ·QB =(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. ∴当λ=43时,QA ·QB 取最小值为-23.此时,OQ =⎝ ⎛⎭⎪⎫43,43,83,即Q 点的坐标是⎝ ⎛⎭⎪⎫43,43,83. 5.解:记AB =a ,AD =b ,1AA =c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.(1)|1AC |2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|1AC |=6, 即AC 1的长为 6.(2)1BD =b +c -a ,AC =a +b , ∴|1BD |=2,|AC |=3,1BD ·AC =(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1. ∴cos〈1BD ,AC 〉=11||||BD AC BD AC =66. ∴AC 与BD 1夹角的余弦值为66.。
2019届高考数学大一轮复习第八章立体几何与空间向量8.6空间向量及其运算课件理北师大版

课时作业
基础保分练
1.在下列命题中:
①若向量a,b共线,则向量a,b所在的直线平行;
②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;
③若三个向量a,b,c两两共面,则向量a,b,c共面;
④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实
数x,y,z使得p=xa+yb+zc.
√B.12(a+b-c)
C.12(a-b+c)
D.21(-a-b+c)
解析 N→M=N→A+A→M=(O→A-O→N)+12A→B =O→A-12O→C+21(O→B-O→A)=12O→A+12O→B-12O→C =12(a+b-c).
解析 答案
思维升华
用已知向量表示某一向量的方法 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题 的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接 的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. 在立体几何中三角形法则、平行四边形法则仍然成立.
=c+12(b-a)=-12a+12b+c.
123456
解析 答案
3.正四面体ABCD的棱长为2,E,F分别为BC,AD的中点,则EF的长 为__2__. 解析 |E→F|2=E→F2=(E→C+C→D+D→F)2 =E→C2+C→D2+D→F2+2(E→C·C→D+E→C·D→F+C→D·D→F)
3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角 已知两个非零向量 a,b,在空间任取一点 O,作O→A=a,O→B=b,则∠AOB 叫作向量 a,b 的夹角,记作〈a,b〉,其范围是 0≤〈a,b〉≤π ,若
〈a,b〉=π2,则称 a 与 b 互相垂直 ,记作 a⊥b.
高考数学一轮复习第八章立体几何8.6空间向量及其运算和空间位置关系学案理

§8.6 空间向量及其运算和空间位置关系考纲展示►1.了解空间直角坐标系,会用空间直角坐标表示点的位置. 2.会推导空间两点间的距离公式.3.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.4.掌握空间向量的线性运算及其坐标表示.5.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直. 6.理解直线的方向向量与平面的法向量.7.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系. 8.能用向量方法证明有关直线和平面关系的一些定理(包括三垂线定理).考点1 空间向量的线性运算空间向量的有关概念(1)空间向量:在空间中,具有________和________的量叫做空间向量. (2)相等向量:方向________且模________的向量.(3)共线向量:表示空间向量的有向线段所在的直线互相____________的向量. (4)共面向量:________________的向量. 答案:(1)大小 方向 (2)相同 相等 (3)平行或重合 (4)平行于同一个平面(1)[教材习题改编]已知在空间四边形ABCD 中,G 为CD 的中点,则化简AB →+12(BD →+BC →)=________.答案:AG →解析:AB →+12(BD →+BC →)=AB →+BG →=AG →.(2)[教材习题改编]如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则BM →可用a ,b ,c 表示为________.答案:-12a +12b +c解析:由图可知,BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→-A 1B 1→)=c +12(b -c )=-12a +12b+c .[典题1] (1)[2017·河南郑州模拟]如图所示,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.[答案] 56[解析] 设OA →=a ,OB →=b ,OC →=c , 则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a , OG →=OM →+MG →=12OA →+23MN →23⎝⎭222=16a +13b +13c . 又OG →=xOA →+yOB →+zOC →, 所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.(2)如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD→=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:①AP →; ②MP →+NC 1→.[解] ①因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .②因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →2⎝⎭2=12a +12b +c . 又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , 所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c+⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c . [点石成金] 用已知向量表示某一向量的方法用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.考点2 共线、共面向量定理的应用空间向量中的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b ⇔存在唯一一个λ∈R ,使a =λb .(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面⇔存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组{x ,y ,z }使得p =x a +y b +z c .空间向量理解的误区:共线;共面. 给出下列命题:①若向量a ,b 共线,则向量a ,b 所在的直线平行; ②若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;③已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ;④若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.其中为真命题的是________. 答案:④解析:若a 与b 共线,则a ,b 所在的直线可能平行也可能重合,故①不正确;三个向量a ,b ,c 中任两个一定共面,但三个却不一定共面,故②不正确;只有当a ,b ,c 不共面时,空间任意一个向量p 才一定能表示为p =x a +y b +z c ,故③不正确;据向量运算法则可知④正确.[典题2] 已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,用向量方法求证:(1)E ,F ,G ,H 四点共面; (2)BD ∥平面EFGH .[证明] (1)连接BG ,则EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →.由共面向量定理知,E ,F ,G ,H 四点共面. (2)EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →. 因为E ,H ,B ,D 四点不共线,所以EH ∥BD . 又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .[点石成金] 应用共线(面)向量定理、证明点共线(面)的方法比较三点(P ,A ,B )共线空间四点(M ,P ,A ,B )共面 PA →=λPB →MP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x ) OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y ) OB →如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).向量MN →是否与向量AB →,AA 1→共面?解:∵AM →=kAC 1→,BN →=kBC →,∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC →=k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知,向量MN →与向量AB →,AA 1→共面.考点3 利用向量证明平行与垂直问题向量法证明平行与垂直 (1)两个重要向量 ①直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有________个.②平面的法向量直线l ⊥平面α,取直线l 的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有________个,它们是共线向量.(2)空间位置关系的向量表示答案:(1)①无数②无数[典题3] [2017·广东汕头模拟]如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.求证:(1)CM∥平面PAD;(2)平面PAB⊥平面PAD.[证明]以C为坐标原点,CB为x轴,CD为y轴,CP为z轴建立如图所示的空间直角坐标系C-xyz.∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角, ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4,∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP →=(0,-1,2),DA →=(23,3,0),CM →=⎝⎛⎭⎪⎫32,0,32.(1)设n =(x ,y ,z )为平面PAD 的一个法向量, 则⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,即⎩⎨⎧-y +2z =0,23x +3y =0,令y =2,得n =(-3,2,1).∵n ·CM →=-3×32+2×0+1×32=0, ∴n ⊥CM →.又CM ⊄平面PAD ,∴CM ∥平面PAD .(2)证法一:由(1)知,BA →=(0,4,0),PB →=(23,0,-2), 设平面PAB 的一个法向量为m =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧BA →·m =0,PB →·m =0,即⎩⎨⎧4y 0=0,23x 0-2z 0=0,令x 0=1,得m =(1,0,3).又∵平面PAD 的一个法向量n =(-3,2,1), ∴m ·n =1×(-3)+0×2+3×1=0, ∴平面PAB ⊥平面PAD .证法二:如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1). ∵PB =AB ,∴BE ⊥PA .又∵BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE →⊥DA →.∴BE ⊥DA .又PA ∩DA =A ,∴BE ⊥平面PAD . 又∵BE ⊂平面PAB , ∴平面PAB ⊥平面PAD .[点石成金] 1.利用向量法证明平行问题的三种方法 (1)证明线线平行:两条直线的方向向量平行. (2)证明线面平行:①该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量线性表示. (3)证明面面平行:两个平面的法向量平行.2.利用向量法证明垂直问题的三种方法(1)证明线线垂直:两条直线的方向向量的数量积为0. (2)证明线面垂直:直线的方向向量与平面的法向量平行. (3)证明面面垂直:①其中一个平面与另一个平面的法向量平行; ②两个平面的法向量垂直.已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D ,E ,F 分别为B 1A ,C 1C ,BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .证明:以A 为原点,AB ,AC ,AA 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4).(1)DE →=(-2,4,0),平面ABC 的一个法向量为AA 1→=(0,0,4),∵DE →·AA 1→=0,DE ⊄平面ABC ,∴DE ∥平面ABC .(2)B 1F →=(-2,2,-4),EF →=(2,-2,-2), B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, ∴B 1F →⊥EF →,∴B 1F ⊥EF . B 1F →·AF →=(-2)×2+2×2+(-4)×0=0,∴B 1F →⊥AF →,∴B 1F ⊥AF .∵AF ∩EF =F ,∴B1F⊥平面AEF.考点4 空间向量数量积的应用1.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.2.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).答案:a 1b 1+a 2b 2+a 3b 3 a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1+a 2b 2+a 3b 3=0正确使用空间向量的数量积.(1)已知向量a =(4,-2,-4),b =(6,-3,2),则(a +b )·(a -b )的值为________. 答案:-13解析:a +b =(10,-5,-2),a -b =(-2,1,-6),∴(a +b )·(a -b )=-13.(2)已知a =(1,2,-2),b =(0,2,4),则a ,b 夹角的余弦值为________.答案:-2515解析:cos 〈a ,b 〉=a ·b |a ||b |=-2515.[典题4] 如图所示,在平行四边形ABCD 中,AB =AC =CD =1,∠ACD =90°,把△ADC 沿对角线AC 折起,使AB 与CD 成60°角,求BD 的长.[解] ∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或120°.又∵AB =AC =CD =1,AC ⊥CD ,AC ⊥AB ,∴|BD →|=BD →2=BA →+AC →+CD →2 =BA →2+AC →2+CD →2+2BA →·AC →+2AC →·CD →+2BA →·CD→ =1+1+1+0+0+2×1×1×cos〈BA →,CD →〉=3+2cos 〈BA →,CD →〉,∴|BD →|=2或 2.∴BD 的长为2或 2.[点石成金] 1.利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.2.利用夹角公式,可以求异面直线所成的角,也可以求二面角.3.可以通过|a|=a 2,将向量的长度问题转化为向量数量积的问题求解.如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.(1)证明:设AB →=p ,AC →=q ,AD →=r .由题意可知,|p|=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°.MN →=AB →-AM →=12(AC →+AD →)-12AB → =12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q·p +r·p -p 2) =12(a 2cos 60°+a 2cos 60°-a 2)=0.∴MN →⊥AB →,即MN ⊥AB .同理可证,MN ⊥CD .(2)解:由(1)可知,MN →=12(q +r -p ), ∴|MN →|2=14(q +r -p )2 =14[q 2+r 2+p 2+2(q·r -p·q -r·p )] =14⎣⎢⎡⎦⎥⎤a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22 =14×2a 2=a 22, ∴|MN →|=22a .∴MN 的长为22a . (3)解:设向量AN →与MC →的夹角为θ.∵AN →=12(AC →+AD →)=12(q +r ), MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q·p +r·q -12r·p =a 22. 又∵|AN →|=|MC →|=32a , ∴AN →·MC →=|AN →||MC →|cos θ =32a ×32a ×cos θ=a 22, ∴cos θ=23, ∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.[方法技巧] 1.利用空间向量解决立体几何问题的两种思路(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.[易错防范] 用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.课外拓展阅读“两向量同向”意义不清致误分析[典例] 已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.[错因分析] 将a ,b 同向和a∥b 混淆,没有搞清a∥b 的意义:a ,b 方向相同或相反.[解析] 由题意知,a∥b ,所以x 1=x 2+y -22=y 3, 即⎩⎪⎨⎪⎧ y =3x ,①x 2+y -2=2x .②把①代入②,得x 2+x -2=0,(x +2)(x -1)=0,解得x =-2或x =1.当x =-2时,y =-6;当x =1,y =3.当⎩⎪⎨⎪⎧ x =-2,y =-6时,b =(-2,-4,-6)=-2a ,两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1,y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧ x =1,y =3.[答案] 1,3温馨提醒1.两向量平行和两向量同向不是等价的,同向是平行的一种情况,两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件.2.若两向量a ,b 满足a =λb (b ≠0)且λ>0,则a ,b 同向;在a ,b 的坐标都是非零的条件下,a ,b 的坐标对应成比例且比值为正值.。
2018版高考数学一轮复习 第八章 立体几何 8.6 空间向量及其运算 理

3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作O→A =aO→,B =b,则∠AOB
叫做向量a,b的夹角,记〈作a,b〉 ,其范围是0≤〈a,b〉≤π ,若〈a,
b〉π2 = ,则称a互与相b 垂直
,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则 |a||b|cos〈a,b〉叫做向量a,b的数量
§8.6 空间向量及其运算
内容索引
基础知识 自主学习 题型分类 深度剖析 课时作业
基础知识 自主学习
知识梳理
1.空间向量的有关概念
名称
概念
零向量
模为 0的向量
1
单位向 长度相(模同)为 相等的向量
量
相反 相等
表示 0
相等向 量
方向 且模
平行或重合
的向平量面
相反向 方向 且模
a=b 的
a的相反向量为-a
2.(2016·大连模拟)向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),
下列结论正确的是 答案 解析
A.a∥b,a∥c
B.a∥b,a⊥c
C.a∥c,a⊥b
D.以上都不对
因为c=(-4,-6,2)=2(-2,-3,1)=2a, 所以a∥c. 又a·b=(-2)×2+(-3)×0+1×4=0, 所以a⊥b.故选C.
2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p= xa+yb ,其中x,y∈R,a,b为不 共线向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数 组{x,y,z},使得p= xa+yb+zc ,{a,b,c}叫做空间的一个基底.
2018版高考数学一轮复习第八章立体几何8.6空间向量及其运算课件理

(2)求B→D1与A→C夹角的余弦值. 解答
--B-D-→1 =b+c-a,A→C=a+b, ∴|--B-D-→1 |= 2,|A→C|= 3,
--B-D-→1 ·A→C=(b+c-a)·(a+b) =b2-a2+a·c+b·c=1,
∴cos〈B→D1,A→C〉=
表示 0
a=b a的相反向量为-a
a∥b
2.空间向量中的有关定理 (1)共线向量定理 空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb. (2)共面向量定理 共面向量定理的向量表达式:p= xa+y,b 其中x,y∈R,a,b为不共线 向量. (3)空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组 {x,y,z},使得p= xa+yb+z,c {a,b,c}叫做空间的一个基底.
±
(-531,2-4,5)=± (-31,02-4,5).
4.如图,在四面体 O-ABC 中,O→A=a,O→B=b,O→C=c,
D 为 BC 的中点,E 为 AD 的中点,则O→E=__12_a_+__14_b_+__14_c_.(用
a,b,c 表示) 答案 解析
O→E=12O→A+12O→D=12O→A+14O→B+14O→C =12a+14b+14c.
3.与向量(-3,-4,5)共线的单位向量是
_3_1_02_,__2_5__2_,__-__2_2_和___-__31_0_2_,__-__2_5_2_,___2_2_ __. 答案
解析
因为与向量a共线的单位向量是±|aa| ,又因为向量(-3,-4,5)的模
为 -32+-42+52=,5所以2 与向量(-3,-4,5)共线的单位向量是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.6空间向量及其运算1.空间向量的有关概念2.空间向量中的有关定理(1)共线向量定理空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb.(2)共面向量定理共面向量定理的向量表达式:p=x a+y b,其中x,y∈R,a,b为不共线向量.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=x a +y b +z c ,{a ,b ,c }叫做空间的一个基底. 3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a ·b ,即a ·b =|a ||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①(λa )·b =λ(a ·b ); ②交换律:a ·b =b ·a ;③分配律:a ·(b +c )=a ·b +a ·c . 4.空间向量的坐标表示及其应用 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).概念方法微思考1.共线向量与共面向量相同吗?提示 不相同.平行于同一平面的向量就为共面向量. 2.零向量能作为基向量吗?提示 不能.由于零向量与任意一个非零向量共线,与任意两个非零向量共面,故零向量不能作为基向量.3.空间向量的坐标运算与坐标原点的位置选取有关吗?提示 无关.这是因为一个确定的几何体,其“线线”夹角、“点点”距离都是固定的,坐标系的位置不同,只会影响其计算的繁简,不会影响结果.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两个非零向量a ,b 共面.( √ )(2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0.( √ ) (6)若a·b <0,则〈a ,b 〉是钝角.( × ) 题组二 教材改编2.[P97A 组T2]如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.[P98T3]正四面体ABCD 的棱长为2,E ,F 分别为BC ,AD 的中点,则EF 的长为________. 答案2解析 |EF →|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →)=12+22+12+2(1×2×cos120°+0+2×1×cos120°)=2, ∴|EF →|=2,∴EF 的长为 2. 题组三 易错自纠4.在空间直角坐标系中,已知A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直 B.平行 C.异面 D.相交但不垂直答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1), ∴AB →=-3CD →,∴AB →与CD →共线,又AB 与CD 没有公共点,∴AB ∥CD . 5.已知a =(2,3,1),b =(-4,2,x ),且a ⊥b ,则|b |=________. 答案 2 6解析 ∵a ⊥b ,∴a ·b =2×(-4)+3×2+1·x =0, ∴x =2,∴|b |=(-4)2+22+22=2 6.6.O 为空间中任意一点,A ,B ,C 三点不共线,且OP →=34OA →+18OB →+tOC →,若P ,A ,B ,C 四点共面,则实数t =______. 答案 18解析 ∵P ,A ,B ,C 四点共面,∴34+18+t =1,∴t =18.题型一 空间向量的线性运算例1 如图所示,在空间几何体ABCD -A 1B 1C 1D 1中,各面为平行四边形,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →; (2)MP →+NC 1→.解 (1)因为P 是C 1D 1的中点, 所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b .(2)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP →=-12a +⎝⎛⎭⎪⎫a +c +12b =12a +12b +c .又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c =32a +12b +32c . 思维升华用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________________.答案 12AB →+12AD →+AA 1→解析 ∵OC →=12AC →=12(AB →+AD →),∴OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→.(2)(2018·金华质检)如图,在三棱锥O —ABC 中,M ,N 分别是AB ,OC 的中点,设OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示NM →,则NM →等于( )A.12(-a +b +c ) B.12(a +b -c ) C.12(a -b +c ) D.12(-a -b +c ) 答案 B解析 NM →=NA →+AM →=(OA →-ON →)+12AB →=OA →-12OC →+12(OB →-OA →)=12OA →+12OB →-12OC →=12(a +b -c ). 题型二 共线定理、共面定理的应用例2 如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . (1)解 设AB →=a ,AD →=b ,AA 1→=c .由图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12DC →=12a +b +c=12AB →+AD →+AA 1→. (2)证明 由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →,∵EG 与AC 无公共点,∴EG ∥AC ,∵EG ⊄平面AB 1C ,AC ⊂平面AB 1C , ∴EG ∥平面AB 1C .又∵AB 1→=AB →+BB 1→=a +c , FG →=FD 1→+D 1G →=12c +12a =12AB 1→,∵FG 与AB 1无公共点, ∴FG ∥AB 1,∵FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , ∴FG ∥平面AB 1C ,又∵FG ∩EG =G ,FG ,EG ⊂平面EFG , ∴平面EFG ∥平面AB 1C .思维升华证明三点共线和空间四点共面的方法比较跟踪训练2 如图所示,已知斜三棱柱ABC —A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行? 解 (1)∵AM →=kAC 1→,BN →=kBC →, ∴MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB → =k (C 1A →+B 1C 1―――→)+AB →=kB 1A →+AB →=AB →-kAB 1→ =AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,∴由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合,MN 在平面ABB 1A 1内,当0<k ≤1时,MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, ∴MN ∥平面ABB 1A 1.综上,当k =0时,MN 在平面ABB 1A 1内; 当0<k ≤1时,MN ∥平面ABB 1A 1. 题型三 空间向量数量积的应用例3 如图所示,已知空间四边形ABCD 的各边和对角线的长都等于a ,点M ,N 分别是AB ,CD 的中点.(1)求证:MN ⊥AB ,MN ⊥CD ;(2)求异面直线AN 与CM 所成角的余弦值. (1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p ,q ,r 三个向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos60°+a 2cos60°-a 2)=0. ∴MN →⊥AB →,即MN ⊥AB . 同理可证MN ⊥CD .(2)设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p=12⎝ ⎛⎭⎪⎫q 2-12q ·p +r ·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2cos60°+a 2cos60°-12a 2cos60° =12⎝⎛⎭⎪⎫a 2-a 24+a 22-a 24=a22.又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置.(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角.(3)可以通过|a |=a 2,将向量的长度问题转化为向量数量积的问题求解.跟踪训练3 如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解 (1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,∴|AC 1→|=6,即AC 1的长为 6. (2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1, ∴cos〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.1.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( )A.(0,3,-6)B.(0,6,-20)C.(0,6,-6)D.(6,6,-6)答案 B解析 由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).2.在下列命题中:①若向量a ,b 共线,则向量a ,b 所在的直线平行;②若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面; ③若三个向量a ,b ,c 两两共面,则向量a ,b ,c 共面;④已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p 总存在实数x ,y ,z 使得p =x a +y b +z c .其中正确命题的个数是( ) A.0B.1C.2D.3 答案 A解析 a 与b 共线,a ,b 所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a ,b 都共面,故②不正确;三个向量a ,b ,c 中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a ,b ,c 不共面时,空间任意一向量p 才能表示为p =x a +y b +z c ,故④不正确,综上可知四个命题中正确的个数为0,故选A.3.(2018·台州模拟)已知向量a =(2m +1,3,m -1),b =(2,m ,-m ),且a ∥b ,则实数m 的值等于( ) A.32 B.-2 C.0 D.32或-2 答案 B解析 当m =0时,a =(1,3,-1),b =(2,0,0),a 与b 不平行,∴m ≠0,∵a ∥b ,∴2m +12=3m =m -1-m,解得m =-2. 4.在空间直角坐标系中,已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且满足|PA |=|PB |,则P 点坐标为( ) A.(3,0,0) B.(0,3,0) C.(0,0,3) D.(0,0,-3)答案 C解析 设P (0,0,z ),则有(1-0)2+(-2-0)2+(1-z )2=(2-0)2+(2-0)2+(2-z )2,解得z =3. 5.已知a =(1,0,1),b =(x ,1,2),且a·b =3,则向量a 与b 的夹角为( ) A.5π6B.2π3 C.π3D.π6答案 D解析 ∵a·b =x +2=3,∴x =1,∴b =(1,1,2), ∴cos〈a ,b 〉=a·b |a||b |=32×6=32,又∵〈a ,b 〉∈[0,π],∴a 与b 的夹角为π6,故选D.6.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A.3B.2C.1D.3- 2 答案 D解析 ∵BD →=BF →+FE →+ED →,∴|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2, 故|BD →|=3- 2.7.(2019·舟山模拟)已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=________. 答案 -9解析 由题意知c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3), ∴⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.8.已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,则c =________. 答案 (3,-2,2) 解析 因为a ∥b ,所以x-2=4y =1-1,解得x =2,y =-4, 此时a =(2,4,1),b =(-2,-4,-1), 又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).9.已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13VC →,VM →=23VB →,VN →=23VD →.则VA 与平面PMN 的位置关系是________. 答案 平行解析 如图,设VA →=a ,VB →=b ,VC →=c ,则VD →=a +c -b ,由题意知PM →=23b -13c ,PN →=23VD →-13VC →=23a -23b +13c .∴VA →=32PM →+32PN →,∴VA →,PM →,PN →共面. 又VA ⊄平面PMN , ∴VA ∥平面PMN .10.已知ABCD -A 1B 1C 1D 1为正方体, ①(A 1A →+A 1D 1―――→+A 1B 1―――→)2=3A 1B 1―――→2; ②A 1C →·(A 1B 1―――→-A 1A →)=0;③向量AD 1→与向量A 1B →的夹角是60°;④正方体ABCD -A 1B 1C 1D 1的体积为|AB →·AA 1→·AD →|. 其中正确的序号是________. 答案 ①②解析 ①中,(A 1A →+A 1D 1―――→+A 1B 1―――→)2=A 1A →2+A 1D 1―――→2+A 1B 1―――→2=3A 1B 1―――→2,故①正确;②中,A 1B 1―――→-A 1A →=AB 1→,因为AB 1⊥A 1C ,故②正确;③中,两异面直线A 1B 与AD 1所成的角为60°,但AD 1→与A 1B →的夹角为120°,故③不正确;④中,|AB →·AA 1→·AD →|=0,故④也不正确.11.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题意知OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, ∴MA →,MB →,MC →共面.(2)由(1)知MA →,MB →,MC →共面且过同一点M , ∴M ,A ,B ,C 四点共面. ∴点M 在平面ABC 内.12.已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b ?(O 为原点) 解 (1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b |=02+(-5)2+52=5 2. (2)令AE →=tAB →(t ∈R ), 所以OE →=OA →+AE →=OA →+tAB → =(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t ,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95.因此存在点E ,使得OE →⊥b ,此时E 点的坐标为⎝ ⎛⎭⎪⎫-65,-145,25.13.如图,已知空间四边形OABC ,其对角线为OB ,AC ,M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且MG →=2GN →,若OG →=xOA →+yOB →+zOC →,则x +y +z =________.答案 56解析 连接ON ,设OA →=a ,OB →=b ,OC →=c ,则MN →=ON →-OM →=12(OB →+OC →)-12OA →=12b +12c -12a ,OG →=OM →+MG →=12OA →+23MN →=12a +23⎝ ⎛⎭⎪⎫12b +12c -12a =16a +13b +13c . 又OG →=xOA →+yOB →+zOC →,所以x =16,y =13,z =13,因此x +y +z =16+13+13=56.14.已知O (0,0,0),A (1,2,1),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动,当QA →·QB →取最小值时,点Q 的坐标是________. 答案 (1,1,2)解析 由题意,设OQ →=λOP →,则OQ →=(λ,λ,2λ),即Q (λ,λ,2λ),则QA →=(1-λ,2-λ,1-2λ),QB →=(2-λ,1-λ,2-2λ),∴QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(1-2λ)(2-2λ)=6λ2-12λ+6=6(λ-1)2,当λ=1时取最小值,此时Q 点坐标为(1,1,2).15.(2018·温州高考适应性考试)正方体ABCD —A 1B 1C 1D 1的棱长为2,正方体所在空间的动点P 满足|PB 1→+PC →|=2,则AP →·AD 1→的取值范围是( )A.[0,4]B.[1,4]C.[0,22]D.[1,22]答案 A解析 因为正方体的棱长为2,所以|B 1C |=2,则由|PB 1→+PC →|=2得点P 在以B 1C 的中点为球心,B 1C 2为半径的球面上.当点P 与点B 重合时,点P 在直线AD 1上的射影为点A ,此时AP →·AD 1→取最小值0,当点P 与点C 1重合时,点P 在直线AD 1上的射影为D 1,此时AP →·AD 1→取最大值|AD 1→|2,则AP →·AD 1→∈[0,|AD 1→|2]=[0,4],故选A.16.已知棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为侧面BB 1C 1C 的中心,F 在棱AD 上运动,正方体表面上有一点P 满足D 1P →=xD 1F →+yD 1E →(x ≥0,y ≥0),求所有满足条件的P 点构成图形的面积.解 由D 1P →=xD 1F →+yD 1E →(x ≥0,y ≥0)得点P 在以射线D 1F ,D 1E 为角的两边的平面内,又因为点P 在正方体的表面上,所以点P 所在的图形为点F 由点A 运动到点D 的过程中,以射线D 1F ,D 1E 为角的两边的平面与正方体的侧面的交线构成的区域.设棱BC 的中点为N ,则由图易得点P 构成的图形为△D 1DA 、直角梯形ABND 和△ENB 及他们的内部,则所求面积为12×1×1+1+122×1+12×12×12=118.精美句子1、善思则能“从无字句处读书”。