逻辑运算类指令

合集下载

第3章(09.2)

第3章(09.2)

4.加1指令(5条) INC INC INC INC INC A Rn direct @Ri DPTR
指令功能:使操作数所指定的单元的内容加1 例:已知A=12H,R0=33H,(21H)=32H,(34H)=22H, DPTR=1234H,连续执行下面的指令。 说明:除了“INC A”影响奇偶标志位外,其余操作均 INC A 不影响PSW;“INC DPTR”是一条16位加1指令,这条 INC R0 指令在加1过程中,若低8位有进位可直接向高8位进位, INC 21H 不需要通过进位位Cy传送。 INC @R0 INC DPTR
4.清0与取反指令(2条) 取反: CPL A 5.循环移位指令(4条) RL A RR A RLC A RRC A 清零: C0
A.0 A.7 A.7 A.0 A.0
CY
CY
后两条指令,影响P标志和CY。
综合举例: 例1:把累加器A中的低4位状态,通过P1口的高4 位输出, P1口的低4位状态不变。 ANL A,#0FH ;屏蔽A的高4位 SWAP A ANL P1,#0FH ;清P1口高4位 ORL P1,A ;P1口高4位输出A的低4位; 例2:编制程序将存放在片外RAM的30H单元中某 数的低4位取反,高2位置1,其余2位清0。 例3:编制程序求片内RAM的20H,21H,22H单元 中的数的补码,并将结果仍放回到20H,21H, 22H中。
(40H)= (41H)=
H H
(50H) = (51H)=
H H
A= R0=
H H
5.减1指令(4条) DEC DEC DEC DEC A Rn direct @Ri
指令功能:使操作数所指定的单元的内容减1
说明:减1指令中没有DPTR减1指令.

微机原理 逻辑运算与位移类指令

微机原理 逻辑运算与位移类指令

和PF,对AF未定义。NOT指令不影响状态标志位。
[例] MOV AL,75H AND AL,32H OR AL,71H XOR AL,0F1H NOT AL
;AL75H ;AL30H,CF=OF=0、SF=0、ZF=0、PF=1 ;AL71H,CF=OF=0、SF=0、ZF=0、PF=1 ;AL80H,CF=OF=0、SF=1、ZF=0、PF=0 ;AL7FH,不改变状态标志位
Jcc LABEL
;条件满足,发生转移:
;IPIP+8位的位移量;
;否则,顺序执行。
注意:
① 条件转移指令Jcc只支持段内短转移的寻址方式,只能实 现段内-128~127个单元范围的跳转,其间共有多少条指令是不 确定的。
② 条件转移指令不影响标志,但利用状态标志作为控制转 移的条件。Jcc中的cc表示利用标志判断的条件。同一条指令可 能有多个助记符形式,这只是为了利于记忆,方便使用。
➢逻辑运算与移位类指令
当需要对字节或字数据中的各个二进制位进行操作时,可
以考虑采用逻辑运算与移位类指令。
ADD、ADC、SUB、SBB、CMP和AND、OR、XOR、TEST具有相同
的指令格式:
运算指令助记符
reg,imm/reg/mem
运算指令助记符
mem,imm/reg
以上格式表明了操作数的寻址方式。也可统一表示为:
……
JMP指令
JMP执行后 IP =
代码段
Disp=08H
EBH 0100H 08H 0101H
0102H
...... Disp=08H
MOV指令
B0H 010AH(HELLO) 新的IP
03H 010BH
2)段内直接近转移

逻辑运算类指令

逻辑运算类指令

标志位
解释
P OAC VCY
√ × × × 累加器A中的内容和直接地址单元中的内容执 行逻辑或操作。结果存在累加器A中
√ × × × 累加器A的内容和立即数执行逻辑或操作。结 果存在累加器A中
√ × × × 累加器A的内容和寄存器Rn的内容执行逻辑或 操作。结果存在累加器A中
√ × × × 累加器A的内容和工作寄存器Ri指向的地址单 元中的内容执行逻辑或操作。结果存在累加器 A中
单片机原理与应用
逻辑运算类指令
逻辑运算指令共有24条 有与、或、异或、求反、左右移位、清0等逻辑操作 有直接、寄存器和寄存器间址等寻址方式。
1. 清零指令(1条)
指令
功能
标志位 解释
P OA C VC Y
CLR A
A ←0
√ × × × 累加器A中的内容清0
2.求反指令(1条)
指令功能Βιβλιοθήκη 标志位√ × × × 累加器A的内容和工作寄存器Ri指向的地址单元中 的内容执行逻辑异或操作。结果存在累加器A中
√ × × × 累加器A的内容和立即数执行逻辑异或操作。结果 存在累加器A中
√ × × × 累加器A的内容和寄存器Rn中的内容执行逻辑异 或操作。结果存在累加器A中
× × × × 直接地址单元中的内容和累加器A的内容执行逻辑 异或操作。结果存在直接地址单元中
XRL A,Z
CPL A
ORL A,R1 MOV F,A SJMP $
;A ← (X) ;A ← (A)∧(Y) ;A内容暂存 ;A ← (Y)
;A ← (Y) (Z)
; A ←()()
;得到输出 ;存输出
单片机原理与应用
× × × × 直接地址单元中的内容和累加器A的内容执行 逻辑或操作。结果存在直接地址单元中

汇编指令

汇编指令

一、数据传送指令(七种助记符)MOV (Move)对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送MOVX (Move External RAM)对外部存储器的数据传送XCH (Exchange)字节交换XCHD (Exchange Low-order Digit)低半字节交换PUSH (Push onto Stack)入栈POP (Pop from Stack)出栈二、算术运算指令(8种助记符)ADD (Addition)加法ADDC (Add with Carry)带进位加法SUBB (Subtract withBorrow)带借位减法DA (Decimal Adjust)十进制调整INC (Increment)加1DEC (Decrement)减1MUL (Multiplication Multiply)乘法DIV (Division Divide)除法三、逻辑运算类指令(10种助记符)ANL (AND Logic)逻辑与ORL (OR Logic)逻辑或XRL (Exclusive-OR Logic)逻辑异或CLR (Clear)清零CPL (Complement)取反RL (Rotate left)循环左移RLC (RL throught the carry flag)带进位循环左移SWAP (Swap)低4位与高4位交换四、控制转移类指令(17种助记符)ACCALL (Absolute subroutine Call)子程序绝对调用LCALL (Long subrout Call)子程序常调用RET (Return from Interruption)子程序返回RET1 (Return from Interruption)中断返回SJMP (Short jump)短转移AJMP (Absolute jump)绝对转移LJMP (Long Jump)长转移CJNE (Compare Jump if Not Equal)比较不等则转DJNZ (Decrement Jump if Not Zero)减1不为0则转JZ (Jump if zero)结果为0则跳转JNZ (Jump if Not Zero)结果不为0则跳转JC (Jump if Not carry flag is set)有进位则转移JB (Jump if the Bit is set)位为1则转移JNB (Jump if the Bit is Not set)位为0则转移JBC (JB and Clear the bit)位为1则转并清除该位NOP (No Operation)空操作五位操作指令(1种助记符)CLR 位清零SETB (Set Bit)位置1八种常用伪指令 16位地址此指令用在原程序或数据块的开始,指明此语句后面目标程序或数据块存放的起始地址2.【标号】DB 字节数据项表:奖项表中的字节数据存放到从标号开始的连续字节单元中。

汇编语言2-4逻辑移位指令

汇编语言2-4逻辑移位指令
第 2章
8086指令系统
一、数据传送类; 二、算术运算类; 三、位操作指令(逻辑运算和移位类); 四、串操作类; 五、控制转移类; 六、处理器控制类;
第 2章
8086指令系统
位操作指令,它们都是按位进行操作的包含逻辑运
算类指令和移位指令。 位操作类指令以二进制位为基本单位进行数据的操 作;这是一类常用的指令,都应该特别掌握 注意这些指令对标志位的影响 要求:全面而准确地理解每条指令的功能和应用 重点掌握以下指令:
第 2章
2、逻辑或指令OR
功能:对两个操作数执行按位逻辑或运 算,结果送到目的操作数
OR reg,imm/reg/mem ;reg←reg∨imm/reg/mem OR mem,imm/reg ;mem←mem∨imm/reg
说明:(1)按位逻辑或运算; (2)OR指令对操作数的限制和对标志位的影响; 思考: (1)某一个操作数自己和自己相逻辑或? 置某些位 (2)OR指令主要用在什么场合?
RCR reg/mem,1/CL
;带进位循环左移
;带进位循环右移
演示
第 2章
说明:循环移位指令
对操作数:同移位指令。 对标志的影响:
(1)按照指令功能设置进位标志CF (2)不影响SF、ZF、PF、AF (3)对于OF,同移位指令。如果进行一位移动, 则按照操作数的最高符号位是否改变,相应设置 溢出标志OF:如果移位前的操作数最高位与移位 后操作数的最高位不同(有变化),则OF = 1; 否则OF = 0。当移位次数大于1时,OF不确定
第 2章
例:移位指令
mov cl,4 mov al,0f0h ;al=f0h shl al,1 ;al=e0h ;CF=1,SF=1、ZF=0、PF=0,OF=0 shr al,1 ;al=70h ;CF=0,SF=0、ZF=0、PF=0、OF=1 sar al,1 ;al=38h ;CF=0,SF=0、ZF=0、PF=0、OF=0 sar al,cl ;al=03h ;CF=1,SF=0、ZF=0、PF=1 、OF=0

逻辑运算指令

逻辑运算指令

逻辑运算指令
逻辑运算指令是计算机中用于执行逻辑运算操作的指令。

逻辑运算是基于逻辑代数的运算,用于处理逻辑值(真或假)的计算。

常见的逻辑运算指令包括以下几种:
1. 与运算(AND):将两个操作数的对应位进行逻辑与运算,结果为真时返回真,否则返回假。

2. 或运算(OR):将两个操作数的对应位进行逻辑或运算,结果为真时返回真,否则返回假。

3. 非运算(NOT):对一个操作数进行逻辑非运算,将真变为假,将假变为真。

4. 异或运算(XOR):将两个操作数的对应位进行逻辑异或运算,结果为真时返回真,否则返回假。

这些逻辑运算指令在计算机中广泛应用于条件判断、逻辑控制和数据处理等各个领域,是计算机运算的基础。

二算术逻辑运算指令

二算术逻辑运算指令

三、逻辑运算指令
⑵移位指令
• 累加器A循环左移指令: • RL A ; • 累加器A连同进位位循环左移指令: • RLC A ; • 累加器A循环右移指令: • RR A ; • 累加器A连同进位位循环右移指令 • RRC A ;
三、逻辑运算指令
• 例3-18:若(A)=10111101B=BDH, Cy=0
• 注:执行结果只影响PSW的奇偶校验位P (以A为操 作数时 )
二、算术运算指令
3.乘、除法指令
• MUL AB ; (A)←[(A)×(B)]7-0

(B)←[(A)×(B)]15-8
• 如果积大于255(FFH),则溢出标志OV置1,否则清0。进
位标志位Cy总为0。
二、算术运算指令
• 例3-17:设(A)=50H(80),(B) =0AH(160) 执行指令:MUL AB;
• 执行“ RLC A”的结果为 • (A)=01111010B=7AH,Cy=1 • A的内容扩大2倍
三、逻辑运算指令
2 .双操作数的逻辑运算指令
• ⑴逻辑“与”指令
• ANL A,Rn ;(A) ←(A)∧(Rn) • ANL A,direct ;(A) ←(A)∧(direct) • ANL A,@Ri ;(A) ←(A)∧((Ri)) • ANL A,#data ;(A) ←(A)∧data • ANL direct, A ;(direct)←(direct)∧(A) ANL direct,#data;(direct)←(direct)∧data
• 本指令不能简单的把累加器A中的16进制数变换成 BCD码
二、算术运算指令
• 例3-13:设累加器A内容为压缩BCD码56 (即01010110B),寄存器R3的内容为 压缩BCD码67(即01100111B),Cy内 容为1。执行下列的指令:

03.9 第三章 - 单片机指令系统(位操作指令MOV、SETB、CLR、CPL、ANL、ORL)

03.9 第三章 - 单片机指令系统(位操作指令MOV、SETB、CLR、CPL、ANL、ORL)

;A = 59H = 0101 1001B ;P1 = A = 0101 1001B ;C = 1 ;ACC.1 = 1 ;P1.3 = 0 ;P1.6 = 0 ;P1.2 = 1 ;(20H)= P1 = 0001 0101B ;(30H)= A = 0101 1011B
09:43
单片机技术
8
3.9.2 位控制指令(SETB、CLR、CPL)
;P1.0 = 1 ;ACC.3 = 0 ;C = 1 ;C = 1 ;C = 1 ;P3.4 = 1
09:43
单片机技术
14
3.9.3 位条件转移指令(JC、JB、JBC)
❖ 1.判C转移指令ຫໍສະໝຸດ JC、JNC)JC rel
;先PC←PC+2;若(Cy)= 1时转移,且PC'
=PC+rel,否则顺序执行
CPL bit ;(bit)= (/bit)
▪ 功能:将Cy或bit取反。
09:43
单片机技术
9
3.9.2 位控制指令(SETB、CLR、CPL)
❖ 课堂练习
▪ 执行以下指令?
SETB P1.0 CLR 20H CLR PSW.2 CPL PSW.2 CLR RS0 SETB RS1
;P1.0 = 1 ;20H = 0 ;PSW.2 = 0 ;PSW.2 = 1 ;RS0 = 0 ;RS1 = 1
❖ 1.位置1指令(SETB)
▪ 格式:SETB C ;(Cy) = 1
SETB bit ;(bit)= 1
▪ 功能:将Cy或bit置1。
❖ 2.位置0指令(CLR)
▪ 格式:CLR C ;(Cy) = 0
CLR bit ;(bit)= 0
▪ 功能:将Cy或bit置0。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MOV P1,A。将A中的值送到P1端口去。此时A中的值是80H,所以送出去的也就是80H,因此P1口的值是80H,也就是10000000B,通过前面的分析,我们应当知道,此时P1。7接的LED是不亮的,而其它的LED都是亮的,所以就形成了一个“暗点”。继续看,RL A,RL A是将A中的值进行左移,算一下,移之后的结果是什么?对了,是01H,也就是00000001B,这样,应当是接在P1。0上的LED不亮,而其它的都亮了,从现象上看“暗点”流到了后面。然后是调用延时程序,这个我们很熟悉了,让这个“暗点”“暗”一会儿。然后又调转到LOOP处(LJMP LOOP)。请大家计算一下,下面该哪个灯不亮了。。。。。对了,应当是接在P1。1上灯不亮了。这样依次循环,就形成了“暗点流动”这一现象。
START:
Mபைடு நூலகம்V SP,#5FH
MOV A,#80H
LOOP:
MOV P1,A
RL A
LCALL DELAY
LJMP LOOP
delay:
mov r7,#255
d1: mov r6,#255
d2: nop
nop
nop
nop
djnz r6,d2
djnz r7,d1
ret
END
先让我们将程序写入片中,装进实验板,看一看现象。


看到的是一个暗点流动的现象,让我们来分析一下吧。
前而的ORG 0000H、LJMP START、ORG 30H等我们稍后分析。从START开始,MOV SP,#5FH,这是初始化堆栈,在本程序中有无此句无关紧要,不过我们慢慢开始接触正规的编程,我也就慢慢给大家培养习惯吧。
MOV A,#80H,将80H这个数送到A中去。干什么呢?不知道,往下看。
例:(A)=73H,则执行CPL A,这样进行:
73H化为二进制为01110011,
逐位取反即为10001100,也就是8CH。
RL A是将(A)中的值的第7位送到第0位,第0位送1位,依次类推。
例:A中的值为68H,执行RL A。68H化为二进制为01101000,按上图进行移动。01101000化为11010000,即D0H。
逻辑运算类指令
1.对累加器A的逻辑操作:
CLR A;将A中的值清0,单周期单字节指令,与MOV A,#00H效果相同。
CPL A;将A中的值按位取反
RL A;将A中的值逻辑左移
RLC A;将A中的值加上进位位进行逻辑左移
RR A;将A中的值进行逻辑右移
RRC A;将A中的值加上进位位进行逻辑右移
SWAP A;将A中的值高、低4位交换。
练习,已知(A)=39H,执行下列指令后写出每步的结果
CPL A
RL A
CLR C
RRC A
SETB C
RLC A
SWAP A
通过前面的学习,我们已经掌握了相当一部份的指令,大家对这些枯燥的指令可能也有些厌烦了,下面让我们轻松一下,做个实验。
实验五:
ORG 0000H
LJMP START
ORG 30H
问题:
1.如何实现亮点流动?
2.如何改变流动的方向?
答案:
1、将A中的初始值改为7FH即可。
2、将RL A改为RR A即可。
RLC A,是将(A)中的值带上进位位(C)进行移位。
例:A中的值为68H,C中的值为1,则执行RLC A
1 01101000后,结果是0 11010001,也就是C进位位的值变成了0,而(A)则变成了D1H。
RR A和RRC A就不多谈了,请大家参考上面两个例子自行练习吧。
SWAP A,是将A中的值的高、低4位进行交换。
例:(A)=39H,则执行SWAP A之后,A中的值就是93H。怎么正好是这么前后交换呢?因为这是一个16进制数,每1个16进位数字代表4个二进位。注意,如果是这样的:(A)=39,后面没H,执行SWAP A之后,可不是(A)=93。要将它化成二进制再算:39化为二进制是10111,也就是0001,0111高4位是0001,低4位是0111,交换后是01110001,也就是71H,即113。
相关文档
最新文档