高中数学选学2-3随机变量及其分布高频率考题练习附答案 教师版
(必考题)高中数学选修三第二单元《随机变量及其分布》测试卷(包含答案解析)

一、选择题1.在一个箱子中装有大小形状完全相同的有4个白球和3个黑球,现从中有放回地摸取5次,每次随机摸取一球,设摸得的白球个数为X ,黑球个数Y ,则( ) A .()()()(),E X E Y D X D Y >> B .()()()(),E X E Y D X D Y => C .()()()(),E X E Y D X D Y >=D .()()()(),E X E Y D X D Y ==2.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .123.某种疾病的患病率为0.5%,已知在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为( ) A .0.495%B .0.940 5%C .0.999 5%D .0.99%4.已知随机变量()2~0,X N σ,若()10.2P X>=,则()01P X <<的值为( )A .0.1B .0.3C .0.6D .0.45.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .456.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .38D .347.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .128.已知甲、乙、丙三名同学同时独立地解答一道导数试题,每人均有23的概率解答正确,且三个人解答正确与否相互独立,在三人中至少有两人解答正确的条件下,甲解答不正确的概率()A.1320B.920C.15D.1209.已知三个正态分布密度函数()()2221e2iixiixμσϕπσ--=(, 1,2,3i=)的图象如图所示则()A.123123==μμμσσσ<>,B.123123==μμμσσσ><,C.123123μμμσσσ=<<=,D.123123==μμμσσσ<<,10.已知随机变量X的分布列如下表所示则(25)E X-的值等于A.1 B.2 C.3 D.411.若随机变量()100,,X B p X~的数学期望()24E X=,则p的值是( )A.25B.35C.625D.192512.下列关于正态分布2(,)(0)Nμσσ>的命题:①正态曲线关于y轴对称;②当μ一定时,σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”;③设随机变量~(2,4)X N,则1()2D X的值等于2;④当σ一定时,正态曲线的位置由μ确定,随着μ的变化曲线沿x轴平移.其中正确的是()A .①②B .③④C .②④D .①④二、填空题13.一位篮球运动员投篮一次得3分概率为a ,得2分概率为b ,不得分概率为c ,(),,0,1a b c ∈.若他投篮一次得分的期望为1,则12a b+的最小值为______.14.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A 传B ,B 又传C ,C 又传D ,这就是“持续人传人”.那么A 、B 、C 就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被第一代、第二代、第三代传播者感染的概率分别为0.9,0.8,0.7,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大________.15.若随机变量X 的分布列如下表,且()2E X =,则()23D X -的值为________.X0 2aP16p1316.从编号为1,2,…,10的10个大小相同的球中任取4个,在选出4号球的条件下,选出球的最大号码为6的概率为_____.17.已知随机变量X 的分布列如下,若E(X)=3,则D(X)=____.18.抛掷红、黄两颗骰子,设事件A 为“黄色的骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于7”.当已知黄色的骰子的点数为3或6时,两颗骰子的点数之和大于7的概率为__________.三、解答题19.雅言传承文明,经典滋润人生,中国的经典诗文是中华民族精神文明的重要组成部分,近年来某市教育局积极推广经典诗文诵读活动,致力于营造“诵读国学经典,积淀文化底蕴”的书香校园,引导广大学生熟悉诗词歌赋,亲近中华经典,感悟中华传统文化的深厚魅力,丰厚学生的人文积淀,该市教育局为调查活动开展的效果,对全市参加过经典诗文诵读活动的学生进行了测试,并从中抽取了1000份试卷,根据这1000份试卷的成绩(单位:分,满分100分)得到如下频数分布表. 成绩/分 [)65,70[)70,75[)75,80[) 80,85[)85,90[)90,95[]95,100频数40902004001508040(2)假设此次测试的成绩X 服从正态分布()2,N μσ,其中μ近似为样本平均数,2σ近似为样本方差2s ,已知s 的近似值为6.61,以样本估计总体,假设有84.14%的学生的测试成绩高于市教育局预期的平均成绩,则市教育局预期的平均成绩大约为多少(结果保留一位小数)?(3)该市教育局准备从成绩在[]90,100内的120份试卷中用分层抽样的方法抽取6份,再从这6份试卷中随机抽取3份进行进一步分析,记Y 为抽取的3份试卷中测试成绩在[]95,100内的份数,求Y 的分布列和数学期望.参考数据:若()2,X N μσ,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈.20.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)21.我市某大学组建了A 、B 、C 、D 、E 五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须且只能参加一个社团,假定某寝室的甲、乙、丙三名学生对这五个社团的选择是等可能的.(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;(2)设随机变量ξ为甲、乙、丙这三个学生参加A 或B 社团的人数,求ξ的分布列、数学期望及方差.22.“花开疫散,山河无恙,心怀感恩,学子归来,行而不缀,未来可期”,为感谢全国人民对武汉的支持,今年樱花节武汉大学在其属下的艺术学院和文学院分别招募8名和12名志愿者参与网络云直播.将这20名志愿者的身高编成如下茎叶图(单位:厘米).若身高在175cm 及其以上定义为“高个子”,否则定义为“非高个子”,且只有文学院的“高个子”才能担任兼职主持人.(1)根据志愿者的身高茎叶图指出文学院志愿者身高的中位数.(2)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,则从这5人中选2人,那么至少有一人是“高个子”的概率是多少;(3)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“兼职主持人”的人数,试写出ξ的分布列,并求ξ的数学期望.23.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求: (1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,求无残次品的概率β.24.2020年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟跳绳个数 [)155,165 [)165,175 [)175,185 []185,215得分17181920分的概率; (2)若该校初三年级所有学生的跳绳个数2~(,)X N μσ,用样本数据的平均值和方差估计总体的期望和方差.已知样本方差2169s ≈(各组数据用中点值代替).根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步.假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:①全年级有1000名学生,预估正式测试每分钟跳182个以上人数;(结果四舍五入到整数) ②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为Y ,求随机变量Y 的分布列和期望. 附:若2~(,)X N μσ,则(||)0.6826,(||2)0.9544,(||3)0.9974P X P X P X μσμσμσ-<≈-<≈-<≈.25.2020年10月4日,第29届全国中学生生物学奥林匹克竞赛,在重庆巴蜀中学隆重举行,若将本次成绩转化为百分制,现从中随机抽取了50名学生的成绩,经统计,这批学生的成绩全部介于50至100之间,将数据按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100的分组作出频率分布直方图如图所示.(1)求频率分布直方图中a的值,并估计这50名学生成绩的中位数;(2)若按照分层随机抽样从成绩在[)(]80,90,90,100的两组中抽取了6人,再从这6人中随机抽取3人,记x为3人中成绩在[]90,100的人数,求x的分布列和数学期望. 26.山竹,原产于马鲁古,具有清热泻火、生津止渴的功效,其含有丰富的蛋白质与脂类,对体弱、营养不良的人群都有很好的调养作用,因此被誉为夏季的“水果之王”,受到广大市民的喜爱.现将某水果经销商近一周内山竹的销售情况统计如下表所示:采购数量x(单位:箱)[)220,240[)240,260[)260,280[)280,300[]300,320采购人数1001005020050(1)根据表格中数据,完善频率分布直方图;(2)求近一周内采购量在286箱以下(含286箱)的人数以及采购数量x的平均值;(3)以频率估计概率,若从所有采购者中随机抽取4人,记采购量不低于260箱的采购人数为X,求X的分布列以及数学期望()E X.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,由二项分布的均值与方差公式计算后可得结论.【详解】 有放回地摸出一个球,它是白球的概率是47,它是黑球的概率是37,因此4(5,)7XB ,3(5,)7YB ,∴420()577E X =⨯=,315()577E Y =⨯=, 4360()57749D X =⨯⨯=,3460()57749D Y =⨯⨯=.故选:C 【点睛】结论点睛:本题考查二项分布,掌握二项分布的概念是解题关键.变量(,)XB n p ,则()E X np =,()(1)D X np p =-.2.A解析:A 【分析】根据分布列的性质可得23a =,由()2E ξ=可得出62m n =-,再由二次函数的基本性质可求得()D ξ的最小值. 【详解】由分布列的性质可得23a =,()12233E m n ξ=+=,所以,26m n +=,则62m n =-,()()()()()()222221212224222203333D m n n n n ξ=-+-=-+-=-≥, 因此,()D ξ的最小值为0. 故选:A.【点睛】本题考查利用随机分布列的性质解题,同时也考查了方差最值的计算,考查计算能力,属于中等题.3.A解析:A 【分析】设事件A =“血检呈阳性”,B =“患该种疾病”,由题得P (B )=0.005,P (A |B )=0.99, 由条件概率得P (AB )=P (B )P (A |B ),计算即得解. 【详解】设事件A =“血检呈阳性”,B =“患该种疾病”. 依题意知P (B )=0.005,P (A |B )=0.99, 由条件概率公式P (A |B )=()()P AB P B , 得P (AB )=P (B )P (A |B )=0.005×0.99=0.00495, 故选:A. 【点睛】本题主要考查条件概率的计算和应用,意在考查学生对这些知识的理解掌握水平.4.D解析:D 【分析】根据题意随机变量()2~0,X N σ可知其正态分布曲线的对称轴,再根据正态分布曲线的对称性求解,即可得出答案. 【详解】根据正态分布可知()()20|111P X P X >+<<=,故()010.4P X <<=.故答案选D . 【点睛】本题主要考查了根据正态分布曲线的性质求指定区间的概率.5.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.6.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.7.C解析:C 【分析】利用古典概型概率公式计算出()P AB 和()P A ,然后利用条件概率公式可计算出结果. 【详解】事件:AB 前两次取到的都是一等品,由古典概型的概率公式得()232412A P AB A ==,由古典概型的概率公式得()34P A =,由条件概率公式得()()()142233P AB P B A P A ==⨯=, 故选C. 【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题.8.C解析:C【分析】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B ,利用二项分布的知识计算出()P A ,再计算出()P AB ,结合条件概率公式求得结果. 【详解】记“三人中至少有两人解答正确”为事件A ;“甲解答不正确”为事件B则()2323332122033327P A C C ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()122433327P AB =⨯⨯= ()()()15P AB P B A P A ∴== 本题正确选项:C 【点睛】本题考查条件概率的求解问题,涉及到利用二项分布公式求解概率的问题.9.D解析:D 【分析】正态曲线关于x =μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果. 【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为()()2221ei i x i ix μσϕ--=,则对应的函数的图像的对称轴为:i μ,∵正态曲线关于x =μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A ,D 两个答案中选一个, ∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,第一个和第二个的σ相等 故选D . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.10.A解析:A【分析】先求出b 的值,再利用期望公式求出E(X),再利用公式求出()25E X -. 【详解】由题得0.1+0.2+0,20.11,0.4,b b ++=∴=,所以()10.120.230.440.250.13E X =⨯+⨯+⨯+⨯+⨯= 所以(25)2()52351E X E X -=-=⨯-=. 故答案为A 【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 若a b ηξ=+(a 、b 是常数),ξ是随机变量,则η也是随机变量,E η=()E a b aE b ξξ+=+,2()D a b a D ξξ+=.11.C解析:C 【解析】分析:由题意结合二项分布数学期望的计算公式求解实数p 的值即可. 详解:随机变量()100,,X B p ~则X 的数学期望()100E X p =, 据此可知:10024p =,解得:625p =. 本题选择C 选项.点睛:本题主要考查二项分布的数学期望公式及其应用,意在考查学生的转化能力和计算求解能力.12.C解析:C 【解析】分析:根据正态分布的定义,及正态分布与各参数的关系结合正态曲线的对称性,逐一分析四个命题的真假,可得答案.详解:①正态曲线关于x μ=轴对称,故①不正确,②当μ一定时,σ越大,正态曲线越“矮胖”,σ越小,正态曲线越“瘦高”;正确;③设随机变量()~2,4X N ,则12D X ⎛⎫⎪⎝⎭的值等于1;故③不正确; ④当σ一定时,正态曲线的位置由μ确定,随着μ的变化曲线沿x 轴平移.正确.故选C.点睛:本题以命题的真假判断为载体考查了正态分布及正态曲线,熟练掌握正态分布的相关概念是解答的关键.二、填空题13.;【分析】推导出从而利用基本不等式能求出的最小值【详解】一位篮球运动员投篮一次得3分概率为得2分概率为不得分概率为他投篮一次得分的期望为1当且仅当时取等号的最小值为故答案为:【点睛】本题考查代数式的解析:7+; 【分析】推导出321a b +=,从而121262()(32)7a b a b a b a b b a+=++=++,利用基本不等式能求出12a b +的最小值. 【详解】一位篮球运动员投篮一次得3分概率为a ,得2分概率为b , 不得分概率为c ,a ,b ,(0,1)c ∈,他投篮一次得分的期望为1, 321a b ∴+=,∴1212626()(32)7727a b a a b a b a b b a b +=++=+++=+ 当且仅当62a bb a=时取等号,∴12a b+的最小值为7+.故答案为:7+ 【点睛】本题考查代数式的最小值的求法,考查离散型随机变量的分布列、数学期望、均值不等式等基础知识,考查运算求解能力,是中档题.14.【分析】求出小明与第一代第二代第三代传播者接触的概率利用独立事件互斥事件的概率公式求解即可【详解】设事件为第一代第二代第三代传播者接触事件为小明被感染由已知得:(A )(B )(C )(D )(A )(B )( 解析:0.83【分析】求出小明与第一代、第二代、第三代传播者接触的概率,利用独立事件、互斥事件的概率公式求解即可. 【详解】设事件A ,B ,C 为第一代、第二代、第三代传播者接触, 事件D 为小明被感染,由已知得:P (A )0.5=,P (B )0.3=,P (C )0.2=,(|)0.9P D A =,(|)0.8P D B =,(|)0.7P D C =,P (D )(|)P D A P =(A )(|)P D B P +(B )(|)P D C P +(C )0.90.50.80.30.70.2=⨯+⨯+⨯ 0.83=.∴小明参加聚会,仅和感染的10个人其中一个接触,感染的概率为0.83.故答案为:0.83. 【点睛】本题考查概率的求法,考查独立事件、互斥事件的概率公式以及条件概率的性质等基础知识,考查运算求解能力,是基础题.15.【分析】利用分布列求出利用期望求解然后求解方差即可【详解】解:由题意可得:解得因为所以:解得故答案为:【点睛】本题考查离散型随机变量的分布列方差的求法属于中档题 解析:4【分析】利用分布列求出p ,利用期望求解a ,然后求解方差即可. 【详解】解:由题意可得:11163p ++=,解得12p =,因为()2E X =,所以:111022623a ⨯+⨯+⨯=,解得3a =.222111()(02)(22)(32)1623D X =-⨯+-⨯+-⨯=.(23)4()4D X D X -==.故答案为:4. 【点睛】本题考查离散型随机变量的分布列、方差的求法,属于中档题.16.【分析】令事件求出即可求出选出4号球的条件下选出球的最大号码为6的概率【详解】令事件依题意知∴故答案为【点睛】本题考查古典概型理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性掌握列 解析:114【分析】令事件{}44A =选出的个球中含号球,{}46B =选出的个球中最大号码为,求出()39n A C =,()6n AB =,即可求出选出4号球的条件下,选出球的最大号码为6的概率. 【详解】令事件{}44A =选出的个球中含号球,{}46B =选出的个球中最大号码为,依题意知()39=84n A C =,()246n AB C ==, ∴()61|8414P B A ==,故答案为114. 【点睛】本题考查古典概型,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,掌握列举法,还要应用排列组合公式熟练,学会运用数形结合、分类讨论的思想解决概率的计算问题,属于中档题.17.1【分析】由题意根据和分布列的性质求得的值再利用方差的公式即可求解【详解】根据题意得解得∴D(X)=(1-3)2×01+(2-3)2×02+(3-3)2×03+(4-3)2×04=1【点睛】本题主要解析:1 【分析】由题意,根据()3E X =和分布列的性质,求得,m n 的值,再利用方差的公式,即可求解. 【详解】 根据题意,得解得∴D(X)=(1-3)2×0.1+(2-3)2×0.2+(3-3)2×0.3+(4-3)2×0.4=1. 【点睛】本题主要考查了分布列的性质和期望与方差的计算,其中明确分布列的性质和相应的数学期望和方差的计算公式,准确计算是解答的关键,着重考查了推理与运算能力.18.【解析】分析:由题意知这是一个条件概率做这种问题时要从这两步入手一是做出黄色骰子的点数为或的概率二是两颗骰子的点数之和大于的概率再做出两颗骰子的点数之和大于且黄色骰子的点数为或的概率根据条件概率的公 解析:712【解析】分析:由题意知这是一个条件概率,做这种问题时,要从这两步入手,一是做出黄色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于7的概率,再做出两颗骰子的点数之和大于7且黄色骰子的点数为3或6的概率,根据条件概率的公式得到结果.详解:设x 为掷红骰子的点数,y 为黄掷骰子得的点数,(),x y 共有6636⨯=种结果,则黄色的骰子的点数为3或6所有12种结果,两颗骰子的点数之和大于7所有结果有10种,利用古典概型概率公式可得()()()1211077,,363361836P A P B P AB =====,由条件概率公式可得()()()7736|1123P AB P B A P A ===,故答案为712. 点睛:本题主要考查条件概率以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出;(3)利用两个原理及排列组合知识.三、解答题19.(1)82.15x =;(2)75.5分;(3)分布列答案见解析,数学期望:1. 【分析】(1)利用平均数的计算公式即可求解; (2)利用正态分布的概率分布即可求解;(3)先利用分层抽样的方法求出抽取的6份试卷中成绩在[)90,95和[]95,100内的份数,然后求出Y 的所有可能取值及每个取值对应的概率,最后写出Y 的分布列及数学期望. 【详解】解:(1)由频数分布表67.50.0472.5.0977.50.282.50.487.50.1592.50.0897.50.0482.150x =+++⨯+++⨯=⨯⨯⨯⨯⨯.(2)由题意得, 2(82.15,6.61)X N且()10.68270.841422P X μσ>-≈+≈, 又82.15 6.6175.5475.5μσ-=-=≈, 故市教育局预期的平均成绩大约为75.5分.(3)利用分层抽样的方法抽取的6份试卷中成绩在[)90,95内的有4份,成绩在[]95,100内的有2份,故Y 的所有可能取值为0,1,2,且()032436105C C P Y C ===,()122436315C C P Y C ===,()212436125C C P Y C ===, 所以Y 得分布列为数学期望()0121555E Y =⨯+⨯+⨯=.【点睛】方法点睛:求离散型随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 的所有可能取值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验. 20.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列;(3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅=⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)1325;(2)分布列见解析;期望为1.2;方差0.72. 【分析】(1)先求出甲、乙、丙三名学生参加社团的总的方法数为35,再求出三名学生选择不同社团35A种,求出三名学生选择不同社团概率为35312525A =,然后由12125-得出答案. (2)由题意得ξ的可能值为0、1、2、3,每个学生参加A 或B 社团的概率都是20.45=,且相互独立,符合二项分布~(30.4)B ξ,,由二项分布可得答案. 【详解】(1)甲、乙、丙三名学生每人选择五个社团的方法是5种,故共有35125=种可能,甲、乙、丙三名学生选择不同社团概率为35312525A =,则至少有两人参加同一社团概率为121312525-=; (2)由题意得ξ的可能值为0、1、2、3, 甲、乙、丙三个学生每人参加A 或B 社团的概率都是20.45=, 且相互独立,符合二项分布~(30.4)B ξ,, 3(0)0.60.216P ξ===,1123(1)0.40.60.432P C ξ==⨯⨯=, 2213(2)0.40.60.288P C ξ==⨯⨯=,3(3)0.40.064P ξ===,ξ的分布列为:()(1)30.40.60.72D np p ξ=-=⨯⨯=. 【点睛】关键点睛:本题考查古典概率和对立事件的概率以及二项分布的期望和方程,解答本题的关键是将问题化为二项分布问题,即根据甲、乙、丙三个学生每人参加A 或B 社团的概率都是20.45=, 且相互独立,符合二项分布~(30.4)B ξ,,从而根据二项分布求解,属于中档题. 22.(1)168.5cm ;(2)710;(3)分布列见解析,98. 【分析】(1)根据茎叶图得到文学院志愿者身高,再根据中位数的定义可求得结果;(2)根据分层抽样得到5人中“高个子”和“非高个子”的人数,再根据对立事件的概率公式可求得结果;(3)ξ的可能取值为0、1、2、3,根据超几何分布的概率公式可得ξ的可能取值的概率,从而可得分布列和数学期望. 【详解】(1)根据志愿者的身高茎叶图知文学院志愿者身高为:158,159,161,162,165,168,169,173,174,176,180,181,其升高的中位数为:168169168.52+=cm ; (2)由茎叶图可知,“高个子”有8人,“非高个子”有12人, ∴按照分层抽样抽取的5人中“高个子”为85220⨯=人,“非高个子”为125320⨯=人, 则从这5人中选2人,至少有1人为高个子的概率23257110C P C =-=;(3)由题可知:文学院的高个子只有3人,则ξ的可能取值为0、1、2、3,故305338105(0)5628C C P C ξ⋅====,2153383015(1)5628C C P C ξ⋅====, 12533815(2)56C C P C ξ⋅===,0353381(3)56C C P C ξ⋅===, 即ξ的分布列为:所以19()0123282856568E ξ=⨯+⨯+⨯+⨯=. 【点睛】关键点点睛:掌握中位数的定义、分层抽样的特点以及超几何分布的概率公式是本题的解题关键.23.(1)0.94;(2)0.85. 【分析】(1)先求出一箱中有i 件残次品的概率,再求查看的有i 件残次品的概率,进而由条件概率求出顾客买下该箱玻璃杯的概率;(2)由(1)可得顾客买下该箱玻璃杯的条件下没有残次品的概率. 【详解】设A =‘顾客买下该箱’,B =‘箱中恰有i 件残次品’,i =0,1,2,(1)α=P (A )=P (B 0)P (A |B 0)+P (B 1)P (A |B 1)+P (B 2)P (A |B 2)=0.8+0.1×419420C C +0.1×418420C C ≈0.94.(2)β=P (B 0|A )=()()00.80.94P AB P A =≈0.85. 【点睛】结论点睛:应用条件概率时弄清概率P (B |A )和P (AB ) 的区别与联系: (1)联系:事件A 和B 都发生了;(2)区别: a 、P (B | A )中,事件A 和B 发生有时间差异,A 先B 后;在P (AB )中,事件A 、B 同。
高中数学选修23随机变量及其分布综合测试题

高中数学选修2-3随机变量及其分布综合测试题一、选择题1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某超市一天中的顾客量X 其中的X 是连续型随机变量的是 A .① B .② C .③ D .①②③2.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数C .至少取到一个红球D .至少取到一个红球的概率3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则 “X >4”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚大于4点,第二枚也大于4点C .第一枚为6点,第二枚为1点D .第一枚为4点,第二枚为1点 4.随机变量X 的分布列为P (X =k )=,k =1、2、3、4,其中为常数,则P ()的值为 A .B .C .D .5. 甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是. 现在三人同时射击目标,则目标被击中的概率为6.已知随机变量X 的分布列为P (X =k )=31,k =1,2,3,则D (3X +5)等于 A .6B .9C .3D .47. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则A .4B .5C .4.5D .4.75 8.某人射击一次击中目标的概率为,经过3次射击,此人至少有两次击中目标的概率为A .B .C .D .9.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为A. 0B. 1C. 2D. 310.已知X ~B (n ,p ),EX =8,DX =1.6,则n 与p 的值分别是A.100、0.08 B.20、0.4 C.10、0.2 D.10、0.811.随机变量,则随着的增大,概率将会A.单调增加 B.单调减小 C.保持不变 D.增减不定12.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为:A.0.4 B.1.2 C. D.0.6二.填空题13.一个箱子中装有质量均匀的10个白球和9个黑球,一次摸出5个球,在已知它们的颜色相同的情况下,该颜色是白色的概率是.14.从一批含有13只正品,2只次品的产品中,不放回地抽取3次,每次抽取1只,设抽得次品数为X,则E(5X+1)=________________.15.设一次试验成功的概率为P,进行100次独立重复试验,当P =________时,成功次数的标准差最大,其最大值是________________.16.已知随机变量X的分布列为X0 1 mPn且EX =1.1,则DX=________________.三.解答题17.某年级的一次信息技术成绩近似服从于正态分布N(70,100),如果规定低于60分为不及格,不低于90分为优秀,那么成绩不及格的学生约占多少?成绩优秀的学生约占多少?(参考数据:)18.如图,用A、B、C三类不同的元件连接成两个系统N1、N2,当元件A、B、C都正常工作时,系统N1正常工作;当元件A正常工作且元件B、C至少有一个正常工作时,系统N2正常工作. 已知元件A、B、C正常工作的概率依次为0.80,0.90,0.90,分别求系统N1,N2正常工作的概率P1、P2.19.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求(1)他罚球1次的得分X的数学期望;(2)他罚球2次的得分Y的数学期望;(3)他罚球3次的得分的数学期望.20.某班甲、乙、丙三名同学参加省数学竞赛选拔考试,成绩合格可获得参加竞赛的资格.其中甲同学表示成绩合格就去参加,但乙、丙同学约定:两人成绩都合格才一同参加,否则都不参加.设每人成绩合格的概率为,求(1)三人至少有一人成绩合格的概率;(2)去参加竞赛的人数X的分布列和数学期望.21.某城市出租汽车的起步价为10元,行驶路程不超出4km时租车费为10元,若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足lkm的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程X是一个随机变量.设他所收租车费为η(1)求租车费η关于行车路程X的关系式;(2)若随机变量X求所收租车费η(3)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?22.袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.(1)从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为X,求随机变量X的分布率及数学期望E X.(2) 若A、B两个袋子中的球数之比为1:2,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.选修2-3随机变量及其分布参考答案一、选择题BBCBA ACACD CB二、填空题13. 214. 3 15.,最大值是5 16.0.493三、解答题17.解:因为由题意得:()0.6826,(22)0.9544P P μσξμσμσξμσ-<<+=-<<+=(1)=0.1587,(2).答:成绩不及格的学生约占15.87%,成绩优秀的学生约占2.28% .18.解:记元件A 、B 、C 正常工作的事件分别为A 、B 、C , 由已知条件P (A )=0.80, P (B )=0.90,P (C )=0.90.(1)因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率P 1=P (A ·B ·C )=P (A )P (B )P (C )=0.648,故系统N 1正常工作的概率为0.648.(2)系统N 2正常工作的概率P 2=P (A )·[1-P ()]=P (A )·[1-P ()P ()]=0.80×[1-(1-0.90)(1-0.90)]=0.792. 故系统N 2正常工作的概率为0.792.19.解:(1)因为,,所以1×+0×.(2)Y 的概率分布为Y 0 12 P所以++=1.4.(3)η的概率分布为η0123P所以++.20.解:用A 、B 、C 表示事件甲、乙、丙成绩合格.由题意知A 、B 、C 相互独立,且P (A )=P (B )=P (C )= 23.(1)至少有1人成绩合格的概率是.(2)X的可能取值为0、1、2、3.;;;.所以X的分布列是X0123PX的期望为.21.解:(1)依题意得,即.(2)EX=∵22η=+X∴(元)故所收租车费η的数学期望为34.8元.(3)由38=2 X +2,得X =18,5(18-15)=15所以出租车在途中因故停车累计最多15分钟.22. 解: (1)(i).(ii)随机变量X的取值为0,1,2,3.由n次独立重复试验概率公式,得;;;.随机变量X的分布列是X0 1 2 3P 80 243X的数学期望是:.(2)设袋子A中有m个球,则袋子B中有2m个球.由,得.内容总结(1)高中数学选修2-3随机变量及其分布综合测试题一、选择题1.①某寻呼台一小时内收到的寻呼次数X。
高中数学人教版选修2-3专用同步作业解析(含答案)第二章 随机变量及其分布 改好133页

第二章随机变量及其分布2.1.1离散型随机变量[学习目标]1.随机变量及离散型随机变量的含义2.随机变量与函数的区别与联系.3.会用离散型随机变量.知识点一随机变量1.随机试验一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量在随机试验中,随着试验结果变化而变化的变量称为随机变量.3.随机变量与函数的联系与区别(1)联系:随机变量与函数都是映射,随机变量是随机试验结果到实数的映射,函数是实数到实数的映射;随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.(2)区别:函数f(x)的自变量是x,而在随机变量的概念中,随机变量的自变量是试验结果(即样本点).思考随机变量是自变量吗?答案不是.它是随试验结果变化而变化的,不是主动变化的.知识点二离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量.思考离散型随机变量的取值必须是有限个吗?答案不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以无限个.题型一 随机变量的概念例1 指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. (1)任意掷一枚均匀硬币5次,出现正面向上的次数; (2)投一颗质地均匀的骰子出现的点数(最上面的数字); (3)某个人的属相随年龄的变化; (4)在标准状况下,水在0 ℃时结冰.解 (1)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量. (2)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(3)属相是出生时便定的,不随年龄的变化而变化,不是随机变量. (4)标准状况下,在0 ℃时水结冰是必然事件,不是随机变量.反思与感悟 解答此类题目的关键在于分析变量是否满足随机试验的结果,随机变量从本质上讲就是以随机试验的每一个可能结果为一个映射,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能取的值,而不知道在一次试验中哪一个结果发生,随机变量取哪一个值.跟踪训练1 某学生上学的路上有6处红绿灯.(1)在每个红绿灯路口因红灯停留的时间之和是随机变量吗? (2)在上学路上遇到的红灯的个数是随机变量吗?解 (1)是随机变量.在上学的路上因红灯停留的时间之和都与一个非负实数对应,因此在每个红绿灯路口因红灯停留的时间之和是一个随机变量.(2)是随机变量.在上学路上遇到的红灯的个数都与0,1,2,3,4,5,6这7个数字之一相对应,因此在上学路上遇到的红灯的个数是一个随机变量. 题型二 离散型随机变量的判定例2 某校为学生订做校服,规定:凡身高(精确到1 cm)不超过160 cm 的学生交校服费80元;凡身高超过160 cm 的学生,身高每超出1 cm 多交5元钱.若学生应交校服费为η(单位:元),学生身高为ξ(单位:cm),则η和ξ是否为离散型随机变量?解 由于该校的每一个学生对应着唯一的身高,并且ξ取整数值,因此ξ是一个离散型随机变量,而η=⎩⎪⎨⎪⎧80(ξ≤160),(ξ-160)×5+80(ξ>160),所以η也是一个离散型随机变量.反思与感悟离散型随机变量的判定方法判断一个随机变量X是否为离散型随机变量的关键是判断随机变量X的所有取值是否可以一一列出,其具体方法如下:(1)明确随机试验的所有可能结果;(2)将随机试验的试验结果数量化;(3)确定试验结果所对应的实数是否可按一定次序一一列出,如果能一一列出,则该随机变量是离散型随机变量,否则不是.跟踪训练2指出下列随机变量是不是离散型随机变量,并说明理由.(1)从10张已编好号码的卡片(从1号到10号)中任取一张,被取出的卡片的号数;(2)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数;(3)某林场树木最高达30 m,则此林场中树木的高度;(4)某加工厂加工的某种铜管的外径与规定的外径尺寸之差.解(1)只要取出一张,便有一个号码,因此被取出的卡片号数可以一一列出,符合离散型随机变量的定义.(2)从10个球中取3个球,所得的结果有以下几种:3个白球;2个白球和1个黑球;1个白球和2个黑球;3个黑球,即其结果可以一一列出,符合离散型随机变量的定义.(3)林场树木的高度是一个随机变量,它可以取(0,30]内的一切值,无法一一列举,不是离散型随机变量.(4)实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量.题型三随机变量的应用例3写出下列随机变量可能取的值,并说明随机变量所取的值表示结果的随机试验.(1)一个袋中装有大小相同的2个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ;(2)一个袋中装有5个同样大小的球,编号为1,2,3,4,5.现从该袋内随机取出3个球,被取出的球的最大号码数ξ.解(1)ξ可取0,1,2.ξ=i,表示取出的3个球中有i个白球,(3-i)个黑球,其中i=0,1,2.(2)ξ可取3,4,5.ξ=3表示取出的3个球的编号为1,2,3;ξ=4表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5.反思与感悟随机变量从本质上讲就是以随机试验的每个结果为自变量的一个函数,即随机变量的取值本质上是试验结果对应的数,起到了描述随机事件的作用.这些数是预先知道的所有可能的值,而不知道究竟是哪一个值,这便是“随机”的本源.跟踪训练3一个木箱中装有6个大小相同的篮球,编号为1,2,3,4,5,6,现随机抽取3个篮球,以ξ表示取出的篮球的最大号码,则ξ的试验结果有________种.答案20解析从6个球中选出3个球,当ξ=3时,另两个球从1,2中选取,有一种抽法;当ξ=4时,另两个球从1,2,3中选取,有C23=3(种);当ξ=5时,另两个球从1,2,3,4中选取,有C24=6(种);当ξ=6时,另两个球从1,2,3,4,5中选取,有C25=10(种).所以,ξ的试验结果共有1+3+6+10=20(种).对题意理解不准致误例4甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分),若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.错解(1)X=0表示:甲没抢到题,乙抢到的题答错至少2个题或甲抢到2题,但答时一对一错,而乙答错1个题;(2)X=1表示:甲抢到1题且答对,乙抢到2题且1对1错或甲抢到3题,且2对1错;(3)X=2表示:甲抢到2题均答对;(4)X=3表示:甲抢到3题均答对.答案0,1,2,3错因分析错误的根本原因是对题意分析不准确,漏掉“甲抢1题但答错了,而乙抢到2题都答错”.即X=-1.正解(1)X=-1表示:甲抢到1题但答错了,而乙抢到2题都答错了.(2)X=0表示:甲没抢到题,乙抢到的题答错至少2个题或甲抢到2题,但答时1对1错,而乙答错1题.(3)X=1表示:甲抢1题且答对,乙抢到2题且1对1错或全错或甲抢到3题,且2对1错.(4)X=2表示:甲抢到2题均答对.(5)X=3表示:甲抢到3题均答对.答案-1,0,1,2,3点评对于随机变量的所有可能值,一定要理解透题意,把各种情况列全.1.下列叙述中,是离散型随机变量的为()A.将一枚均匀硬币掷五次,出现正面和反面向上的次数之和B.某人早晨在车站等出租车的时间C.连续不断地射击,首次命中目标所需要的次数D.袋中有2个黑球6个红球,任取2个,取得一个红球的可能性答案 C解析选项A,掷硬币不是正面向上就是反面向上,次数之和为5,是常量.选项B,是随机变量,但不能一一列出,不是离散型随机变量.选项D,事件发生的可能性不是随机变量.故选C.2.掷均匀硬币一次,随机变量为()A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和答案 B解析掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量,设为ξ,ξ的取值是0,1.A项中掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的和必是1,对应的是必然事件,试验前便知是必然出现的结果,所以不是随机变量.故选B.3.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率答案 C解析对于A中取到产品的件数是一个常量不是变量,B、D也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.4.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是() A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点答案 D解析 抛掷2枚骰子,其中1枚是x 点,另1枚是y 点,其中x ,y =1,2,…,6. 而ξ=x +y ,ξ=4⇔⎩⎪⎨⎪⎧ x =1,y =3或⎩⎪⎨⎪⎧x =2,y =2.5.下列随机变量中不是离散型随机变量的是________(填序号). ①广州白云机场候机室中一天的旅客数量X ; ②广州某水文站观察到一天中珠江的水位X ; ③深圳欢乐谷一日接待游客的数量X ; ④虎门大桥一天经过的车辆数X . 答案 ②解析 ①③④中的随机变量X 的所有取值,我们都可以按照一定的次序一一列出,因此它们是离散型随机变量;②中的随机变量X 可以取某一区间内的一切值,但无法按一定的次序一一列出,故不是离散型随机变量,故填②.1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.一、选择题1.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是( ) A .取到产品的件数 B .取到正品的件数 C .取到正品的概率 D .取到次品的概率答案 B解析 随机变量为一个变量,取到产品是必然事件,故选项A 不是随机变量.取到正品是随机事件,故选项B 是随机变量,概率是数值,故选项C ,D 都不是随机变量.2.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( ) A .小球滚出的最大距离 B .倒出小球所需的时间 C .倒出的三个小球的质量之和D.倒出的三个小球的颜色的种数答案 D解析A.小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B.倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C.三个小球的质量之和是一个定值,不是随机变量,就更不是离散型随机变量;D.颜色的种数是一个离散型随机变量.3.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标答案 C解析ξ=5表示射击5次,即前4次均未击中,否则不可能射击第5次,但第5次是否击中目标,就不一定,因为他只有5发子弹.4.下列变量中是随机变量而且是离散型随机变量的是()A.某工厂加工的某种钢管,外径与规定的外径尺寸之差XB.将一枚硬币抛掷三次,出现正面朝上的次数XC.抛掷一枚六个面都是六个点的均匀骰子,所得的点数XD.某人上班路上所花的时间X答案 B解析选项A和选项D中的变量X的取值为某一范围内的实数,无法按一定次序一一列举出来,不是离散型随机变量;选项B中的变量X的取值可以一一列举出来,是离散型随机变量;选项C中的X为常数6,唯一确定,不是随机变量.5.已知:①某电话亭内的一部电话1小时内使用的次数记为X;②某寻呼台一天内收到的寻呼次数X;③篮球下降过程中离地面的距离X;④某人射击2次,击中目标的环数之和记为X.其中不是离散型随机变量的是()A.①中的X B.②中的XC.③中的X D.④中的X答案 C解析①②④中的随机变量X可能的取值都可以按一定次序一一列出,因此,它们都是离散型随机变量.③中的X可以取某一区间内的一切值,无法一一列出,故③中的X不是离散型随机变量.6.设实数x ∈R ,记随机变量ξ=⎩⎪⎨⎪⎧1,x ∈(0,+∞),0,x =0,-1,x ∈(-∞,0).则不等式1x≥1的解集所对应的ξ的值为( )A .1B .0C .-1D .1或0 答案 A解析 解1x≥1得其解集为{x |0<x ≤1},∴ξ=1.7.袋中装有大小和颜色均相同的5个乒乓球,分别标有数字1,2,3,4,5,现从中任意抽取2个,设两个球上的数字之积为X ,则X 所有可能值的个数是( ) A .6 B .7 C .10 D .25 答案 C解析 X 的所有可能值有1×2,1×3,1×4,1×5,2×3,2×4,2×5,3×4,3×5,4×5,共计10个. 二、填空题8.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是________. 答案 9解析 两个球号码之和可能为2,3,4,5,6,7,8,9,10,共9个.9.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种. 答案 21解析 ξ=8表示3个篮球中一个编号是8,另外两个从剩余7个号中选2个,有C 27种方法,即21种.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X ,随机变量X 的可能值有________个. 答案 24解析 后3个数是从6,7,8,9四个数中取3个组成的,共有A 34=24(个).三、解答题11.小王钱夹中只剩有20元、10元、5元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X 表示这两张金额之和.写出X 的可能取值,并说明所取值表示的随机试验结果.解 X 的可能取值为6,11,15,21,25,30. 其中,X =6,表示抽到的是1元和5元;X=11,表示抽到的是1元和10元;X=15,表示抽到的是5元和10元;X=21,表示抽到的是1元和20元;X=25,表示抽到的是5元和20元;X=30,表示抽到的是10元和20元.12.在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x,y,记ξ=|x-2|+|y-x|.写出随机变量ξ可能的取值,并说明随机变量ξ所表示的随机试验的结果.解因为x,y可能取的值为1,2,3,所以0≤|x-2|≤1,0≤|x-y|≤2,所以0≤ξ≤3,所以ξ可能的取值为0,1,2,3用(x,y)表示第一次抽到卡片号码为x,第二次抽得号码为y,则随机变量ξ取各值的意义为:ξ=0表示两次抽到卡片编号都是2,即(2,2).ξ=1表示(1,1),(2,1),(2,3),(3,3)ξ=2表示(1,2),(3,2)ξ=3表示(1,3),(3,1).13.写出下列随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)抛掷一枚骰子两次,第一次掷出的点数与第二次掷出的点数的差的绝对值Y;(2)某单位的某部电话在单位时间内收到的呼叫次数ξ.解(1)Y的所有可能取值为0,1,2,3,4,5.用(a,b)表示一次基本事件,第一次掷出的点数为a,第二次掷出的点数为b.Y=0表示两次掷骰子的点数相同,其包含的基本事件有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).Y=1表示两次掷骰子的点数相差1,其包含的基本事件有(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5).Y=2表示两次掷骰子的点数相差2,其包含的基本事件有(1,3),(3,1),(2,4),(4,2),(3,5),(5,3),(4,6),(6,4).Y=3表示两次掷骰子的点数相差3,其包含的基本事件有(1,4),(4,1),(2,5),(5,2),(3,6),(6,3).Y=4表示两次掷骰子的点数相差4,其包含的基本事件有(1,5),(5,1),(2,6),(6,2).Y=5表示两次掷骰子的点数相差5,其包含的基本事件有(1,6),(6,1).(2)ξ的可能取值为0,1,…,n(n∈N).ξ=i表示被呼叫i次,其中i=0,1,2,…,n(n∈N).2.1.2 离散型随机变量的分布列(一)[学习目标] 1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.知识点一 离散型随机变量X 的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:思考1 抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少? 答案 ξ的取值有1,2,3,4,5,6,则P (ξ=1)=16,P (ξ=2)=16,P (ξ=3)=16,P (ξ=4)=16,P (ξ=5)=16,P (ξ=6)=16.思考2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法?答案 是.随机变量的分布列可以用表格,等式P (X =x i )=p i (i =1,2,…,n ),或图象来表示.知识点二 离散型随机变量的分布列的性质 (1)p i ≥0,i =1,2,3,…,n ;(2)∑ni =1p i =1. 思考1 离散型随机变量的分布列中,各个概率之和可以小于1吗 ? 答案 不可以.由离散型随机变量的含义与分布列的性质可知不可以. 思考2 离散型随机变量的各个可能值表示的事件是彼此互斥的吗?答案 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.题型一 求离散型随机变量的分布列例1 一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中摸出2个球. (1)求摸出的2个球中有1个白球和1个红球的概率; (2)有X 表示摸出的2个球中的白球个数,求X 的分布列.解 一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中摸出2个球,有C 25=10(种)情况.(1)设摸出的2个球中有1个白球和1个红球的事件为A ,P (A )=C 13·C 1210=35.即摸出的2个球中有1个白球和1个红球的概率为35.(2)用X 表示摸出的2个球中的白球个数,X 的所有可能取值为0,1,2.P (X =0)=C 2210=110,P (X =1)=C 13C 1210=35,P (X =2)=C 2310=310.故X 的分布列为反思与感悟 (1)随机变量的取值;(2)每一个取值所对应的概率; (3)所有概率和是否为1来检验.跟踪训练1 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止,求取球次数X 的分布列. 解 X 的可能取值为1,2,3,4,5,则 第1次取到白球的概率为P (X =1)=15,第2次取到白球的概率为P (X =2)=45×14=15,第3次取到白球的概率为P (X =3)=45×34×13=15,第4次取到白球的概率为P (X =4)=45×34×23×12=15,第5次取到白球的概率为P (X =5)=45×34×23×12×11=15.所以X 的分布列是题型二 分布列的性质及应用例2 设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710).解 由题意,所给分布列为(1)由分布列的性质得a +a =115. (2)P (X ≥35)=P (X =35)+P (X =45)+P (X =55)=315+415+515=45, 或P (X ≥35)=1-P (X ≤25)=1-(115+215)=45.(3)∵110<X <710,∴X =15,25,35.∴P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.反思与感悟 应熟悉分布列的基本性质:若随机变量X 的取值为x 1,x 2,…,x n ,取这些值的概率为P (X =x i )=p i ,i =1,2,…,n ,则①p i ≥0,i =1,2,…,n ,②p 1+p 2+…+p n =1.此外,利用分布列的性质检验所求分布列的正误,是非常重要的思想方法.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 跟踪训练2 若离散型随机变量X 的分布列为:试求出离散型随机变量X 解 由已知可得9c 2-c +3-8c =1, ∴9c 2-9c +2=0,∴c =13或23.检验:当c =13时,9c 2-c =9×(13)2-13=23>0,3-8c =3-83=13>0;当c =23时,9c 2-c =9×(23)2-23>0,3-8c =3-163<0(不适合,舍去).故c =13.故所求分布列为题型三 例3 为了搞好世界大学生夏季运动会的接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎叶图(单位:cm):若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.解 (1)根据茎叶图,“高个子”有12人,“非高个子”有18人.用分层抽样的方法,每个人被抽中的概率是530=16,所以选中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有‘高个子’被选中”,则P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率.即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练3 已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测1件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测1件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P (A )=A 12A 13A 25=310.(2)X 的所有可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 13C 12A 22A 35=310, P (X =400)=1-P (X =200)-P (X =300)=1-110-310=35.故X 的分布列为忽视分布列的性质致误例4 设X 是一个离散型随机变量,其分布列为:则q =________.错解 由分布列的性质得0.5+1-2q +q 2=1, 所以2q 2-4q +1=0,解得q =1±22.答案 1±22错因分析 错误的根本原因是只注意∑i =1np i =1的应用,而忽视了p i ≥0,i =1,2,3,…,n .实际上,本题中应满足0≤1-2q ≤1,0≤q 2≤1. 正解 由分布列的性质得0.5+1-2q +q 2=1, 整理得q 2-2q +0.5=0,解得q =-(-2)±(-2)2-4×1×0.52=1±22,又0≤1-2q ≤1,0≤q 2≤1,所以q =1-22. 答案 1-22点评 离散型随机变量的分布列有两条重要性质: (1)p i ≥0,i =1,2,…,n .(2)∑i =1np i =1,即p 1+p 2+p 3+…+p n =1.这两条性质也可以用来检验你所做的分布列是否正确的一个重要依据.1.设随机变量X 的分布列为则p 等于( )A .0 B.16 C.13 D .不确定答案 B解析 根据所给的分布列,由离散型随机变量的性质得12+13+p =1,解得p =16.故选B.2.设随机变量ξ的分布列为P (ξ=i )=a (13)i ,i =1,2,3,则a 的值为( )A .1 B.913 C.2713 D.1113答案 C解析 由分布列的性质,得a (13+19+127)=1,∴a =2713.3.设随机变量ξ等可能取值1,2,3,4,…,n ,如果P (ξ<4)=0.3,那么n 的值为( ) A .3 B .4 C .10 D .不能确定答案 C解析 由已知条件,知P (ξ=i )=1n (i =1,2,…,n ),所以P (ξ<4)=1n ×3=0.3,得n =10.4.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________. 答案 0.75解析 P (0<X <3)=1-P (X =0)-P (X =3) =1-123-123=0.75.1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.若随机变量X 的概率分布列如下表所示,则表中的a 的值为( )A.1B.12C.13D.16答案 D解析 ∵12+16+16+a =1,∴a =16.2.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.故答案为A.3.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|A.16 B.13 C.12 D.23答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.4.离散型随机变量X 的分布列中部分数据丢失,丢失数据以x ,y (x ,y ∈N )代替,分布列如下:则P (32<X <113)等于( )A .0.25B .0.35C .0.45D .0.55解析 根据分布列的性质,知随机变量的所有取值的概率和为1,可解得x =2,y =5,故P (32<X <113)=P (X =2)+P (X =3)=0.35. 5.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( ) A .[0,13]B .[-13,13]C .[-3,3]D .[0,1]答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得 (a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.6.从含有2名女生的10名大学毕业生中任选3人进行某项调研活动,记女生入选的人数为ξ,则ξ的分布列为( ) A.B.C.D.解析 ξ的所有可能取值为0,1,2,“ξ=0”表示入选3人全是男生,则P (ξ=0)=C 38C 310=715,“ξ=1”表示入选3人中恰有1名女生,则P (ξ=1)=C 12C 28C 310=715,“ξ=2”表示入选3人中有2名女生,则P (ξ=2)=C 22C 18C 310=115.因此ξ的分布列为7.若随机变量X 的分布列如下表所示,则a 2+b 2的最小值为( )A.124B.116C.18D.14答案 C解析 由分布列的性质,知a +b =12,而a 2+b 2≥(a +b )22=18(仅当a =b =14时等号成立).二、填空题8.设离散型随机变量X 的分布列为若随机变量Y =|X -2|答案 0.5解析 由分布列的性质,知0.2+0.1+0.1+0.3+m =1,∴m =0.3. 由Y =2,即|X -2|=2,得X =4或X =0, ∴P (Y =2)=P (X =4或X =0) =P (X =4)+P (X =0) =0.3+0.2=0.5.。
苏教版高中数学选修2-3同步练习:随机变量及其概率分布

2.1 随机变量及其概率分布基础训练1.①某寻呼台一小时内收到的寻呼次数ξ;②长江上某水文站观察到一天中的水位ξ;③某超市一天中的顾客量ξ 其中的ξ是离散型随机变量的是【 】A .①B .②C .②③D .①③2.下列叙述中,是离散型随机变量的为【 】A .某人早晨在车站等出租车的时间B .将一颗均匀硬币掷十次,出现正面或反面的次数C .连续不断的射击,首次命中目标所需要的次数D .袋中有2个黑球6个红球,任取2个,取得一个红球的可能性3.随机变量ξ的所有等可能取值为1,2,,n …,若()40.3P ξ<=,则【 】A .3n =B .4n =C .10n =D .不能确定4.抛掷两次骰子,两个点的和不等于8的概率为【 】A .1112B .3136C .536D .112 5.如果ξ是一个离散型随机变量,则假命题是【 】A . ξ取每一个可能值的概率都是非负数;B . ξ取所有可能值的概率之和为1C . ξ取某几个值的概率等于分别取其中每个值的概率之和D . ξ在某一范围内取值的概率大于它取这个范围内各个值的概率之和6.抛掷两枚骰子一次,设η为第一枚骰子与第二枚骰子的点数之差,则它的所有可能取值为【 】A .N ∈≤≤ηη,50B . N ∈≤≤ηη,61C . Z ∈≤≤-ηη,05D . Z ∈≤≤-ηη,557. 写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η8.袋中有大小相同的5个小球,分别标有1、2、3、4、5五个号码,现在在有放回的条件下取球两次,设两次小球号码之和为Y,则Y所有可能值的个数?{Y=4}的概率是多少?拓展训练1.下列叙述中,是随机变量的有【】①某工厂加工的零件,实际尺寸与规定尺寸之差;②标准状态下,水沸腾的温度;③某大桥一天经过的车辆数;④向平面上投掷一点,此点坐标.A.②③B.①②C.①③④D.①③2.抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为X,则“X>4”表示的实验结果是【】A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点3.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X,那么随机变量X可能的取值有【】A.17个B.18个C.19个D.20个4.袋中有大小相同的红球6个,白球5个,从袋中每次任取一球(不放回),直到取出球是白球为止,取球次数是一个随机变量,这个随机变量的可能取值为.5.某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,(1)他收旅客的租车费η是否也是一个随机变量?如果是,找出租车费η与行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?这种情况下,停车累计时间是否也是一个随机变量?参考答案基础训练1.B2.C3.C4.B5.D6.D7. (1) ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n ,η=i ,表示被呼叫i 次,其中i=0,1,2,…8.可取2~10之间的所有整数,共有9个;{Y =4}表示“第一次抽1号、第二次抽3号,或者第一次抽3号、第二次抽1号,或者第一次、第二次都抽2号”.所以253553)4(=⨯==Y P拓展训练1.C2. D3.A4.1,2,3,4,5,65. (1)依题意得η=2(ξ-4)+10,即η=2ξ+2.随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=a ξ+b (其中a 、b 是常数)也是随机变量.(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.停车累计时间不足五分钟,按五分钟计.所以,停车累计时间也是随机变量,可能取10~15之间的任一值.。
高中数学选修2-3随机变量及其分布(分布列)精选题目(附答案)

高中数学选修2-3随机变量及其分布(分布列)精选题目(附答案)一、条件概率1.在区间(0,1)内随机取一个数x ,若A =⎩⎨⎧⎭⎬⎫x 0<x <12,B =⎩⎨⎧⎭⎬⎫x 14<x <34,则P (B |A )等于( )A.12B.14 C.13 D.34解析:选A P (A )=121=12,∵A ∩B =⎩⎨⎧⎭⎬⎫x 14<x <12, ∴P (AB )=141=14, ∴P (B |A )=P (AB )P (A )=1412=12.2.有20件产品,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件,求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.解:记第一次抽到次品为事件A,第二次抽到次品为事件B.(1)第一次抽到次品的概率为P(A)=520=14.(2)第一次和第二次都抽到次品的概率为P(AB)=P(A)P(B)=1 19.(3)在第一次抽到次品的条件下,第二次抽到次品的概率为P(B|A)=119÷14=419.3.抛掷5枚硬币,在已知至少出现了2枚正面朝上的情况下,问:正面朝上数恰好是3枚的条件概率是多少?解:法一:记至少出现2枚正面朝上为事件A,恰好出现3枚正面朝上为事件B,所求概率为P(B|A),事件A包含的基本事件的个数为n(A)=C25+C35+C45+C55=26,事件B包含的基本事件的个数为n(B)=C35=10,P(B|A)=n(AB)n(A)=n(B)n(A)=1026=5 13.法二:事件A,B同上,则P(A)=C25+C35+C45+C5525=2632,P(AB)=P(B)=C3525=1032,所以P(B|A)=P(AB)P(A)=P(B)P(A)=513.4.已知甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,若目标被击中,则它是被甲击中的概率是________.解析:令事件A,B分别表示甲、乙两人各射击一次击中目标,由题意可知P(A)=0.6,P(B)=0.5,令事件C表示目标被击中,则C=A∪B,则P(C)=1-P(A)P(B)=1-0.4×0.5=0.8,所以P(A|C)=P(AC)P(C)=0.60.8=0.75.答案:0.755.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回地取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回地取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回地取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.解析:①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球},则P (A )=23,P (AB )=4×36×5=25,所以P (B |A )=P (AB )P (A )=35,故③错;④每次取到红球的概率P =23,所以至少有一次取到红球的概率为1-⎝ ⎛⎭⎪⎫1-233=2627,故④正确. 答案:①②④二、相互独立事件的概率1.A ,B ,C 三名乒乓球选手间的胜负情况如下:A 胜B 的概率为0.4,B 胜C 的概率为0.5,C 胜A 的概率为0.6,本次竞赛按以下顺序进行:第一轮:A 与B ;第二轮:第一轮的胜者与C ;第三轮:第二轮的胜者与第一轮的败者;第四轮:第三轮的胜者与第二轮的败者.求:(1)B 连胜四轮的概率;(2)C 连胜三轮的概率.解:(1)要B 连胜四轮,以下这些相互独立事件须发生:第一轮B 胜A ,第二轮B 胜C ,第三轮B 再胜A ,第四轮B 再胜C .根据相互独立事件同时发生的概率公式,得所求概率为P =(1-0.4)×0.5×(1-0.4)×0.5=0.09.故B连胜四轮的概率为0.09.(2)C连胜三轮应分两种情况:①第一轮A胜B,则第二轮C胜A,第三轮C 胜B,第四轮C胜A,得C连胜三轮的概率为P1=0.4×0.6×(1-0.5)×0.6=0.072;②第一轮B胜A,则第二轮C胜B,第三轮C胜A,第四轮C胜B,得C 连胜三轮的概率为P2=(1-0.4)×(1-0.5)×0.6×(1-0.5)=0.09.由于①②两种情况是两个互斥事件,所以所求概率为P=P1+P2=0.072+0.09=0.162.故C连胜三轮的概率为0.162.2.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求P(ξ≤1).解:(1)设“甲胜A”为事件D,“乙胜B”为事件E,“丙胜C”为事件F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式,知P(D)=0.4,P(E)=0.5,P(F)=0.5.红队至少两人获胜的事件有DE F,D E F,D EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意,知ξ的可能取值为0,1,2,3.P(ξ=0)=P(D E F)=0.4×0.5×0.5=0.1,P(ξ=1)=P(D E F)+P(D E F)+P(D E F)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,所以P(ξ≤1)=P(ξ=0)+P(ξ=1)=0.45.三、离散型随机变量的分布列及均值、方差求离散型随机变量X的均值与方差的步骤:(1)理解X的意义,写出X可能的全部取值;(2)求X取每个值的概率或求出函数P(X=k);(3)写出X的分布列;(4)由分布列和均值的定义求出E(X);(5)由方差的定义,求D(X).1.设离散型随机变量ξ的概率分布列如下:则p的值为()A.12 B.16C.13 D.14解析:选A因为15+15+110+p=1,所以p=12,故选A.2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为()A.310 B.112C.12 D.1112解析:选D设事件A为“无人中奖”,则P(A)=C57C510=112,则至少有1个人中奖的概率P=1-P(A)=1-112=1112.3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为()A.0.3 B.0.5C.0.1 D.0.2解析:选A由Y=2X-1<6,得X<3.5,∴P(Y<6)=P(X<3.5)=P(X=1)+P(X=2)+P(X=3)=0.3.4.若离散型随机变量X的分布列为则X 的数学期望E (X )=( ) A.32 B .2 C.52 D .3解析:选A 由数学期望的公式可得:E (X )=1×35+2×310+3×110=32.5.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,且两人是否击中相互不受影响,则恰有一人击中敌机的概率为( )A .0.9B .0.2C .0.7D .0.5解析:选D 设事件A ,B 分别表示甲、乙飞行员击中敌机,则P (A )=0.4,P (B )=0.5,且A 与B 互相独立,则事件恰有一人击中敌机的概率为P (A B +A B )=P (A )[1-P (B )]+[1-P (A )]P (B )=0.5,故选D.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方是2分,对方得1分.求乙队得分X 的分布列及均值.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-23×23=827,P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-232×12=427. 所以,甲队以3∶0,3∶1,3∶2胜利的概率分别是827,827,427.(2)设“乙队以3∶2胜利”为事件A 4,由题意知各局比赛结果相互独立,所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意知随机变量X 的所有可能取值为0,1,2,3,根据事件的互斥性得 P (X =0)=P (A 1∪A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以E (X )=0×1627+1×427+2×427+3×327=79.7.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列、均值及方差.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28种,当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1.X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.D (X )=⎝ ⎛⎭⎪⎫-2+3142×114+⎝ ⎛⎭⎪⎫-1+3142×514+⎝ ⎛⎭⎪⎫3142×27+⎝ ⎛⎭⎪⎫1+3142×27≈0.88. 8.一台机器生产某种产品,如果生产出一件甲等品可获得50元,生产出一件乙等品可获得30元,生产出一件次品,要赔20元.已知这台机器生产出甲等品、乙等品和次等品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期可获利________元.解析:设生产一件该产品可获利X 元,则随机变量X 的取值可以是-20,30,50.依题意,得X 的分布列为故E (X )=-20×0.1+30×0.3+50×0.6=37.9.(本小题满分10分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令X 表示走出迷宫所需的时间.(1)求X 的分布列; (2)求X 的均值.解:(1)X 的所有可能取值为1,3,4,6.P (X =1)=13,P (X =3)=16,P (X =4)=16,P (X =6)=13,所以X 的分布列为(2)E (X )=1×13+3×16+4×16+6×13=72.10.(本小题满分12分)已知某高中共派出足球、排球、篮球三个球队参加市学校运动会,他们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的分布列.解:(1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为 P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23=19, P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =2)=12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×23+12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =3)=12×13×23=19, ∴随机变量X 的分布列为(2)根据题意知得分Y =5X +2(3-X )=6+3X , ∵X 的可能取值为0,1,2,3.∴Y 的可能取值为6,9,12,15,取相应值的概率分别为 P (Y =6)=P (X =0)=19,P (Y =9)=P (X =1)=718, P (Y =12)=P (X =2)=718,P (Y =15)=P (X =3)=19. ∴随机变量Y 的分布列为11.(本小题满分12分)北京市政府为做好APEC 会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率;(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利—80元).已知一箱中有该海产品4件,记一箱该海产品获利ξ元,求ξ的分布列,并求出均值E (ξ).解:(1)设“该海产品不能销售”为事件A , 则P (A )=1-⎝ ⎛⎭⎪⎫1-16×⎝ ⎛⎭⎪⎫1-110=14.所以,该海产品不能销售的概率为14.(2)由已知,可知ξ的可能取值为-320,-200,-80,40,160. P (ξ=-320)=⎝ ⎛⎭⎪⎫144=1256,P (ξ=-200)=C 14×⎝ ⎛⎭⎪⎫143×34=364,P (ξ=-80)=C 24×⎝ ⎛⎭⎪⎫142×⎝ ⎛⎭⎪⎫342=27128,P (ξ=40)=C 34×14×⎝ ⎛⎭⎪⎫343=2764,P (ξ=160)=⎝ ⎛⎭⎪⎫344=81256.所以ξ的分布列为E (ξ)=-320×1256-200×364-80×27128+40×2764+160×81256=40.四、二项分布在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n .这时称X 服从二项分布,记为X ~B (n ,p ).当X ~B (n ,p )时,E (X )=np ,D (X )=np (1-p ).1. 某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题.(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得-10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).解:(1)记甲、乙、丙分别答对此题为事件A ,B ,C ,由已知,得P (A )=34,[1-P (A )][1-P (C )]=112,∴P (C )=23.又P (B )P (C )=14,∴P (B )=38. ∴该单位代表队答对此题的概率 P =1-⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-38×⎝ ⎛⎭⎪⎫1-23=9196. (2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则X ~B ⎝ ⎛⎭⎪⎫10,9196, ∴E (X )=10×9196=45548.而Y =20X -10×(10-X )=30X -100, ∴E (Y )=30E (X )-100=1 4758≈184. 2.某运动员投篮命中率为p =0.6. (1)求投篮1次时命中次数X 的均值; (2)求重复5次投篮时,命中次数Y 的均值. 解:(1)投篮1次,命中次数X 的分布列如表:则E (X )=p =0.6.(2)由题意,重复5次投篮,命中的次数Y 服从二项分布, 即Y ~B (5,0.6).则E (Y )=np =5×0.6=3.3.(本小题满分12分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?解:法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”. 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1-415=1115, 即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的均值为E (2X 1),选择方案乙抽奖累计得分的均值E (3X 2).由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25, 所以E (X 1)=2×23=43,E (X 2)=2×25=45, 从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含“X =0”“X =2”“X =3”三个两两互斥的事件. 因为P (X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P (X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P (X =3)=⎝⎛⎭⎪⎫1-23×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.五、正态分布1.正态分布N1(μ1,σ21),N2(μ2,σ22),N3(μ3,σ23)(其中σ1,σ2,σ3均大于0)所对应的密度函数图象如图所示,则下列说法正确的是()A.μ1最大,σ1最大B.μ3最大,σ3最大C.μ1最大,σ3最大D.μ3最大,σ1最大解析:选D在正态曲线N(μ,σ2)中,x=μ为正态曲线的对称轴,结合图象可知,μ3最大;又参数σ确定了曲线的形式:σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”.故由图象知σ1最大.故选D.2. (1)已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值为( )A .0.1B .0.2C .0.4D .0.6(2)2018年1月某校高三年级1 600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~N (100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中数学成绩不低于120分的学生人数约为( )A .80B .100C .120D .200(3)若随机变量ξ~N (2,σ2),且P (ξ>3)=0.158 7,则P (ξ>1)=________. 解析:(1)∵随机变量X 服从正态分布N (2,σ2),∴正态曲线的对称轴是x =2,∵P (0<X <4)=0.8,∴P (X >4)=12×(1-0.8)=0.1,故选A.(2)∵X ~N (100,σ2),∴其正态曲线关于直线x =100对称,又∵数学成绩在80分到120分之间的人数约占总人数的34,∴由对称性知,数学成绩不低于120分的学生人数约为总人数的12×⎝ ⎛⎭⎪⎫1-34=18,∴此次考试中数学成绩不低于120分的学生人数约为18×1 600=200.故选D.(3)∵随机变量ξ~N (2,σ2),∴正态曲线关于x =2对称,∵P (ξ>3)=0.158 7,∴P (ξ>1)=P (ξ<3)=1-0.158 7=0.841 3.答案:(1)A (2)D (3)0.841 33.某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502), 所以μ=500,σ=50,所以P=(550<x≤600)=12[P(500-2×50<x≤500+2×50)-P(500-50<x≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398人.4.(本小题满分12分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100),已知成绩在90分以上(含90分)的学生有12人.(1)试问此次参赛学生的总数约为多少人?(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?解:(1)设参赛学生的成绩为X,因为X~N(70,100),所以μ=70,σ=10.则P(X≥90)=P(X≤50)=12[1-P(50<X<90)]=12[1-P(μ-2σ<X<μ+2σ)]=12×(1-0.954 4)=0.022 8,120.022 8≈526.因此,此次参赛学生的总数约为526人.(2)由P(X≥80)=P(X≤60)=12[1-P(60<X<80)]=12[1-P(μ-σ<X<μ+σ)]=12×(1-0.682 6)=0.158 7,得526×0.158 7≈83.因此,此次竞赛成绩为优的学生约为83人.六、茎叶图为了搞好世界大学生夏季运动会的接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高绘成如图所示的茎叶图(单位:cm).若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.解: (1)根据茎叶图知,“高个子”有12人,“非高个子”有18人.用分层抽样的方法,每个人被抽中的概率是530=16,所以选中的“高个子”有12×16=2(人),“非高个子”有18×16=3(人).用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A -表示“没有‘高个子’被选中”,则P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)由茎叶图知,“女高个子”有4人,“男高个子”有8人.依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,p (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为。
高中数学人教A版选修2-3习题 第2章 随机变量及其分布2.1.1 Word版含答案

选修第二章一、选择题.①某电话亭内的一部电话小时内使用的次数记为;②某人射击次,击中目标的环数之和记为;③测量一批电阻,阻值在Ω~Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为.其中是离散型随机变量的是( ).①②.①③.①④.①②④[答案][解析]①②中变量所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量..件产品有件次品,从中任取一件,则下列是随机变量的为( ).取到产品的个数.取到正品的个数.取到正品的概率.取到次品的个数[答案][解析]取到正品的个数不是固定值为,其余都是固定值..某人射击的命中率为(<<),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是( ).,…,.,…,,….,…,.,…,,…[答案][解析]由随机变量的定义知取值可以从开始,并且有可能每次都未中目标..抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>”表示的试验结果是( ).第一枚点,第二枚点.第一枚点,第二枚点.第一枚点,第二枚点.第一枚点,第二枚点[答案][解析]只有中的点数差为-=>,其余均不是,应选..下列变量中,不是离散型随机变量的是( ).从张已编号的卡片(从号到号)中任取一张,被取出的号数ξ.连续不断射击,首次命中目标所需要的射击次数η.某工厂加工的某种钢管内径与规定的内径尺寸之差ξ.从张已编号的卡片(从号到号)中任取张,被取出的卡片的号数之和η[答案][解析]离散型随机变量的取值能够一一列出,故,,都是离散型随机变量,而不是离散型随机变量,所以答案选..给出下列四个命题:①秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.其中正确命题的个数是( )....[答案][解析]由随机变量的概念知三个命题都正确,故选.二、填空题.一木箱中装有个同样大小的篮球,编号为、、、、、、、,现从中随机取出个篮球,以ξ表示取出的篮球的最大号码,则ξ=表示的试验结果有种[答案][解析]从个球中选出个球,其中一个的号码为,另两个球是从、、、、、、中任取两个球.∴共有=种..同时抛掷枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为[答案]{}.在件产品中含有件次品,从中任意抽取件,ξ表示其中次品的件数,则ξ=的含义是[答案]ξ=表示取出的件产品都是正品三、解答题.某次演唱比赛,需要加试文化科学素质,每位参赛选手需回答个问题,组委会为每位选手都备有道不同的题目可供选择,其中有道文史类题目,道科技类题目,道体育类题目,测试时,每位选手从给定的道题目中不放回地随机抽取次,每次抽取一道题目,回答完该题后,再抽取下一道题目做答.某选手抽到科技类题目的道数为()试求出随机变量的可能取值;(){=}表示的试验结果是什么?可能出现多少种不同的结果?[解析]()由题意得的可能取值为.(){=}表示的事件是“恰抽到一道科技类题目”.从三类题目中各抽取一道有···=种不同的结果.抽取道科技类题目,道文史类题目有··=种不同的结果.。
高中数学人教A版选修2-3 第二章 随机变量及其分布 2.2-2.2.2学业分层测评 Word版含答案.doc

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到白球”,事件N :“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”.这三个问题中,M ,N 是相互独立事件的有( ) A .3个 B .2个 C .1个 D .0个 【解析】 ①中,M ,N 是互斥事件;②中,P (M )=35,P (N )=12.即事件M 的结果对事件N 的结果有影响,所以M ,N 不是相互独立事件;③中,P (M )=12,P (N )=12,P (MN )=14,P (MN )=P (M )P (N ),因此M ,N 是相互独立事件. 【答案】 C2.(2016·东莞调研)从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23表示( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率【解析】 分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=13,P (B )=12,由于A ,B 相互独立,所以1-P (A )P (B )=1-23×12=23.根据互斥事件可知C 正确.【答案】 C3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.34B.23C.35D.12【解析】 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.【答案】 A4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )图2-2-2A.13B.29C.49D.827【解析】 青蛙跳三次要回到A 只有两条途径: 第一条:按A →B →C →A , P 1=23×23×23=827; 第二条,按A →C →B →A ,P 2=13×13×13=127.所以跳三次之后停在A 叶上的概率为 P =P 1+P 2=827+127=13. 【答案】 A5.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )图2-2-3A.49B.29C.23D.13【解析】 “左边圆盘指针落在奇数区域”记为事件A ,则P (A )=46=23,“右边圆盘指针落在奇数区域”记为事件B ,则P (B )=23,事件A ,B 相互独立,所以两个指针同时落在奇数区域的概率为23×23=49,故选A.【答案】 A 二、填空题6.(2016·铜陵质检)在甲盒内的200个螺杆中有160个是A 型,在乙盒内的240个螺母中有180个是A 型.若从甲、乙两盒内各取一个,则能配成A 型螺栓的概率为________.【解析】 “从200个螺杆中,任取一个是A 型”记为事件B.“从240个螺母中任取一个是A 型”记为事件C ,则P (B )=C 1160C 1200,P (C )=C 1180C 1240.∴P (A )=P (BC )=P (B )·P (C )=C 1160C 1200·C 1180C 1240=35. 【答案】 357.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________. 【导学号:97270041】【解析】用A,B,C分别表示“甲、乙、丙三人能破译出密码”,则P(A)=15,P(B)=13,P(C)=14,且P(A B C)=P(A)P(B)P(C)=45×23×34=25.所以此密码被破译的概率为1-25=35.【答案】358.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.【解析】设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为A,B,C,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P(A)=0.2,P(B)=0.3,P(C)=0.1,至少两颗预报准确的事件有AB C,A B C,A BC,ABC,这四个事件两两互斥且独立.所以至少两颗预报准确的概率为P=P(AB C)+P(A B C)+P(A BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.【答案】0.902三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【解】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.【解】设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以ξ的可能取值为1,3.则P(ξ=3)=P(A1·A2·A3)+P(A1·A2·A3)=P(A1)·P(A2)·P(A3)+P(A1)·P(A2)·P(A3)=2×0.4×0.5×0.6=0.24.P(ξ=1)=1-0.24=0.76.所以分布列为:1.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.29B.118C.13D.23【解析】 由P (A B )=P (B A ),得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A B )=19, ∴P (A )=P (B )=13,∴P (A )=23. 【答案】 D2.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-4的电路中,电路不发生故障的概率是( )图2-2-4A.1532B.932C.732D.1732【解析】 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34.不发生故障的事件为(A 2∪A 3)A 1, ∴不发生故障的概率为 P =P [(A 2∪A 3)A 1]=[1-P (A 2)·P (A 3)]·P (A 1) =⎝ ⎛⎭⎪⎫1-14×14×12=1532.故选A. 【答案】 A3.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________. 【导学号:97270042】【解析】 由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为14,14,设甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付的租车费用相同的概率为516. 【答案】 5164.在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.【解】 如图所示,分别记这段时间内开关J A ,J B ,J C 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P (A -B -C -)=P (A )P (B )P (C ) =[1-P (A )][1-P (B )][1-P (C )] =(1-0.7)×(1-0.7)×(1-0.7) =0.027.于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A -B -C -)=1-0.027=0.973.即在这段时间内线路正常工作的概率是0.973.。
高中数学选学2-3计数原理高频率考题练习附答案 教师版

册,分别求出每一步的情况数目,由分类计数原理计算可得答案.
7.(1+ u )(1+x)6 展开式中 x2 的系数为( )
A. 15
B. 20
C. 30
【答案】 C
【解析】【解答】解:(1+ u )(1+x)6 展开式中:
D. 35
第 2 页 共 19 页
若(1+ u )=(1+x﹣2)提供常数项 1,则(1+x)6 提供含有 x2 的项,可得展开式中 x2 的系数:
故答案为:B.
【分析】先计算出一人排在左边的方法总数,然后选出另外一人排在右边有 2 种,余下两人排在余下两个
空的总数,利用乘法原理,即可得出答案。
6.现有语文书第一二三册,数学书第一二三册共六本书排在书架上,语文第一册不排在两端,数学书恰有 两本相邻的排列方案种数( )
A. 144
B. 288
C. 216
C. 32 种
D. 48 种
【答案】 B
第 1 页 共 19 页
【解析】【解答】首先将甲排在中间,乙、丙两位同学不能相邻,则两人必须站在甲的两侧, 选出一人排在左侧,有: u u 种方法, 另外一人排在右侧,有 u 种方法,
余下两人排在余下的两个空,有 种方法,
综上可得:不同的站法有 u u u
u 种.Biblioteka 考虑 2 本一组的顺序,有 2 种情况,
在 3 个空位中,任选 2 个,安排 2 组数学书,有 A32=6 种情况,
则数学书的安排有 3×2×6=36 种情况,③、数学书和 2 本语文书排好后,除去 2 端,有 3 个空位可选,
在 3 个空位中,任选 1 个,安排语文第一册,有 C31=3 种情况,