课时2 一次函数的应用

合集下载

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。

a和b是常数,且a不等于0。

一次函数也被称为一次多项式函数,因为它的最高次数为1。

在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。

一次函数的特点是其图像是一条直线,具有线性的特性。

这种简单的函数形式在数学建模和实际问题求解中具有重要意义。

一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。

在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。

通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。

了解一次函数的基本概念和应用是非常重要的。

1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。

一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。

通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。

一次函数在生活中的重要意义还体现在其广泛应用的范围。

一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。

掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。

一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。

通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。

深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。

2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。

二次函数和一次函数的解法

二次函数和一次函数的解法

二次函数和一次函数的解法在数学中,二次函数和一次函数是基础的函数类型,它们在各个领域都有广泛的应用。

本文将介绍二次函数和一次函数的解法,并探讨它们在实际问题中的应用。

一、二次函数的解法二次函数是指函数形式为f(x) = ax² + bx + c的函数,其中a、b、c是常数,且a ≠ 0。

解二次函数的方法有多种,下面我们将介绍两种常用的解法:因式分解法和公式法。

1. 因式分解法当二次函数为完全平方形式时,可以通过因式分解的方法来求解。

完全平方形式的二次函数为f(x) = a(x - p)² + q,其中a、p、q都是常数。

步骤如下:(1)将二次函数化简为完全平方形式;(2)利用因式分解将完全平方形式的二次函数转化为乘积形式;(3)令乘积等于0,求解出x的值。

举例说明:求解二次函数f(x) = 2x² + 12x + 18的解。

(1)将二次函数化简为完全平方形式:f(x) = 2(x² + 6x) + 18;(2)利用因式分解将完全平方形式的二次函数转化为乘积形式:f(x) = 2(x + 3)² + 9;(3)令乘积等于0,求解x的值:2(x + 3)² + 9 = 0,解得x = -3。

2. 公式法当二次函数无法通过因式分解得到解的时候,可以使用求根公式来求解。

步骤如下:(1)根据二次函数的标准形式f(x) = ax² + bx + c,分别确定a、b、c的值;(2)使用求根公式x = (-b ± √(b² - 4ac)) / 2a,求解出x的值。

举例说明:求解二次函数f(x) = x² + 2x + 1的解。

(1)确定二次函数的参数:a = 1,b = 2,c = 1;(2)使用求根公式求解x的值:x = (-2 ± √(2² - 4 * 1 * 1)) / (2 * 1)= (-2 ± √(4 - 4)) / 2= (-2 ± √0) / 2= -1。

4.4 一次函数的应用 北师大版八年级数学上册教案

4.4  一次函数的应用 北师大版八年级数学上册教案

4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。

八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件
第四章
4.4
一次函数
一次函数应用
第2课时1/6源自• 1.能经过一次函数图象获取有用信息,并处理实际问
• 题;(重点)
• 2.了解一元一次方程与一次函数关系,会利用它们之间
• 关系处理一些实际问题。
2/6

观察右边图象,你能从图象

中得到哪些信息?你是怎样得到?

与同伴交流。
3/6
1.依据小组讨论结果,试着回答“问题导引”中问题。

所以这个函数的表达式为 y=- x+10.


把 y=1 代入 y=-x+10 中,可得 x=450.
5/6
1.一次函数图象直观地反应了两个变量之间关系,利用一次函数
横轴
纵轴
图象处理实际问题时,首先要明确_______、_______表示变量
实际意义。
2.利用一次函数y=kx+b图象,怎样确定kx+b=0解?
一次函数y=kx+b图象与x轴交点横坐标就是方程kx+b=0解。
6/6
能够从对应值、与x轴(或y轴)交点,改变趋势、函数表示式
等方面提取信息。
2.小明解答“例2”中第(4)问时,发觉了一个新方法,他先依据
图象与x轴、y轴交点坐标求出这个函数表示式,再把y=1代入
表示式中求出x值即可。按照他方法试一试,小组讨论你结果。
4/6
设这个函数的表达式为 y=kx+b,

把(0,10),(500,0)代入,可得 b=10,k=-,

专题20.3 一次函数的应用(第2课时)(解析版)

专题20.3 一次函数的应用(第2课时)(解析版)

第二十章一次函数专题20.3 一次函数的应用(第2课时)基础巩固一、单选题(共6小题)1.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm【答案】A【分析】根据题意和函数图象中的数据,可以求得弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,然后将x=0代入函数解析式求出相应的y的值,即可得到弹簧不挂物体时的长度,本题得以解决.【解答】解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.【知识点】一次函数的应用2.如图,甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离为S(km)和行驶时间t(h)之间的函数关系的图象如图所示,则下列结论错误的是()A.A、B两地相距18kmB.甲在途中停留了0.5小时C.全程行驶时间乙比甲少用了1小时D.乙出发后0.5小时追上甲【答案】C【分析】利用函数图象,直接得出A、B两地的距离,还可得到甲出发0.5小时后停留了0.5小时;根据图象即可得出甲乙两人在全程所花的时间;根据图象中的信息可得乙出发后0.5小时追上甲.【解答】解:A.由图可得,s为18千米,即A、B两地的距离是18千米,故A选项不合题意;B.甲在0.5小时至1小时之间,S没有变化,说明甲在途中停留了0.5小时,故B选项不合题意;C.由图可得,甲行驶的时间为2小时,乙行驶的时间为1.5小时,所以全程乙比甲少用了0.5小时,故C选项符合题意;D.图中P点的实际意义是:甲,乙相遇,此时乙出发了0.5小时,故D选项不合题意.故选:C.【知识点】一次函数的应用3.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有()A.1个B.2个C.3个D.4个【答案】B【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:①普通列车的速度是(千米/小时),设动车的速度为x千米/小时,根据题意,得:3x+3×=1000,解得:x=250,动车的速度为250千米/小时,故①错误;②如图,出发后3小时,两车之间的距离为0,可知点B的实际意义是两车出发后3小时相遇,故②正确;③由x=0时,y=1000知,甲地和乙地相距1000千米,故③正确;④由图象知x=t时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,故④错误;故选:B.【知识点】一次函数的应用4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论中错误的是()A.乙的速度为5米/秒B.乙出发8秒钟将甲追上C.当乙到终点时,甲距离终点还有96米D.a对应的值为123【答案】C【分析】根据题意和函数图象中的数据,可以判断出各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图象可得,乙的速度为:500÷100=5(米/秒),故选项A正确;甲的速度为:8÷2=4(米/秒),设乙出发x秒将追上甲,5x=8+4x,得x=8,故选项B正确;当乙到终点时,甲距离终点还有:500﹣(100+2)×4=92(米),故选项C错误;a=500÷4﹣2=125﹣2=123,故选项D正确;故选:C.【知识点】一次函数的应用5.如图,购买一种苹果,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省()A.4 元B.5 元C.6 元D.7 元【答案】C【分析】利用待定系数法可分别求得直线OA、AB的函数解析式,再分别求得两种方式所需费用,即可求得答案.【解答】解:由图象可知A(2,20),B(4,36),设直线OA解析式为y=kx,则2k=20,解得k=10,∴直线OA解析式为y=10x(0≤x≤2),∴买1千克时,付款金额为y=10×1,∴分五次购买1千克所需要费用为50元,设直线AB解析式为y=tx+b,∴,解得,∴直线AB解析式为y=8x+4(x>2),∴当x=5时,y=44,即一次购买5千克所需费用为44元,∵50﹣44=6,∴一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省6元,故选:C.【知识点】一次函数的应用6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.②③B.①②③C.①②D.①③【答案】B【分析】易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.【解答】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③.故选:B.【知识点】一次函数的应用二、填空题(共8小题)7.某音像社对外出租的光盘的收费方法是:每张光盘出租后的头两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n天(n≥2)应收租金元.【答案】(0.5n+0.6)【分析】先求出出租后的头两天的租金,然后用“n﹣2”求出超出两天的天数,进而求出超出两天后的租金,然后用“头两天的租金+超出两天后的租金”解答即可.【解答】解:当租了n天(n≥2),则应收钱数:0.8×2+(n﹣2)×0.5,=1.6+0.5n﹣1,=0.5n+0.6(元).答:共收租金(0.5n+0.6)元.故答案为:(0.5n+0.6).【知识点】根据实际问题列一次函数关系式8.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为L.【答案】3.75【分析】根据题意和函数图象中的数据,可以先求出进水量,然后再根据图象中的数据,即可求得出水量,本题得以解决.【解答】解:由图象可得,每分钟的进水量为:20÷4=5(L),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=5﹣10÷8=5﹣1.25=3.75(L),故答案为:3.75.【知识点】一次函数的应用9.如图,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系是一次函数,则弹簧不挂物体时的长度为cm.【答案】12【分析】根据函数图象中的数据,可以计算出弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关式,然后令x=0求出相应的y的值,即可解答本题.【解答】解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,,解得,,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故答案为:12.【知识点】一次函数的应用10.一列高铁列车从甲地匀速驶往乙地,一列特快列车从乙地匀速驶往甲地,两车同时出发,设特快列车行驶的时间为x(单位:时),特快列车与高铁列车之间的距离为y(单位:千米),y与x之间的函数关系如图所示,则图中线段CD所表示的y与x之间的函数关系式是.【答案】y=100x【分析】由函数图象可以直接得出甲、乙两地之间的距离为1200千米;先由条件可以得出高铁列车走完全程的时间,就可以求出高铁列车的速度,进而求出特快列车的速度而得出C的坐标,由待定系数法求出结论.【解答】解:由函数图象得:甲、乙两地之间的距离为1200千米,高铁列车速度为:1200÷12=100(千米/时),高铁列车+特快列车=1200÷3=400(千米/时),特快列车=400﹣100=300(千米/时),特快列车走完全程时间为1200÷300=4(小时),特快列车到达时高铁列车与特快列车相距4×100=400千米,∴C(4,400).设y CD=kx+b(k≠0,k、b为常数),把(4,400),(12,1200)代入y CD=kx+b中,有,解得,∴y=100x.故答案为:y=100x【知识点】一次函数的应用11.中国电信公司最近推出无线市话的收费标准如下:前3min(不足3min按3min计)收费0.2元,3min后每分钟收费0.1元,则通话一次的时间x(min)(x>3)与这次通话费用y(元)之间的关系式﹣.【答案】y=0.1x-0.1【分析】根据:“话费=三分钟以内的基本话费0.2+超过3分钟的时间×0.1”,把相关数值代入即可求解.【解答】解:根据题意可知:超过3分钟的话费为0.1×(x﹣3),则通话时间x分钟(x>3)与通话费用y之间的函数关系是:y=0.2+0.1(x﹣3)=0.1x﹣0.1.故答案为:y=0.1x﹣0.1【知识点】一次函数的应用12.已知声音在空气中传播的速度y(m/s)与气温x(℃)之间有这样的关系:y=x+331.当声音的传播速度为343m/s时,则气温为℃.【答案】20【分析】把y=343代入y=x+331求出x即可.【解答】解:当y=343时,即:343=x+331.解得:x=20,故答案为:20.【知识点】一次函数的应用13.一出租车油箱内剩余油42L,一般行驶一小时耗油7L,则该车油箱内剩余油量y(L)和行驶时间x(时)之间的函数关系式是(不写自变量取值范围).【答案】y=42-7x【分析】根据剩余油量=原有油量﹣用油量即可得出该车油箱内剩余油量y(L)和行驶时间x(时)之间的函数关系式.【解答】解:根据“剩余油量=原有油量﹣用油量”可得:y=42﹣7x.故答案为:y=42﹣7x.【知识点】一次函数的应用14.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶小时,油箱的剩余油量为28升.【答案】9【分析】由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【解答】解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.【知识点】一次函数的应用拓展提升三、解答题(共6小题)15.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?【分析】(1)根据函数图象中的数据,可以得到降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【解答】解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.【知识点】一次函数的应用16.如图的图象反映的过程是:张明从家乘坐公交车去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后步行回家.图中x表示时间,y表示张明离家的距离,根据图象回答下列问题:(1)体育场到张明家的距离是千米,张明从体育场走到文具店用了分钟;(2)求直线DE的解析式.【答案】【第1空】2.5【第2空】15【分析】(1)根据函数图象中的数据,可以写出体育场到张明家的距离和张明从体育场走到文具店用了多少分钟;(2)根据函数图象中的数据,可以求得直线DE的解析式.【解答】解:(1)由图象可得,体育场到张明家的距离是2.5千米,张明从体育场走到文具店用了45﹣30=15(分钟),故答案为:2.5,15;(2)设直线DE的解析式为y=kx+b,∵直线DE过点D(65,1.5),E(80,0),∴,解得,,即直线DE的解析式为y=﹣x+8.【知识点】一次函数的应用17.如图的图象表示斑马和长颈鹿的奔跑情况.根据图象回答问题:(1)斑马的奔跑路程与奔跑时间是否成正比例?长颈鹿呢?(2)斑马和长颈鹿10分钟各跑多少千米?(3)斑马跑得快还是长颈鹿跑得快?第15分钟它们相距多少千米?【分析】(1)根据正比例的定义判断即可;(2)根据图象的点解答即可;(3)根据图象解答即可.【解答】解:(1)斑马的奔跑路程与奔跑时间成正比例;长颈鹿的奔跑路程与奔跑时间成正比例;(2)斑马10分钟跑12千米;长颈10分钟跑8千米;(3)由图象可知,斑马跑得快;第15分钟它们相距为:18﹣12=6(km).【知识点】一次函数的应用18.某商店销售一种成本为每千克30元的产品,据市场调查分析,若按每千克40元销售,一个月能出售500千克,当销售单价每涨1元,月销售量就减少10千克,针对这种情况,请解答以下问题:(1)设销售单价定为每千克x元(x≥40),月销售量为y千克,求y与x之间的函数关系式;(2)该商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?【分析】(1)根据月销售量=500﹣10×(销售单价﹣40),即可得出y与x之间的函数关系式;(2)先由月销售成本不超过10000元,得出月销售量不超过10000÷30=千克.再根据月销售利润达到8000元列出方程,进而求解即可.【解答】解:(1)根据题意得:y=500﹣(x﹣40)×10=﹣10x+900;(2)由于月销售成本不超过10000元,所以月销售量不超过10000÷30=(千克).根据题意得:(x﹣30)(﹣10x+900)=8000,解得:x1=50,x2=70.当x1=50时,﹣10×50+900=400>,舍去;当x2=70时,﹣10×70+900=200<,符合题意.故销售单价定为70元.【知识点】一次函数的应用、一元二次方程的应用19.某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.【分析】(1)根据题意列出函数关系式即可求出答案.(2)根据函数关系以及x的取值范围即可列出不等式进行判断.【解答】解:(1)甲商店:y=4x乙商店:y=.(2)当x<6时,此时甲商店比较省钱,当x≥6时,令4x=30+3.5(x﹣6),解得:x=18,此时甲乙商店的费用一样,当x<18时,此时甲商店比较省钱,当x>18时,此时乙商店比较省钱.【知识点】一元一次不等式的应用、一次函数的应用20.某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:单价(元/件)3034384042销量(件)4032242016(1)通过对上面表格中的数据进行分析,发现销量y(件)与单价x(元/件)之间存在一次函数关系,求y关于x的函数关系式(不需要写出函数自变量的取值范围);(2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20元/件.为使工厂获得最大利润,该产品的单价应定为多少?(3)在(2)的条件下,为保证产品在实际试销中销售量不得低于30件,且工厂获得利润不得低于400元,请直接写出单价x的取值范围.【分析】(1)设y=kx+b,根据表中数据,利用待定系数法求解可得;(2)设工厂获得的利润为w元,根据:“总利润=每件利润×销售量”,列函数解析式并配方可得其最值情况;(3)根据销售量≥30件、获得的利润≥400元列不等式组,解不等式组可得.【解答】解:(1)设y=kx+b,将x=30、y=40,x=34、y=32,代入y=kx+b,得:,解得:,∴y关于x的函数关系式为:y=﹣2x+100;(2)设定价为x元时,工厂获得的利润为w元,则w=(x﹣20)•y=﹣2x2+140x﹣2000=﹣2(x﹣35)2+450∴当x=35时,w的最大值为450元.(3)根据题意得:,解得:30≤x≤35.【知识点】一次函数的应用。

一次函数的应用

一次函数的应用

一次函数的应用
一次函数可以应用于很多实际问题中,以下是一些常见的
应用示例:
1. 经济学:一次函数可以用来表示成本、收入、利润等经
济指标与产量或销量之间的关系。

特别是在线性需求模型中,一次函数可以用来表示价格和数量之间的关系。

2. 工程学:一次函数可以用来表示物理量之间的线性关系,比如运动的速度和时间的关系、电阻和电流之间的关系等。

在工程设计和控制中,一次函数可以用来建立系统输入和
输出之间的关系。

3. 计划和预测:一次函数可以用来预测未来的趋势或变化。

通过拟合历史数据,可以使用一次函数来预测未来的趋势,并进行计划和决策。

4. 统计分析:一次函数可以用来描述两个变量之间的关系,并进行回归分析。

通过最小二乘法可以得到一次函数的最
佳拟合线,从而可以用来解释和预测变量之间的关系。

5. 材料科学:一次函数可以用来描述材料的线性弹性特性。

材料的应力和应变之间的关系可以通过一次函数来表示,
并用来研究材料的应力-应变性能。

总之,一次函数在很多领域中都有着广泛的应用。

通过建
立变量之间的线性关系,可以帮助我们分析和理解问题,
并进行预测和决策。

北师大版八年级数学上册《一次函数的应用》第2课时示范课教学设计

北师大版八年级数学上册《一次函数的应用》第2课时示范课教学设计

第四章一次函数4 一次函数的应用第2课时一、教学目标1.能通过函数图象获取信息,解决简单的实际问题.2.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;通过具体问题的解决,培养学生的数学应用能力.3.在解决问题过程中,初步体会方程与函数的关系,建立各种知识之间的联系.4.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.二、教学重难点重点:正确地根据图象获取信息,并解决现实生活中的有关问题.难点:在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【探究】【引例】由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少.蓄水量V(万m3)与干旱持续时间t(天)的关系如图所示,回答下列问题:(1)水库干旱前的蓄水量是多少?(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?(3)蓄水量小于400万m3时,将发出严重干旱警报.干旱持续多少天后将发出严重干旱警报?(4)按照这个规律,预计干旱持续多少天水库将干涸?预设答案:解:(1)水库干旱前的蓄水量是1200万m3.(2)干旱持续10天,蓄水量是1000万m3.干旱持续23天,蓄水量是约是750万m3. (3)干旱持续40天后将发出严重干旱警报. (4)预计干旱持续60天水库将干涸.教师活动:如何解答实际情境函数图象的信息?(1)理解横、纵坐标分别表示的的实际意义;(2)分析已知,通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值;(3)利用数形结合的思想:将“数”转化为“形”由“形”定“数”.某种摩托车加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根学生小组讨论思考完成问题.同伴间进行交流,教师适时引导,让学生能对所用解决方法进行总结归纳,学生从被动学习到主动探究,激发学生的学习热情.据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?教师活动:当车未行驶时,油箱油量最多.解:(1)观察图象,得当x=0时,y=10.因此,油箱最多可储油10 L.(2)教师活动:当油箱油量为0时,即为摩托车行驶的最远路程.当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)教师活动:令y=1,解得x的值即为摩托车自动报警油量值.当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.【做一做】下图是某一次函数的图象,根据图象填空:(1)当y =0时,x = ;(2)这个函数的表达式是.预设答案:-2,y =0.5x+1【议一议】一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?(1)从“数”的方面看,当一次函数y=0.5x+1的函数值y=0时,相应的自变量的值即为方程0.5x+1=0解;(2)从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程0.5x+1=0的解.【典型例题】教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示完整答题过程.例1某生物小组观察一植物生长,得到植物高度y(厘米)与观察时间x(天)之间的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).(1)该植物从开始观察时起,多少天以后停止长高?(2)求线段AC的表达式,并求该植物最高长到多少厘米?解:(1)该植物从开始观察时起,50天以后停止长高.教师活动:利用待定系数法即可求出直线AC的表达式;当x=50时,求出y的值即可得到植物最高长多少厘米.(2)设线段AC 的表达式为y =kx +b (k ≠0). ∵线段AC 经过点A (0,6),B (30,12), ∵b =6,30k +b =12,解得k = 15 . ∵线段AC 的表达式为165y x =+ (0≤x ≤50)当x =50时, 1506=165y =⨯+ , 即该植物最高长到16厘米.例2 如图,根据函数y =kx +b (k ,b 为常数,且k ≠0)的图象,求: (1)方程kx +b =0的解; (2)式子k +b 的值; (3)方程kx +b =-3的解.教师活动:看函数图象与x 轴的坐标可求方程kx +b =0的解.解:(1)由 图 可知,函数图象与x 轴的交点坐标为(2,0),∴方程kx +b =0的解为x =2.教师活动:利用待定系数法可求出k 、b 的值哦. 解:(2)根据函数图象可知,该直线经过点(2,0)和(0,-2),将(2,0)和(0,-2)代入y =kx +b 得: 2k +b =0 ①预设答案:806.如图,是生活委员小华带着钱去给班上购买某种奖品,所剩钱数y(元)与所买奖品x(个)之间的关系图,根据图象回答下列问题:(1)小华买奖品的钱共是多少元?(2)每个奖品多少元?(3)写出这个图象的函数关系式;(4)若买15个奖品,还剩多少元?预设答案:解:(1)根据题意知,小华买奖品的钱的总数就是没买奖品时所剩的钱数.∵由图可知小华买奖品的钱共是100元.(2)由图知小华一共花100元买了40个奖品.∵100÷40=2.5(元),∵每个奖品是2.5元.(3)设图象的函数关系式为y=kx+b.由图得,该函数图象经过点(0,100),(40,0),代入函数关系式得:b=100,40k+b=0解得b=100,k=-2.5.∵函数关系式为y=-2.5x+100.(4) 由(2)知每个奖品是2.5元,由题意得:100-15×2.5=62.5(元)∵若买15个奖品,还剩62.5元.思维导图的形式呈现本节课的主要内容:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档