2016高三第三次调研测试试题 数学(理)

合集下载

高三数学三模试卷 理(含解析)-人教版高三全册数学试题

高三数学三模试卷 理(含解析)-人教版高三全册数学试题

2016年某某某某市平罗中学高考数学三模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.246.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,s in15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.487.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为.三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.2016年某某某某市平罗中学高考数学三模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合P、Q,求出P∩Q即可.【解答】解:P={x||x|<3,且x∈Z}={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},Q={x|x(x﹣3)≤0,且x∈N}={x|0≤x≤3,且x∈N}={0,1,2,3},∴P∩Q={0,1,2}.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得si nθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④【考点】复合命题的真假.【分析】命题p:y=0时, =1不成立,即可判断出真假;命题q:由于函数f(x)在R 上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:若x,y∈R,x=y,则=1,y=0时不成立,因此是假命题;命题q:若函数f(x)=e x,由于函数f(x)在R上单调递增,则对任意x1≠x2都有>0成立,是真命题.因此在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是②④.故选:D.4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出向量•的值,结合向量数量积的应用进行求解即可.【解答】解:∵•(+)=2,∴•+2=2,即•=﹣2+2=2﹣1=1则cos<,>==,则<,>=,故选:D5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.24【考点】正态分布曲线的特点及曲线所表示的意义.【分析】正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.【解答】解:∵数学成绩近似地服从正态分布N(80,102),P(|x﹣u|<σ)=0.6826,∴P(|x﹣80|<10)=0.6826,根据正态曲线的对称性知:位于80分到90分之间的概率是位于70分到90分之间的概率的一半∴理论上说在80分到90分的人数是(0.6826)×48≈16.故选:B.6.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,计算即可得到b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线E:﹣=1(a,b>0)的渐近线方程为y=±x,圆C:(x﹣c)2+y2=4a2的圆心为(c,0),半径为2a,由直线和圆相切的条件可得,=b=2a,可得c==a,即有e==.故选:C.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.【考点】数列递推式.【分析】利用累加法求出数列的通项公式,得到.再由裂项相消法求得答案.【解答】解:∵a1=1,∴由a n+1=a1+a n+n,得a n+1﹣a n=n+1,则a2﹣a1=2,a3﹣a2=3,…a n﹣a n﹣1=n(n≥2).累加得:a n=a1+2+3+…+n=(n≥2).当n=1时,上式成立,∴.则.∴=2=.故选:B.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V=××=,故选:A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为﹣1 .【考点】二项式系数的性质;定积分.【分析】由于(2x﹣1)dx==6,化简解得m.令x=1,即可得出二项式(1﹣2x)3m展开式各项系数和.【解答】解:∵(2x﹣1)dx==6,化为:m2﹣m﹣(1﹣1)=6,m>1,解得m=3.令x=1,则二项式(1﹣2x)3m即(1﹣2x)9展开式各项系数和=(1﹣2)9=﹣1.故答案为:﹣1.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【分析】平面区域M、N,分别为圆与直角三角形,面积分别为π,,利用几何概型的概率公式解之即可.【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为π,,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=.答案为:.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于 4 .【考点】抛物线的简单性质.【分析】作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为②.【考点】命题的真假判断与应用.【分析】①根据逆命题的定义结合方程根的关系进行判断.②根据三角函数的周期公式以及充分条件和必要条件的定义进行判断.③根据函数与方程的关系进行判断.④根据幂函数的定义和性质进行判断.⑤根据向量夹角和数量积的关系进行判断.⑥构造函数,判断函数的单调性即可.【解答】解:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是若a≤,则方程ax2+x+1=0有两个实数根,当a=0时,方程等价为x+1=0,则x=﹣1,此时方程只有一个根,故①错误;②f(x)=cos2ax﹣sin2ax=cos2ax,若“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”,则,则|a|=1,则a=±1,则充分性不成立,反之成立,即“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件正确,故②正确,③由f(x)=2x﹣x2=0得2x=x2,作出两个函数y=2x和y=x2的图象如图,由图象知两个函数交点个数为3个,故③错误;④幂函数y=x a(a∈R)的图象恒过定点(0,0),错误,当a<0时,函数的图象不过点(0,0),故④错误,⑤“向量与的夹角是钝角”的充分必要条件是“•<0”且≠λ,λ<0;故⑤错误,⑥设f(x)=sinx﹣x,则函数的导数f′(x)=cosx﹣1≤0,则函数f(x)是奇函数,∵f(0)=sin0﹣0=0,∴f(x)=0的根只有一个0,解集方程sinx=x有一个实根.故⑥错误,故正确的是②,故答案为:②三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.(Ⅰ)根据二倍角的正余弦公式,和两角和的正弦公式即可化简f(x)=,【分析】而由x的X围可以求出x+的X围,从而可得出f(x)的值域;(Ⅱ)由f(A)=2即可求得A=,从而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根据向量数量积的计算公式便可得出的最大值.【解答】解:(Ⅰ);∵;∴;∴;∴f(x)的值域为[1,2];(Ⅱ)∵f(A)=2,∴;在△ABC中,∵0<A<π,∴;∴;∴|AB||AC|=|AB|2+|AC|2﹣1≥2|AB||AC|﹣1;∴|AB||AC|≤1;∴;∴的最大值为.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)由表某某息可知,利用等可能事件概率计算公式能求出当产假为14周时某家庭有生育意愿的概率和当产假为16周时某家庭有生育意愿的概率.(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10种,由此利用列举法能求出其和不低于32周的概率.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由表某某息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为…(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种,由古典概型概率计算公式得…②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.,,,因而ξ的分布列为ξ29 30 31 32 33 34 35P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,…19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点D作直线DO⊥BC交BC于点O,连接DO.运用面面垂直的性质定理,可得DO⊥平面ABC,又直线AE⊥平面ABC,可得AE∥DO,运用线面平行的判定定理,即可得证;(2)连接AO,运用线面平行和线面垂直的性质,求得OA,OB,OD两两垂直,以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.求得O,A,B,E的坐标,假设存在点P,连接EP,BP,设=λ,求得P的坐标,求得平面PBE,ABE 的法向量,运用向量的夹角公式,计算可得P的位置.【解答】解:(1)证明:如图,过点D作直线DO⊥BC交BC于点O,连接DO.因为平面ABC⊥平面BCD,DO⊂平面BCD,DO⊥BC,且平面ABC∩平面BCD=BC,所以DO⊥平面ABC,因为直线AE⊥平面ABC,所以AE∥DO,因为DO⊂平面BCD,AE⊄平面BCD,所以直线AE∥平面BCD;(2)连接AO,因为DE∥平面ABC,所以AODE是矩形,所以DE⊥平面BCD.因为直线AD与直线BD,CD所成角的余弦值均为,所以BD=CD,所以O为BC的中点,所以AO⊥BC,且.设DO=a,因为BC=2,所以,所以.在△ACD中,AC=2.所以AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,即.解得a2=1,a=1;以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则.假设存在点P,连接EP,BP,设=λ,即有=+λ(﹣),则.设平面ABE的法向量为={x,y,z},由=(0,0,1),=(,﹣1,0),则,即,取x=1,则平面ABE的一个法向量为.设平面PBE的法向量为={x,y,z},则,取x=1+λ,则平面PBE的一个法向量为=(1+λ,﹣λ,﹣2λ),设二面角P﹣BE﹣A的平面角的大小为θ,由图知θ为锐角,则cosθ===,化简得6λ2+λ﹣1=0,解得λ=或(舍去),所以在CA上存在一点P,使得二面角P﹣BE﹣A的余弦值为.其为线段AC的三等分点(靠近点A).20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,令g(x)=x2﹣(a+2)x+1,根据函数的单调性得到:;,作差得到新函数F(n)=2lnn+n ﹣,(n>e),根据函数的单调性求出其最小值即可证明结论成立.【解答】解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),当时,,…令f′(x)>0,得:或,所以函数单调增区间为:,,令f′(x)<0,得:,所以函数单调减区间为:,…(Ⅱ)证明:,令:g(x)=x2﹣(a+2)x+1=(x﹣m)(x﹣n)=0,所以:m+n=a+2,mn=1,若f(x)在内有极值点,不妨设0<m<,则:n=>e,且a=m+n﹣2>e+﹣2,由f′(x)>0得:0<x<m或x>n,由f′(x)<0得:m<x<1或1<x<n,所以f(x)在(0,m)递增,(m,1)递减;(1,n)递减,(n,+∞)递增当x1∈(0,1)时,;当x2∈(1,+∞)时,,所以:=,n>e,设:,n>e,则,所以:F(n)是增函数,所以,又:,所以:.【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F 四点共圆即可证得结论;(2)由(1)知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD﹣AE•AC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.【考点】参数方程化成普通方程;直线的斜率;直线与圆的位置关系.【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x2﹣24x+8=0,所以,,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|•|PB|=|t1t2|=|OP|2=7,得:,所以,,所以,所以.所以直线L的斜率为±.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值X围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的X围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得。

2016年4月2016届高三第三次全国大联考(新课标III卷)理数卷(解析版)

2016年4月2016届高三第三次全国大联考(新课标III卷)理数卷(解析版)

第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |2x -4x <0,x ∈*N },B ={x |81x *∈-N ,x ∈*N },则A R ð B 中元素的 个数为( )A.1B.2C.3D.4【答案】B【命题意图】考查集合概念及运算,意在考查学生的运算能力.【解析】解不等式2x -4x <0可得0<x <4,所以A R ð={x |x ≤0或x ≥4,x ∈*N }={x |x ≥4,x ∈*N }.由81x *∈-N ,x ∈*N ,知x 可以为2,3,5,9,所以B ={2,3,5,9},所以A R ð B ={5,9},即A R ð B 中元素的个数为2.故选B.2.已知复数z =2i1i-++ (i 为虚数单位),z 的共轭复数为z ,则在复平面内i z 对应的点的坐标为 ( ) A.(1,23-) B.(25,23-) C.(21,23-) D.(21,2) 【答案】C【命题意图】考查复数概念及运算,意在考查学生的运算能力.3.命题“任意x ∈[41,3],2x -a -2≤0”为真命题的一个充分不必要条件是( ) A.a ≥9 B.a ≤8 C.a ≥6 D.a ≤11 【答案】A【命题意图】考查命题及充要条件,意在考查学生的逻辑思维能力. 【解析】命题“任意x ∈[41,3],2x -a -2≤0”为真命题的充要条件是a ≥7,故充分不必要条件是集合[7,+∞)的真子集,故选A.4.一个盒内有5个月饼,其中两个为果浆馅、三个为五仁馅,现从盒内随机取出两个月饼,若事件A =“取到的两个月饼为同一种馅”,B =“取到的两个月饼都是五仁馅”,则概率()A B P = ( ) A.51 B.53 C.41 D.43【答案】D【命题意图】考查排列、组合的应用及条件概率的求法,意在考查学生的计算能力.5.已知()x f 是定义在R 上的奇函数,当x ≤0时,()x f =-2x +2x ,若实数a 是由不等式()()a f a f 282-≥-获得的解中的最大整数,则()121d ax x --⎰的值为( )A.6B.10C.14D.20【答案】B【命题意图】考查函数的性质:利用函数的奇偶性确定函数解析式、利用函数的单调性解不等式以及求定积分.【解析】∵()x f 是奇函数,∴当x >0时,()x f =2x +2x .作出函数()x f 的大致图象如图中实线所示,结合图象可知()x f 是R 上的增函数,由()()a f a f 282-≥-,得8-2a≥-2a ,解得-2≤a ≤4,故a=4,因此()121d ax x --⎰=()4121d x x --⎰=()412--xx=10.故选B.6.某程序框图如图所示,则该程序运行后输出的S 的值为( )A.1B.21C.41D.81 【答案】A【命题意图】本题考查程序框图的读图、数列求值.意在考查学生的运算能力和识图能力.【解析】依题意得,运行程序后输出的是数列{n a }的第 2 017项,其中数列{n a }满足:1a =1,12111.8n n n n n a a a a a +<⎧⎪=⎨≥⎪⎩,,,注意到2a =81,3a =41,4a =21,5a =1,6a =81,…,该数列中的项以4为周期重复出现,且2 017=4×504+1,因此201711a a ==,即运行程序后输出的S 的值为1.故选A. 7.将函数3π4sin(6)5y x =+图象上所有点的横坐标变为原来的3倍,再向右平移π5个单位长度得 到函数()x g y =的图象,则函数()x g y =图象的一条对称轴方程可以是( ) A.=x 2π9 B.=x 5π24 C.=x 3π20 D.=x 7π10【答案】C【命题意图】考查三角函数的图象与性质:图象平移及对称性.8.某校高三在一轮复习完成以后,为了巩固学生的复习成果,就一轮复习中暴露出来的问题连续 对学生进行了九次跟踪测试,考试成绩统计如下表:A.8B.26C.58D.526【答案】B【命题意图】考查回归直线、两条平行直线间的距离,意在考查学生的计算能力.【解析】因为120,5==y x ,所以回归直线ˆy =bx +a 过点(5,120),则5b +a =120,由此可得点(a ,b )在直线x +5y -120=0上.于是两条平行直线x +5y -94=0与x +5y -120=0间的距离即为点(a ,b )到直线x +5y -94=0的距离,而两条平行直线x +5y -94=0与x +5y -120=0间的距离为262626519412022==+-.故选B.9.设x ,y 满足约束条件222x y a x y +≥⎧⎨-≤-⎩,,且z =x +a y 的最小值为6,则a =( )A.-3B.2C.-3或2D.3或-2【答案】B【命题意图】本题考查线性规划,意在考查学生利用数形结合思想解答问题的能力和计算能力.10.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正 方形).若削去的几何体中原正方体的顶点到截面的距离为h ,且削去的几何体中内切球的半径为R ,则Rh的值为 ( )A.26 B.23 C.1+3 D.321+【答案】C【命题意图】本题考查三视图、球的内切问题以及多面体的体积问题,意在考查学生的空间想象能力和计算能力.【解析】由题设所给的三视图,可知削去的几何体是一个以原正方体的顶点为顶点,正方体的三条棱为侧棱的三棱锥,且底面是一个以正方体面对角线为边的等边三角形,于是该三棱锥内切球球心到各面的距离为R .以内切球球心为顶点,三棱锥各面为底面把三棱锥分割为四个小三棱锥,于是有222131331⨯⨯⨯⨯=R hS +RS 31,即RS R hS +=6(其中S 为三棱锥的底面面积),又S = 60sin 222221⨯⨯⨯=23,所以R h =S S +6==+323261+3.故选C.11.在平面直角坐标系xOy 中,双曲线12222=-by a x (a >0,b >0)的两条渐近线与抛物线2y =8x 的准线相交于B A ,两点.若AOB △的面积为6,则双曲线的离心率为( ) A.213 B.2 C.3 D.324 【答案】A【命题意图】本题考查双曲线的离心率的求法,意在考查学生的计算能力.12.已知()x f 是定义在R 上的以3为周期的偶函数,若()1f <5,()11f =m ma ma +-2-1(m ≠0), 其中a ∈[1,3],则实数m 的取值范围是 ( )A.6{|00}7m m m <<<或 B.1{|10}3m m m <<<或 C.5{|010}3m m m <<-<<或 D.11{|20}26m m m <<<<或 【答案】A【命题意图】本题是一个考查函数性质的综合性的函数与不等式题型,综合了函数的周期性、奇偶性、单调性以及利用恒成立不等式求解参数的取值范围问题,意在考查学生综合解决问题的能力.第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,满分20分.将答案填在答题纸上)13.已知9(a x -的展开式中,3x 的系数为83,则常数a 的值是_________.【答案】23【命题意图】考查二项式,利用二项展开式中项的系数确定参数值.【解析】919C ()(r r r r a T x -+=99922299C (1)()()C (1)22r r rr r r r r r rx a a x x-+---=-=-,当392=-+r r ,即r = 8时,888293C (1)28a --⋅=,解得 23a =.14.若平面向量,a b 满足|3|1-≤a b ,则·a b 的最小值是______. 【答案】112-【命题意图】本题考查平面向量、最小值,意在考查学生的计算能力. 【解析】由|3|1-≤a b ,得()2222|3|39|||61-=-=+-⋅≤a b a b a b |a b ,又229|||6||||6+≥⋅≥-⋅a b |a b a b ,则166+⋅≥-⋅a b a b ,所以112⋅≥-a b ,故当3||=||a b 且a,b 方向相反时,⋅a b 的最小值为112-. 15.已知函数()x f x x x 2sin 2cos 2++=,π()3a f '=,则过曲线x x y 2343-=上一点()b a P ,的切线方程为_________. 【答案】2890x y --=【命题意图】本题考查导数的运算,导数的几何意义,意在考查学生的计算能力.16.在△ABC 中,C ∠=2A ∠,25tan =A ,且27 BA · CB =-176,则AC 的长度为______________.【命题意图】本题考查解三角形,其中涉及的知识点为三角恒等变换、正弦定理及向量数量积的应用,意在考查学生公式熟记能力及计算能力. 【解析】∵25tan =A ,∴49451tan 12=+=+A ,即94cos 2=A ,又025tan >=A ,故32cos =A ,∵C ∠=2A ∠,∴281cos cos 22cos 1199C A A ==-=-=-,∴sin C =954,sin A =35. cos B =-cos()A C +=A sin ·sin C -A cos ·C cos =2722. ∵在△ABC 中,sin AB C =ABC sin ,∴AB =34BC .∵27BA ·CB =- 176,cos B =2722,∴| BA || CB |=8,∴BC =6,AB =364,∴AC =B AB BC AB BC cos 222⋅⋅-+=2722364623326⨯⨯⨯-+.三、解答题(解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)设数列{}n a 的前n 项和23231++-=n n S ,数列{}n b 满足()n n a n b 3log 11+=.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T .【命题意图】本题考查利用数列的前n 项和公式求通项公式,运用裂项相消法求数列的前n 项和,意在考查学生的计算能力,分类讨论思想.18.(本小题满分12分)为了了解高中学生在校期间身体发育状况,某市对其120 000名在校男生进行身高统计,且所有男生的身高服从正态分布N (168,16).统计人员从市一中高二的男同学中随机抽取了80名进行身高测量,所得数据全部介于160 cm 和184 cm 之间,并将测量数据分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],然后按上述分组方式绘制得到如图所示的频率分布直方图.(1)评估市一中高二年级男生在全市高中男生中的平均身高状况; (2)求这80名男生身高在172 cm 以上(含172 cm)的人数;(3)在这80名男生身高在172 cm 以上(含172 cm)的人中任意抽取3人,将该3人中身高排名(从高到低)在全市前156名的人数记为X ,求X 的数学期望.参考数据:若X ~2(,)N μσ,则()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.【命题意图】本题主要考查统计与离散型随机变量分布列知识的交汇问题,意在考查学生识图和计算能力.19.(本小题满分12分)如图所示,正方形D D AA 11与矩形ABCD 所在平面互相垂直,AB =2AD =2. (1)若点E ,H 分别为AB ,DC 的中点,求证:平面H BD !∥平面DE A 1; (2)在线段AB 上是否存在一点E ,使二面角1D -EC -D 的大小为π3?若存在,求出AE 的长;若不存在,请说明理由.【命题意图】本题考查了空间几何体中的平行关系以及利用空间向量求角,意在考查学生的空间想象能力及计算能力.【解析】(1)证明:四边形ADD 1A 1为正方形,连接AD 1,设A 1D ∩AD 1=F ,则F 是AD 1的中点,又点E 为AB 的中点,连接EF ,则EF 为△ABD 1的中位线,所以EF ∥BD 1.又BD 1⊄平面A 1DE ,EF ⊂平面A 1DE , 所以BD 1∥平面A 1DE .因为BH //DE ,且DE ⊂平面A 1DE ,BH ⊄平面A 1DE ,所以BH ∥平面A 1DE ,又BD 1 BH =B ,所以平面H BD !∥平面DE A 1.(2)根据题意,得DD 1⊥DA ,D 1D ⊥DC ,AD ⊥DC ,则以D 为坐标原点,DA ,DC ,DD 1所在直线分别为z y x ,,轴建立空间直角坐标系D -xyz ,则D (0,0,0),D 1(0,0,1),C (0,2,0).20. (本小题满分12分)已知椭圆C :12222=+b y a x )0(>>b a 的左、右焦点分别为12F F ,,且离心率e =31,点P 在该椭圆上满足2PF =c 38(c 为焦半距).(1)是否存在点P ,使12PF F △的边长是由自然数构成的公差为2的等差数列,若存在,求出实数c 的值;若不存在,请说明理由;(2)当c =1时,A 是椭圆C 的左顶点,且M ,N 是椭圆C -+MN 是否过定点?若是,求出定点的坐标;否则说明理由.【命题意图】本题考查了椭圆要素的确定以及直线与圆锥曲线位置关系的探究,意在考查学生的计算、推理能力.由0=⋅AN AM 得()()0332121=+++y y x x ,整理可得()()()0931221212=++++++m x x km x x k . 将(ⅰ)(ⅱ)代入上式得()()098918389729122222=++++-+-+m k km km k m k , 化简可得09541722=+-k km m ,则k m 3=或173k m =,此时,对于方程()07291889222=-+++m kmx x k ,均有0Δ>. 当k m 3=时,直线MN 过定点(-3,0),不符合要求; 当173k m =时,直线MN 过定点(173-,0).综上所述,直线MN 过定点(173-,0). 21. (本小题满分12分) 已知()x f =e x [3x +()21x a --2x +2]. (1)假设a =3,求()x f 的极大值与极小值;(2)是否存在实数a ,使()x f 在[]1,4--上单调递增?如果存在,求a 的取值范围;如果不存在,请说明理由.【命题意图】本题考查了利用导数探究极值、最值、单调区间以及求解参数取值范围,意在考查学生的分析计算能力.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知在△ABC 中,D 是BC 边的中点,且AD =AC ,DE ⊥BC ,DE 与AB 相交于点E ,EC 与AD 相交于点F .(1)求证:△ABC ∽△FCD ;(2)若S △FCD =5,BC =10,求DE 的长.【命题意图】该题考查了相似三角形的证明以及利用边角关系求解边长,意在考查学生的证明相似的能力及计算能力.23.(本小题满分10分)选修4-4:坐标系与参数方程以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,设曲线C 的参数方程为⎩⎨⎧==ααsin 3cos 2y x (α是参数),直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值.【命题意图】本题考查了参数方程与极坐标方程化普通方程,利用参数方程求解最值问题,意在考查学生计算能力和转化思想及数形结合能力.24.(本小题满分10分)选修4-5:不等式选讲已知函数()x f =|2x +1|+|2x -3|. (1)若关于x 的不等式()x f <|1-2a |的解集不是空集,求实数a 的取值范围;(2)若关于t的一元二次方程()20t f m ++=有实根,求实数m 的取值范围. 【命题意图】本题考查了绝对值不等式的应用,意在考查学生的运算能力和转化能力.【解析】(1)∵()x f =|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4,∴a <-32或a >52, ∴实数a 的取值范围为35(,)(,)22-∞-+∞ .(2)对于方程()20t f m ++=,Δ=24-4(|2m +1|+|2m -3|)≥0, 即|2m +1|+|2m -3|≤6,∴不等式等价于()()3,221236m m m ⎧>⎪⎨⎪++-≤⎩或()()13,2221236m m m ⎧-≤≤⎪⎨⎪+--≤⎩或()()1,221236,m m m ⎧<-⎪⎨⎪-+--≤⎩∴3131212222 m m m<≤-≤≤-≤<-或或,∴实数m的取值范围是[1,2]-.:。

四川省成都市2016届高三第三次诊断考试数学试题(理)含答案

四川省成都市2016届高三第三次诊断考试数学试题(理)含答案

成都市2013级高中毕业班第三次诊断性检测数学(理工类)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知田径队有男运动员56人,女运动员42人,若按男女比例用分层抽样的方法,从全体运动员中抽出14人参加比赛,则抽到女运动员的人数为A. 2B. 4C. 6D. 82.命题()()"1,,ln 1"x x x ∀∈-+∞+<的否定是A. ()()1,,ln 1x x x ∀∉-+∞+<B. ()()0001,,ln 1x x x ∀∉-+∞+<C. ()()1,,ln 1x x x ∀∈-+∞+≥D. ()()0001,,ln 1x x x ∃∈-+∞+≥3.已知复数2z i i=-(其中i 为虚数单位),则z =4.已知,αβ是空间中两个不同的平面,m 为平面β内的一条直线,则""αβ⊥是""m α⊥的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.已知向量,a b 满足()2,3a a b a =-=- ,则b 在a 方向上的投影为 A. 23 B. 23- C. 12 D. 12- 6. 某工厂用A,B 两种配件生产甲乙两种产品,每生产一件甲产品需用4个A 配件耗时1h ,每生产一件乙产品需用4个B 配件耗时2h ,该厂每天最多可从配件厂获得24个A 配件和16个B 配件,每天生产总耗时不超过8h.若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为A. 24万元B.22万元C. 18万元D. 16万元7.执行如图所示的程序框图,若依次输入1122210.6,0.6,3m n p -⎛⎫=== ⎪⎝⎭,则输出的结果为 A. 1213⎛⎫ ⎪⎝⎭ B. 120.6 C. 20.6- D. 320.6-8.某学校食堂早餐只有花卷、包子、面条和蛋炒饭四种主食可供食用,有5名同学前去就餐,每人只选择其中一种,且每种主食都至少有一名同学选择.已知包子数量不足仅够一人食用,甲同学肠胃不好不会选择蛋炒饭,则这5名同学不同的主食选择方案种数为A.144B. 132C. 96D.489. 定义在()1,+∞上的函数()f x 同时满足:①对任意的()1,x ∈+∞恒有()()33f x f x = 成立;②当(]1,3x ∈时,()3.f x x =-记函数()()()1g x f x k x =--,若函数()g x 恰好有两个零点,则实数k 的取值范围是A.()2,3B. [)2,3C. 9,34⎛⎫ ⎪⎝⎭D. 9,34⎡⎫⎪⎢⎣⎭10. 已知O 为坐标原点,双曲线()2222:10,0x y C a b a b-=>>的左焦点为()(),00F c c ->,以OF 为直径的圆交双曲线C 的渐近线于A,B ,O 三点,且()0AO AF OF += .关于x 的方程20ax bx c +-=的两个实数根分别为1x 和2x ,则以12,,2x x 为边长的三角形的形状是A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等腰直角三角形第Ⅱ卷(非选择题,共100分)二、填空题:(大题共5小题,每小题5分,共25分.11.计算:sin 65cos35sin 25sin35-= .12. 一块边长为8cm 的正方形铁板按如图所示的阴 影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥(底面是正方形,从顶点向底面作垂线,垂足为底面中心的四棱锥)形容器,O 为底面ABCD 的中心,则侧棱SC 与底面ABCD 所成角的余弦值为 13. 已知椭圆()22:101616x y C n n+=<<的两个焦点分别为12,F F ,过1F 的直线交椭圆C 于A,B 两点,若22AF BF +的最大值为10,则n 的值为 .14. 若直线()2101,0ax by a b +-=>->经过曲线()cos 101y x x π=+<<的对称中心,则的121a b++最小值为 . 15.函数()()0,0b f x a b x a=>>-,因其图象像“囧”字,被称为“囧函数”.我们把函数()f x 的图像与y 轴的交点关于原点对称的点称为函数()f x 的“囧点”;以函数()f x 的“囧点”为圆心,与函数()f x 的图象有公共点的圆,皆称为函数()f x 的“囧圆”.当1a b ==时,有以下命题:①对任意()0,x ∈+∞,都有()1f x x >成立; ②存在0,63x ππ⎛⎫∈ ⎪⎝⎭,使得()00tan f x x <成立;③函数()f x 的“囧点”与函数ln y x =④函数()f x 的所有“囧圆”中其周长的最小值为.其中正确的命题序号有 .(写出所有正确命题的序号)三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分10分)已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的单调递增区间;(2)在ABC ∆中,内角A,B,C 的对边分别为,,a b c ,角A 满足()1f A =+,若3,s i n 2s i n a B C ==,求b 的值.17.(本小题满分12分)如图,在三棱台DEF ABC -中,已知底面AB C 是以AB 为斜边的直角三角形,FC ⊥底面ABC ,AB=2DE,G,H 分别为AC,BC 的中点.(1)求证:平面ABED//平面GHF;(2))若BC=CF=12A B=1,求二面角A-DE-F 的余弦值.18.(本小题满分12分)某高校一专业在一次自主招生中,对20名已经选拔入围的学生进行语言表达能力和逻辑思维能力测试,结果如下表:由于部分数据丢失,只知道从这20名参加测试的学生中随机抽取一人,抽到语言表达能力优秀或逻辑思维能力优秀的学生的概率为2.5(1) 从参加测试的语言表达能力良好的学生中任意抽取2名,求其中至少有一名逻辑思维能力优秀的学生的概率;(2))从参加测试的20名学生中任意抽取2名,设语言表达能力优秀或逻辑思维能力优秀的学生人数为X ,求随机变量X 的分布列及其均值.19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且330,.n n S a n N *+-=∈(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足()211log 12n n b S +=-,求12231111n n n T b b b b b b +=+++ ,求使5041009n T ≥成立的n 的最小值.20.(本小题满分13分)已知一动圆经过点()2,0M ,且在y 轴上截得的弦长为4,设动圆圆心的轨迹为曲线C.(1)求曲线C 的方程;(2)过点()1,0N 任意作相互垂直的两条直线12,l l ,分别交曲线C 于不同的两点A,B 和不同的两点D ,E.设线段AB,DE 的中点分别为P,Q.①求证:直线PQ 过定点R ,并求出定点R 的坐标; ②求PQ 的最小值;21.(本小题满分14分)已知函数()x f x e =,其中 2.71828e = 为自然对数的底数.(1)设函数()()()223,.g x x ax a f x a R =+--∈试讨论函数()g x 的单调性; (2)设函数()()2,.h x f x mx x m R =--∈,若对任意121,,22x x ⎡⎤∈⎢⎥⎣⎦,且12x x >都有()()()21121221x h x x h x x x x x ->-成立,求实数m 的取值范围.。

湖南省衡阳市2016届高三第三次联考(三模)数学(理)试题 含答案

湖南省衡阳市2016届高三第三次联考(三模)数学(理)试题 含答案

理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,则12i z i =-在复平面内的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.若01cos(75)3α+=,则0cos(302)α-的值为( ) A .429 B .429- C .79D .79- 3.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布(1,1)N -的密度曲线)的点的个数大约为( )A .1193B .1359C .2718D .3413附:若X ~2(,)N μσ,()0.6826P X μσμσ-<<+=,(22)0.9544P X μσμσ-<<+=.4.有下列三个结论:①命题“,ln 0x R x x ∀∈->"的否定是“000,ln 0x R x x ∃∈-≤”;②“1a ="是“直线10x ay -+=与直线20x ay +-=互相垂直”的充要条件; ③命题“角α的终边在第一象限,则α为锐角”的逆否命题为真命题;其中正确结论的个数为( )A .0个B .1个C .2个D .3个5.某产品在某零售摊位的零售价x (单位:元)与每天的销售量y (单位:个)的统计资料如下表所示,由表可得回归直线^^^y b x a =+中的4b =-,据此模型预测零售价为20元时,每天的销售量为( ) X16 17 18 19 y 50 34 41 31A .23个B .25个C .27个D .29个6。

将()sin 2f x x =的图象右移(0)2πϕϕ<<个单位后得到()g x 的图象,若对于满足12|()()|2f x g x -=的12,x x 有12||x x -的最小值为3π,则ϕ的值为( ) A .12π B .6π C .4π D .3π 7.某程序框图如图所示,执行该程序,若输入的3N =,则输出的i 等于( )A .6B .7C .8D .98。

吉林市2016届高三数学第三次调研试题(理带答案)

吉林市2016届高三数学第三次调研试题(理带答案)

吉林市2016届高三数学第三次调研试题(理带答案)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集,集合,,则下图中的阴影部分表示的集合为() A. B. C. D. 2.复数() A. B. C. D. 3.已知数列为等差数列,若成等比数列,且,则公差() A.0 B.1 C.2 D.4 4.设是定义在上的偶函数,则的解集为() A. B. C. D. 5.下列有关命题的说法错误的是() A.函数的最小正周期为 B.函数在区间内有零点 C.已知函数,若,则 D.在某项测量中,测量结果服从正态分布,若在内取值的概率为0.1,则在内取值的概率为0.4. 6.运行如图所示的程序框图,则输出的值为() A.-3 B.-2 C.4 D.8 7.某综艺节目固定有3名男嘉宾,2名女嘉宾,现要求从中选取3人组成一个娱乐团队,要求男女嘉宾都有,则不同的组队方案共有()种 A.9 B.15 C.18 D.21 8. () A.1 B.2 C.3 D. 9.函数的图象如图所示,为图象与轴的交点,过点的直线与函数图象交于两点,则() A. B.4 C. D.8 10.已知数列的前项和为,,当时,,则() A. B.1006 C.1007 D.1008 11.已知椭圆具有如下性质:若椭圆的方程为,则椭圆在其上一点处的切线方程为,试运用该性质解决以下问题:椭圆,其焦距为2,且过点,点为在第一象限中的任意一点,过作的切线,分别与轴和轴的正半轴交于两点,则面积的最小值为()A. B. C. D.2 12.已知是上的可导函数,满足恒成立,,若曲线在点处的切线为,且,则等于() A.-500.5 B.-501.5 C.-502.5 D.-503.5 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.设,则 . 14.已知满足,则的最大值为 . 15.三棱锥的直观图及其三视图中的正视图和侧视图如图所示,则棱的长为 . 16.如图,四边形是三个全等的菱形,,设,已知点在各菱形边上运动,且,,则的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)在中,分别为内角的对边,且 . (1)求角的大小;(2)设函数,当取最大值时,判断的形状. 18. (本小题满分12分)吉林市某中学利用周末组织教职员共进行了一次冬季户外健身活动,有人参加,现将所有参加人员按年龄情况分为,等七组,其频率分布直方图如下图所示,已知之间的参加者有8人. (1)求和之间的参加者人数;(2)已知和两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人都至少有1名数学教师的概率;(3)组织者从之间的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望 . 19. (本小题满分12分)如图,在三棱柱中,四边形是边长为4的正方形,平面平面, . (1)求证:平面;(2)求二面角的大小;(3)若点是线段的中点,请问在线段上是否存在点,使得平面?若存在,请说明点的位置;若不存在,请说明理由. 20. (本小题满分12分)已知抛物线的方程为,点在抛物线上. (1)求抛物线的方程;(2)过点作直线交抛物线于不同于的两点,若直线分别交直线于两点,求最小时直线的方程. 21. (本小题满分12分)设,曲线在点处的切线与直线垂直. (1)求的值;(2)若恒成立,求的取值范围;(3)求证: . 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,在中,于,于,交于点,若 . (1)求证:;(2)求线段的长度. 23. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为,(为参数),且曲线上的点对应的参数,以为极点,轴的正半轴为极轴建立极坐标系,曲线是圆心在极轴上且经过极点的圆,射线与曲线交于点 . (1)求曲线的普通方程,的极坐标方程;(2)若是曲线上的两点,求的值. 24. (本小题满分10分)选修4-5:不等式选讲已知 . (1)求不等式的解集;(2)设为正实数,且,求证: .吉林市普通中学2015―2016学年度高中毕业班第三次调研测试数学(理科)参考答案与评分标准 1.选择题 1 2 3 4 5 6 7 8 9 10 11 12 B C A D C B A D D D B C 2.填空题 13.3 14.7 15. 16.4 3.解(Ⅰ)解:在中,根据余弦定理:......2分而,所以 (4)答题 17.分因为……9分所以当,即时……11分取最大值,此时易知道是直角三角形. ……12 分18.(Ⅰ)解:设频率分布直方图中7个组的频率分别为,,所以……2分由题意,而所以,之间的志愿者人数人……4分(Ⅱ)由(Ⅰ)知之间有人设从之间取2人担任接待工作,其中至少有1名数学教师的事件为事件;从之间取2人担任接待工作其中至少有1名数学教师的事件为事件,因为两组的选择互不影响,为相互独立事件所以……6分之间共有人,其中4名女教师,2名男教师,从中选取3人,则女教师的数量为的取值可为1,2,3 (8)分所以;;…10分所以分布列为的数学期望为,......12分 19.(Ⅰ)因为四边形是边长为4的正方形,所以,......1分因为平面平面且平面平面,......2分所以平面......3分(Ⅱ)解:以为坐标原点,以所在直线分别为轴建立空间直角坐标系如图所示:(图略) 则点坐标分别为:;;;;;......5分则设平面的法向量所以,所以 (6)分令,所以,又易知平面的法向量为……7分所以所以二面角的大小为……8分(Ⅲ)设;平面的法向量.因为点在线段上,所以假设,所以即,所以.……10分又因为平面的法向量易知.而面,所以,所以......11分所以点是线段的中点.......12分若采用常规方法并且准确,也给分。

吉林省吉林市2016届高三第三次调研测试理科数学试题及答案

吉林省吉林市2016届高三第三次调研测试理科数学试题及答案

吉林市普通中学2015—2016学年度高中毕业班第三次调研测试数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24小题,共150分,考试时间120分钟。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内;2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹的签字笔书写,字体工整、笔迹清楚;3.请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效;4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑;5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

第Ⅰ卷一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集={1,2,3,4,5,6,7,8}U ,集合={1,2,3,5}A ,={2,4,6}B ,则右图中的阴影部分表示的集合为A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}2.复数131i i+=- A .12i - B .12i +C .12i -+D .12i --3.已知数列{}n a 为等差数列,若123,,a a a 成等比数列,且11a =,则公差d = A .0B .1C .2D .44.设2()2f x ax bx =++是定义在[1,1]a +上的偶函数,则()0f x >的解集为 A .(2,2)-B .∅C .(,1)(1,)-∞-+∞D .(1,1)-UAB1题图5.下列有关命题的说法错误的是A .函数()sin cos f x x x =的最小正周期为π;B .函数1()ln 22f x x x =+-在区间(2,3)内有零点; C .已知函数2()log (22)a f x x x =-+,若1()02f >,则01a <<;D .在某项测量中,测量结果ξ服从正态分布2(2,) (0)N σσ>.若ξ在(,1)-∞内 取值的概率为0.1,则ξ在(2,3)内取值的概率为6.运行如图所示的程序框图,则输出S 的值为 A. 3- B. 2- C. 4D. 87.某综艺节目固定有3名男嘉宾,2名女嘉宾.现要求 从中选取3人组成一个娱乐团队,要求男女嘉宾都有, 则不同的组队方案共有多少种 A .9B .15C .18D .218.1|1|x dx -=⎰A .1B .2C .3D .129. 函数tan()42xy ππ=-(04)x <<的图象如图所示,A 为图像与x 轴的交点,过点A 的直线l 与函数图象交于,BC 两点.则()OB OC OA +⋅=A .23B .4C .163D .89题图10.已知数列{}n a 的前n 和为n S ,11a =.当2n ≥时,12n n a S n -+=,则2016S = A .20152B .1006C .1007D .100811.已知椭圆具有如下性质:若椭圆的方程为22221(0)x y a b a b+=>>,则椭圆在其上一点00(,)A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题:椭圆22122:1(0)x y C a b a b+=>>,其焦距为2,且过点.点B 为1C 在 第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD ∆面积的最小值为A BC D .212.已知()y f x =是(0,)+∞上的可导函数,满足[](1)2()()0x f x xf x '-+>(1x ≠)恒成立,(1)2f =,若曲线()f x 在点(1,2)处的切线为()y g x =,且()2016g a =,则a 等于A .500.5-B .501.5-C .502.5-D .503.5-第Ⅱ卷二、填空题:本大题共4个小题,每小题5分。

(优辅资源)吉林省普通高中高三毕业第三次调研测试试卷 理科数学 Word版含答案

(优辅资源)吉林省普通高中高三毕业第三次调研测试试卷 理科数学 Word版含答案

吉林市普通中学2016—2017学年度高中毕业班第三次调研测试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24小题,共150分,考试时间120分钟。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内;2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹的签字笔书写,字体工整、笔迹清楚;3.请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效;第Ⅰ卷一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集,U R =集合{|1}A x x =>,集合{|},B x x p =>若()U A B =∅I ð,则p 应 该满足的条件是 A .1p >B .p ≥1C .1p <D .p ≤12.已知复数1iz i=+,其中i 为虚数单位.则||z = A .12B 2C 2D .23.已知向量(,2),(2,1),(3,)a x b c x ===r r r,若a r ∥b r ,则a c =r r gA .4B .8C .12D .204.已知点(2,0)F 是双曲线2233(0)x my m m -=>的一个焦点,则此双曲线的离心率 为 A .12B 3C .2D .45.3)nx x的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,若 32AB=,则n = A .5B .6C .7D .86.给出下列几个命题:① 命题:p 任意x R ∈,都有cos 1x ≤,则:p ⌝存在0x R ∈,使得0cos 1x ≤.② 命题“若2a >且2b >,则4a b +>且4ab >”的逆命题为假命题.③ 空间任意一点O 和三点,,A B C ,则32OA OB OC =-u u u r u u u r u u u r是,,A B C 三点共线的充分不必要条件.④ 线性回归方程y bx a =+对应的直线一定经过其样本数据点1122(,),(,),,x y x y L(,)n n x y 中的一个.其中不正确...的个数为 A. 1B. 2C. 3D. 47.若直角坐标平面内的两点,P Q 满足条件:①,P Q 都在函数()y f x =的图象上; ②,P Q 关于原点对称。

精选高三数学毕业第三次调研测试试卷理

精选高三数学毕业第三次调研测试试卷理

吉林市普通中学2016—2017学年度高中毕业班第三次调研测试数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24小题,共150分,考试时间120分钟。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内;2.选择题必须用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹的签字笔书写,字体工整、笔迹清楚;3.请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效;第Ⅰ卷一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设全集,U R =集合{|1}A x x =>,集合{|},B x x p =>若()U A B =∅ð,则p 应该满足的条件是A .1p >B .p ≥1C .1p <D .p ≤12.已知复数1iz i=+,其中i 为虚数单位.则||z =A .12B .2CD .23.已知向量(,2),(2,1),(3,)a x b c x ===,若a ∥b ,则a c = A .4B .8C .12D .204.已知点(2,0)F 是双曲线2233(0)x my m m -=>的一个焦点,则此双曲线的离心率 为A .12B .2 D .45.3)nx的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,若 32AB=,则n = A .5B .6C .7D .86.给出下列几个命题:①命题:p 任意x R ∈,都有cos 1x ≤,则:p ⌝存在0x R ∈,使得0cos 1x ≤.②命题“若2a >且2b >,则4a b +>且4ab >”的逆命题为假命题. ③空间任意一点O 和三点,,A B C ,则32OA OB OC =-是,,A B C 三点共线的充 分不必要条件.④线性回归方程y bx a =+对应的直线一定经过其样本数据点1122(,),(,),,x y x y(,)n n x y 中的一个.其中不正确...的个数为 A.1B.2C.3D.47.若直角坐标平面内的两点,P Q 满足条件:①,P Q 都在函数()y f x =的图象上; ②,P Q 关于原点对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

015—2016学年度高中毕业班第三次调研测试数学(理科)一、选择题:1. 设全集={1,2,3,4,5,6,7,8}U ,集合={1,2,3,5}A ,={2,4,6}B ,则右图中的阴影部分表示的集合为 A .{2}B .{4,6}C .{1,3,5}D .{4,6,7,8}2.复数131ii+=- A .12i - B .12i +C .12i -+D .12i --3.已知数列{}n a 为等差数列,若123,,a a a 成等比数列,且11a =,则公差d = A .0B .1C .2D .44.设2()2f x ax bx =++是定义在[1,1]a +上的偶函数,则()0f x >的解集为A .(2,2)-B .∅C .(,1)(1,)-∞-+∞D .(1,1)-5.下列有关命题的说法错误的是A .函数()sin cos f x x x =的最小正周期为π;B .函数1()ln 22f x x x =+-在区间(2,3)内有零点; C .已知函数2()log (22)a f x x x =-+,若1()02f >,则01a <<;D .在某项测量中,测量结果ξ服从正态分布2(2,) (0)N σσ>.若ξ在(,1)-∞内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4.6.运行如图所示的程序框图,则输出S 的值为 A. 3- B. 2- C. 4D. 87.某综艺节目固定有3名男嘉宾,2名女嘉宾.现要求从中选取3人组成一个娱乐团队,要求男女嘉宾都有,则不同的组队方案共有多少种A .9B .15C .18D .218.1|1|x dx -=⎰A .1B .2C .3D .129. 函数tan()42xy ππ=-(04)x <<的图象如图所示,A 为图像与x 轴的交点,过点A 的直线l 与函数图象交于,B C 两点.则()OB OC OA +⋅=A .23B .4C .163D .810.已知数列{}n a 的前n 和为n S ,11a =.当2n ≥时,12n n a S n -+=,则2016S =A .20152B .1006C .1007D .100811.已知椭圆具有如下性质:若椭圆的方程为22221(0)x y a b a b+=>>,则椭圆在其上一点00(,)A x y 处的切线方程为00221x x y ya b+=,试运用该性质解决以下问题:椭圆22122:1(0)x y C a b a b+=>>,其焦距为2,且过点2(1,)2.点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD ∆面积的最小值为A .22B .2C .3D .212.已知()y f x =是(0,)+∞上的可导函数,满足[](1)2()()0x f x xf x '-+>(1x ≠)恒成立,(1)2f =,若曲线()f x 在点(1,2)处的切线为()y g x =,且()2016g a =,则a 等于A .500.5-B .501.5-C .502.5-D .503.5-第Ⅱ卷二、填空题:本大题共4个小题,每小题5分。

13.设[]2,5()(6),5x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则(1)f = .14.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为 .15.三棱锥S ABC -的直观图及其三视图中的正视图和侧视图如图所示,则棱SB 的长为 .16.如图,四边形,,OABC ODEF OGHI 是三个全等的菱形,COD FOG ∠=∠=3IOA π∠=,设,,OD a OH b ==已知点P 在各菱形边上运动,且OP xa yb =+,,x y R ∈,则x y +的最大值为 . 三、解答题:本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,且222b c a bc +-=.(Ⅰ)求角A 的大小; (Ⅱ)设函数2()sincos 3cos 222x x xf x =+,当()f B 取最大值时,判断ABC ∆的形状.18.(本小题满分12分)吉林市某中学利用周末组织教职员工进行了一次冬季户外健身活动,有N 人参加,现将所有参加人员按年龄情况分为[20,25),[25,30),[30,35),[35,40),[40,45),[45,50),[50,55)等七组,其频开始结束n = 1,S = 1n 5?输出S n = n + 1S=S+( 1) nn是否6题图UAB1题图xyOABC9题图ABCS42223正视图 侧视图abABCO D EFG H I率分布直方图如下图所示.已知[35,40)之间的参加者有8人. (Ⅰ)求N 和[30,35)之间的参加者人数1N ;(Ⅱ)已知[30,35)和[35,40)两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有1名数学教师的概率;(Ⅲ)组织者从[45,55)之间的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为ξ,求ξ的分布列和数学期望ξE .19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,四边形11AA C C 是边长为4的正方形,平面ABC ⊥平面11AA C C ,3,5AB BC == (Ⅰ)求证:1AA ⊥平面ABC ; (Ⅱ)求二面角111C A B C --的大小;(Ⅲ)若点D 是线段BC 的中点,请问在线段1AB 上是否存在点E ,使得DE ∥面11AA C C ?若存在,请说明点E 的位置;若不存在,请说 明理由.20.(本小题满分12分)已知抛物线C 的方程为22(0)y px p =>,点(1,2)R 在抛物线C 上. (Ⅰ)求抛物线C 的方程;(Ⅱ)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点,A B .若直线,AR BR 分别交直线:22l y x =+于,M N 两点,求||MN 最小时直线AB 的方程.21.(本小题满分12分)设()ln ()1x a xf x x +=+,曲线()y f x =在点(1,(1))f 处的切线与直线210x y ++=垂直.(Ⅰ)求a 的值;(Ⅱ)若[1,),()(1)x f x m x ∀∈+∞≤-恒成立,求m 的取值范围;(Ⅲ)求证:421ln 21(*)41ni in n N i =+<∈-∑.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,在ABC ∆中,C D A B ⊥于D ,B E A C ⊥于E ,BE 交CD 于点F ,若3,2B F F C D F E F ====.(Ⅰ)求证:AD AB AE AC = ; (Ⅱ)求线段BC 的长度.23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xoy 中,曲线1C 的参数方程为c o s ,(0,s i nx a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),且曲线1C 上的点(2,3)M 对应的参数3πϕ=,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 是圆心在极轴上且经过极点的圆,射线4πθ=与曲线2C 交于点(2,)4D π.(Ⅰ)求曲线1C 的普通方程,2C 的极坐标方程; (Ⅱ)若1(,),A ρθ2(,)2B πρθ+是曲线1C 上的两点,求221211ρρ+的值.24.(本小题满分10分)选修4—5:不等式选讲已知()2|2||1f x x x =-++ (Ⅰ)求不等式()6f x <的解集;(Ⅱ)设,,m n p 为正实数,且(2)m n p f ++=,求证:3mn np pm ++≤.普通中学2015—2016学年度高中毕业班第三次调研测试数学(理科)参考答案与评分标准1.选择题1 2 3 4 5 6 7 8 9 10 11 12 BCADCBADDDBC2.填空题0.010.020.030.042025303540455055频率组距岁数xyAOMNRB Q ADEABCA B C D11113.3 14.7 15.42 16.4 3.解答题17.(Ⅰ)解:在ABC ∆ 中,根据余弦定理:2221cos 22b c a A bc +-==……2分而(0,)A π∈,所以3A π=……4分(Ⅱ)解:2()sin cos 3cos222x x x f x =+所以133()sin cos 222f x x =++……6分即3()sin()32f x x π=++,则3()sin()32f B B π=++,……8分因为(0,)B π∈……9分所以当32B ππ+=,即6B π=时……11分)(B f 取最大值,此时易知道是直角三角形.……12 分18.(Ⅰ)解:设频率分布直方图中7个组的频率分别为1234567,,,,,,P P P P P P P ,40.0450.2P =⨯=,所以8400.2N ==……2分由题意12345671P P P P P P P ++++++=,而31245671()15(0.010.030.040.030.020.01)0.3P P P P P P P =-+++++=-+++++= 所以,之间的志愿者人数1340400.312N P =⨯=⨯=人……4分(Ⅱ)由(Ⅰ)知之间有400.312⨯=人设从之间取2人担任接待工作,其中至少有1名数学教师的事件为事件B ;从)40,35[之间取2人担任接待工作其中至少有1名数学教师的事件为事件C ,因为两组的选择互不影响,为相互独立事件2102127()1()122C P B P B C =-=-=262813()1()128C P C P C C =-=-=所以13()()()88P BC P B P C ==……6分 [)45,55之间共有5(0.010.02)406⨯+⨯=人,其中4名女教师,2名男教师,从中选取3人,则女教师的数量为ξ的取值可为1,2,3……8分所以1242361(1)5C C P C ξ===;2142363(2)5C C P C ξ===;3042361(3)5C C P C ξ=== …10分 所以分布列为ξ的数学期望为2E ξ=,……12分19.(Ⅰ)因为四边形11AAC C 是边长为4的正方形,所以1AA AC ⊥,……1分因为平面ABC ⊥平面11AAC C 且平面ABC 平面11AAC C AC =,……2分所以1AA ⊥平面ABC……3分(Ⅱ)解:以A 为坐标原点,以1,,AC AB AA所在直线分别为,,x y z 轴建立空间直角坐标系如图所示:(图略) 则111,,,,,A B C A B C 点坐标分别为:(0,0,0)A ;(0,3,0)B ;(4,0,0)C ;1(0,0,4)A ;1(0,3,4)B ;1(4,0,4)C……5分则3(2,,0)2D设平面11CA B 的法向量'''(,,)m x y z =所以111,m AC m A B ⊥⊥ 且 ,所以'''44030x z y ⎧-=⎪⎨=⎪⎩……6分令'1x =,所以(1,0,1)m = ,又易知平面111A B C 的法向量为(0,0,1)n =……7分所以2cos 2||||m n m n θ⋅==所以二面角111C A B C --的大小为45︒……8分(Ⅲ)设111(,,)E x y z ;平面11AAC C 的法向量(,,)u x y z =.因为点E 在线段1AB 上,所以假设1AE AB λ=,所以111034x y z λλ=⎧⎪=⎨⎪=⎩ (01)λ<≤即(0,3,4)E λλ,所以3(2,3,4)2DE λλ=-- .……10分又因为平面11AAC C 的法向量易知(0,3,0)u =.而//DE 面11AAC C ,所以0DE u ⋅= ,所以12λ=……11分所以点E 是线段1AB 的中点.……12分若采用常规方法并且准确,也给分。

相关文档
最新文档