7-7晶闸管的触发电路
晶闸管对触发电路的要求

晶闸管对触发电路的要求触发脉冲的作用各种电力电子器件的门极或控制极的控制电路都应提供符合一定要求的触发脉冲。
对于晶闸管的触发脉冲来说,其主要作用是决定晶闸管的导通时刻,同时还应提供相应的门极触发电压和门极触发电流。
触发脉冲除了包括脉冲的电压和电流参数外,还应有脉冲的陡度和后沿波形,脉冲的相序和相角以及与主电路的同步关系,同时还须考虑门控电路与主电路的绝缘隔离问题和抗干扰、防止误触发问题.由于晶闸管是半控型器件,管子导通后即失去控制作用,为了减少门极损耗,故门极输出不用直流而用单脉冲或双脉冲,有时还采用由许多单脉冲组成的脉冲列,以代替宽脉冲。
触发脉冲参数要求触发脉冲的主要参数有触发电流、脉冲宽度等,具体要求如下: (1)触发电流-—晶闸管是电流控制型器件,只有在门极里注入一定幅值的触发电流时才能触发导通。
由于晶闸管伏安特性的分散性,以及触发电压和触发电流随温度变化的特性,所以触发电路所提供的触发电压和触发电流应大于产品目录所提供的可触发电压和可触发电流,从而保证晶闸管的可靠触发,但不得超过规定的门极最大允许触发电压和最大允许触发电流。
实际触发电流可整定为3~5倍的额定触发电流。
(2)触发脉冲宽度--触发脉冲的宽度应能保证使晶闸管的阳极电流上升到大于擎住电流。
由于晶闸管的开通过程只有几微秒,但并不意味着几微秒后它已能维持导通。
若在触发脉冲消失时,阳极电流仍小于擎住电流,晶闸管将不能维持导通而关断。
因此对脉冲宽度有一定要求,它和变流装置的负载性质及主电路的形式有关。
(3)强触发脉冲-—触发脉冲前沿越陡,越有利于并联或串联晶闸管的同时触发导通。
因此在有并联或串联晶闸管时,要求触发脉冲前沿陡度大于或等于10V/uS,通常采取强触发脉冲的形式。
另外,强触发脉冲还可以提高晶闸管承受di/dt的能力。
(4)触发功率——触发脉冲要有足够的输出功率,并能方便地获得多个输出脉冲,每相中多个脉冲的前沿陡度不要相差太大。
晶闸管对触发电路

第六章晶闸管触发电路6.1 晶闸管对触发电路的基本要求6.1.1 触发信号的种类晶闸管由关断到开通,必须具备两个外部条件:第一是承受足够的正向电压;第二是门极及阴极之间加一适当反向电压、电流信号(触发信号)。
门极触发信号有直流信号、交流信号和脉冲信号三种基本形式。
(1)直流信号在晶闸管加适当的阳极正向电压的情况下,在晶闸管门极及阴极间加适当的直流电压,则晶闸管将被触发导通,如图6.1(a)、(b)所示。
这种触发方式在实际中应用极少。
因为晶闸管在其导通后就不需要门极信号继续存在。
若采用直流触发信号将使晶闸管门极损耗增加,有可能超过门极功耗;在晶闸管反向电压时,门极直流电压将使反向漏电流增加,也有可能造成晶闸管的损坏。
(2)交流信号如图6.1(c)所示,在晶闸管门极及阴极间加入交流电压,当交流电压Dc,uc,时,晶闸管导通。
uc,是保证晶闸管可靠触发所需的最小门极电压值,改变u。
值,可改变触发延迟角o。
这种触发形式也存在许多缺点,如:在温度变化和交流电压幅值波动时,触发延迟角(不稳定;改变交流电压u。
值来调节。
的变化范围较小(0’《。
《90‘),精度低徊l/dc不能太大等。
(3)脉冲信号脉冲信号如图6.1(d)·(h)所示,其中(d)为尖脉冲;(e)为宽脉冲;(f)为脉冲列;(s)为双脉冲;(h)为强触发脉冲。
在晶闸管门极触发电路中使用脉冲信号,不仅便于控制脉冲出现时刻,降低晶闸管门极功耗,还可以通过变压器的双绕组或多绕组输出,实现信号的隔离输出。
因此,触发信号多采用脉冲形式。
第118页6.1.2 晶闸管对门极触发电路的要求晶闸管门极触发信号由触发电路提供,由于晶闸管电路种类很多,如整流、逆变、交流调压、变频等;所带负载的性质也不相同,如电阻性负载、电阻—电感性负载、反电势负载等。
仅管不同的情况对触发电路的要求也不同,但其基本要求却是相同的,具体如下:(1)触发信号应有足够的功率(电压、电流)这些指标在产品样本中均已标明,由于晶闸管元件门极参数分散性大,且触发电压、电流值受温度影响会发生变化。
电路电子——晶闸管的触发电路设计

脉冲前沿由V4导通时刻确定,脉冲宽度与反向充电回路时间 常数R11C3有关。 电路的触发脉冲由脉冲变压器TP二次侧输出,其一次绕组接 在V8集电极电路中。
二、同步电压为锯齿波的触发电路
4) 双窄脉冲形成环节 内双脉冲电路
V5、V6构成“或”门
当V5、V6都导通时,V7、V8都截止,没有脉冲输出。 只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。
二、同步电压为锯齿波的触发电路
2) 锯齿波的形成和脉冲移相环节
锯齿波电压形成的方案较多,如采用自举式电路、恒流 源电路等;本电路采用恒流源电路。
图8 同步电压为锯齿波的触发电路
恒流源电路方案,由V1、V2、V3和C2等元件组成
V1、VS、RP2和R3为一恒流源电路
二、同步电压为锯齿波的触发电路
锯齿波是由开关V2管来控制的。
1. 电源接通:E通过Re对C充电, 时间常数为ReC
2. Uc增大,达到 UP ,单结晶体管 导通,C通过R1放电
3. Uc减少,达到Uv,单结晶体管截
止,uR1 下降,接近于零
4. 重复充放电过程
图5 单结晶体管自激振荡电路
Re的值不能太大或太小,满足电路振荡的Re的取值范围
一、 单结晶体管触发电路
图6 晶体管同步触发电路
一、 单结晶管由第一个脉 冲触发导通,后面的脉冲不 起作用。
改充电变速Re度的,大达小到,调可节改α变角电的容目
的。 削波的目的:增大移相范围,
使输出的触发脉冲的幅度基本 一样。
一、 单结晶体管触发电路
实际应用中,常用晶体管V2代替电位器Re,以便实现
第一个脉冲由本相触发单元的uco对应的控制角 产生。
晶闸管触发电路的要求

晶闸管触发电路的要求
晶闸管触发电路是通过晶闸管的特性来控制受波形的变化。
它的特点是由晶闸管的两
极的施加电压和电流的变化而实现波形的变化,它的优点是可以稳定地控制触发信号的改变,特别适用于高频应用,精度和稳定性都比较高。
第一,晶闸管触发电路要求有足够大的触发电压,并且保持足够平稳,最好能保持高
于1V以上,这样能确保正常的工作,用以满足较高的质量要求。
第二,晶闸管触发电路的反应速度也是非常重要的,需要确保其能在最短的时间内作
出正确的反应,否则会影响通信设备的正常工作,在实际应用过程中,其反应速度要小于
5微秒。
第三,晶闸管触发电路的触发电流也有要求,通常情况下,它的触发电流应该保持在
1mA以上,这样可以确保其能够得到足够强劲的触发信号,其中涉及到晶闸管的触发电压
和电流,通常都要求稳定可靠。
第四,晶闸管触发电路的波形要求也是非常重要的,其中的正脉冲应该要能达到一定
的高度,而且波形的曲线稳定性也要能够达到规定的一定的标准,晶闸管的波形要求可以
保持0.2V ≤ U ≤ 30V,如此才能确保晶闸管的正常工作。
最后,也最重要的是晶闸管触发电路的安全性,开关电源从PCB板中,气体绝缘作用,防止元器件被潮湿环境所损坏,以确保元器件能正常运转,保证电路的稳定性。
总之,晶闸管触发电路作为精密控制电路,具有良好的性能,但是在使用时还是要控
制好它的参数,确保其能满足要求,以保证系统的正常工作。
晶闸管触发电路原理

晶闸管触发电路原理
晶闸管触发电路是一种用来控制晶闸管导通或关断的电路。
晶闸管是一种双电极四层结构的半导体器件,当控制电压达到一定值时,晶闸管将导通,形成低电压通道,允许大电流通过。
而当控制电压低于一定值时,晶闸管会关断,形成高电压阻断状态。
晶闸管的触发电路一般由两部分组成:触发脉冲发生器和触发脉冲放大器。
触发脉冲发生器负责产生控制信号,而触发脉冲放大器则负责放大触发信号,使之能够控制晶闸管的导通或关断。
触发脉冲发生器通常是利用电容和电感等元件来形成一个振荡电路,产生临时性的高幅度脉冲信号。
这个脉冲信号可以通过电压调节器进行调节,以确保触发脉冲的幅度和宽度符合晶闸管的要求。
触发脉冲放大器接收触发脉冲发生器产生的脉冲信号,并将其放大到足以触发晶闸管的电压级别。
这个放大过程中通常会使用放大电路,如放大器或变压器等。
当触发脉冲传递到晶闸管上时,它会改变晶闸管的电特性,从而实现导通或关断。
触发脉冲的幅度、宽度和频率等参数决定了晶闸管的导通和关断速度以及电流大小。
总而言之,晶闸管触发电路是利用触发脉冲发生器和触发脉冲
放大器,通过产生和放大脉冲信号来控制晶闸管的导通或关断,实现对电流的控制。
晶闸管的触发电路原理

晶闸管的触发电路原理
晶闸管(thyristor)是一种半导体器件,具有双向导电性能,在电力电子中常用作开关装置。
为了控制晶闸管的导通,需要使用一个触发电路。
触发电路的主要原理是根据输入信号的变化来控制晶闸管的导通。
一种常见的触发电路是基于脉冲变压器的设计。
该电路主要由一个变压器、一个电容器和一个电阻器组成。
当输入信号为正半周时,变压器将电压放大到足够高的水平,这使得电容器能够充电。
当电容器充电达到足够的电压时,晶闸管将被触发并导通。
当输入信号为负半周时,晶闸管将被阻断并停止导通。
另一种常见的触发电路是基于光耦合器的设计。
该电路使用光耦合器将输入信号隔离,使得输入信号可以与晶闸管的控制电源完全独立。
当输入信号为正半周时,光耦合器将导通并激活晶闸管。
当输入信号为负半周时,光耦合器将阻断并切断晶闸管的控制电源。
除了上述两种触发电路,还有其他一些设计,如电流触发电路和电压触发电路。
不同的触发电路适用于不同的应用场景,可以根据需求选择合适的触发电路。
晶闸管对触发电路的要求

扬州工业职业技术学院 电子系 范丛山
晶闸管是单向可控器件,晶闸管承受正 向阳极电压的同时,门极还要加上适当的触 发电压才能由阻断转入导通状态。改变触发 脉冲的输出的时间,即可以改变控制角的大 小,从而达到改变输出直流平均电压的目的。
一、晶闸管对触发电路的要求 触发信号可以使交流、直流或脉冲,脉冲信号 只能在门极为正、阴极为负时起作用。触发信号的 电压波形有多种形式。 1、触发信号应有足够的功率(电压与电流) 触发电路输出的触发电压和触发电流,应大于 晶闸管的门极触发电压和门极触发电流。在触发信 号为脉冲形式时,只要触发功率不超过规定值,触 发电压、电流的幅值在短时间内可大大超过额定值。
(四)双脉冲形成环节 对于三相全控桥整流电路要求触发脉冲必须采 用宽脉冲或双脉冲,此电路可实现双脉冲输出,相 邻两个脉冲的间隔为60。
(五)强触发及脉冲封锁环节 晶闸管采用强触发可缩短开通时间,提高晶闸 管承受电流上升率的能力,有利于改善串并联元件 的动态均压与均流,增加触发可靠性。
五、触发脉冲与主电路电压的同步
(一)同步环节 同步环节由同步变压器Ts、晶体管VT2、VD1、VD2、 R1以及C1等组成。在锯齿波触发电路中,同步就是要求锯 齿波的频率与主回路电源频率相同。锯齿波是由开关管VT2 控制的,VT2有截止变为导通期间产生锯齿波,VT2截止持 续时间就是锯齿波的宽度,VT2开关的频率就是锯齿波的频 率。要使触发脉冲与主回路电源同步,必须使VT2开关频率 与主回路电源频率达到同步。
2、触发脉冲要具有一定的宽度,前沿要陡 触发脉冲的宽度一般应保证晶闸管阳极电流在 触发脉冲消失前达到擎住电流,使晶闸管能保持通 态,这是最小的允许宽度。 3、触发脉冲的移相范围应能满足变流装置的要求 触发脉冲的移相范围与主电路形式、负载性质 及变流装置的用途有关。如三相半波电阻性负载时, 要求移相范围为150,而三相桥式全控电阻性负载 要求移相范围为120。 4、触发脉冲与主回路电源电压必须同步 为了使晶闸管在每一周期都能重复在相同的相位 上触发,保证变流装置的品质和可靠性,触发电路 的同步电压与主回路电源电压必须保持某种固定的 相位关系。
晶闸管的触发信号

晶闸管的触发信号晶闸管是一种常用的电子器件,它能够控制高电压和高电流的通断,被广泛应用于各种电力电子设备中。
而晶闸管的触发信号则是控制晶闸管通断状态的关键。
晶闸管的触发信号是指用来触发晶闸管的控制电压或电流信号。
触发信号的作用是改变晶闸管的导通和关断状态,实现控制电流的目的。
晶闸管的触发信号可以分为正触发和负触发两种。
正触发是指当触发信号的电流或电压达到一定阈值时,晶闸管开始导通。
而负触发则是指当触发信号的电流或电压达到一定阈值时,晶闸管开始关断。
晶闸管的触发信号通常由外部电路提供,可以是脉冲信号、直流信号或交流信号。
在实际应用中,触发信号的波形对晶闸管的控制具有重要影响。
波形的上升时间、下降时间、脉宽等参数都会影响晶闸管的导通和关断时间,进而影响到整个电路的性能。
因此,在设计触发电路时,需要根据具体的应用需求选择合适的波形参数。
触发信号的控制电路一般由触发器、驱动电路和触发信号源组成。
触发器负责产生触发信号,驱动电路负责放大触发信号并提供足够的电流或电压给晶闸管,触发信号源则是触发信号的来源。
常见的触发信号源有脉冲发生器、函数发生器、微处理器等。
脉冲发生器可以产生具有特定频率和占空比的脉冲信号,函数发生器可以产生各种形状的波形信号,而微处理器可以根据程序控制产生各种复杂的触发信号。
在实际应用中,触发信号的稳定性和精度也是需要考虑的因素。
触发信号的稳定性直接影响到晶闸管的工作可靠性,而触发信号的精度则影响到整个电路的性能。
因此,需要采取一些措施来提高触发信号的稳定性和精度,如使用稳压电源、滤波电路等。
触发信号的幅度也是需要注意的。
触发信号的幅度必须满足晶闸管的触发要求,过低的触发信号可能导致晶闸管无法导通,而过高的触发信号则可能损坏晶闸管。
因此,在设计触发电路时,需要根据晶闸管的参数选择合适的触发信号幅度。
晶闸管的触发信号是控制晶闸管通断状态的关键,它可以通过正触发或负触发来控制晶闸管的导通和关断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③ 饱和区:当uEB1下降到谷点以后,iE增加,uEB1
也有所增加,但变化较小,器件进入饱和区,当
uEB1<Uv时管子重新截止。
单结晶体管的特点
• (4)单结晶体管的特点 • 1)单结晶体管发射极电压等于峰点电压时,单结 晶体管导通,导通之后,当发射极电压小于谷点 电压时,管子由导通变为截止,谷点电压在2-5v 之间。 • 2)单结晶体管的发射极与第一基极的电阻RB1是 一个阻值随发射极电流增大而减小的电阻, RB2 则是一个与发射极电流无关的电阻。 • 3)不同的晶体管有不同的UP、UV,若电源电压不 同,二者也会改变,在触发电路中常选用UV大一 些或IV大一些的单结晶体管。
单结管结构及等效电路
单结管的伏安特性
(3) 单结管的伏安特性 用实验方法可以得出单结管的伏安特性, 如图10.29所示。
谷点
峰点
图10.29 单结晶体管的特性
单结管的伏安特性
图中: U A
Rb1 V Rb1 Rb 2 BB
VBB
单结管的伏安特性分为三个区:
① 截止区:当uEB1<UP时,PN结反偏,单结管截止。
图10.33(a) 单结晶体管同步触发器电路图
电路中各点波形如图10.33(b)所示。
图10.33(b) 单结晶体管同步触发器波形图
晶体管触发电路
• 4、晶体管触发电路 • 对要求触发功率大,输出电压与控制电压 线性好的晶闸管整流电路,常采用由晶体 管组成的触发电路。常见的有同步电压为 锯齿波的晶体管触发电路。 • 见P237图7-41 • 特点: 移相范围大,输出电压和电流线性好, 适用于大中容量的晶闸管。
• 2、单结晶体管振荡电路
E R1
当电源接通时电源通过R对C充电,E点电位逐渐升高, 当上升到up时,单结管导通,发射极电流突然增大, 电容C通过发射极、第一基极、电阻R1放电,由于R1 很小,故放电速度快,电容两端电压下降很快,uO下 降很快,当下降到单结晶体管的谷点电压,单结晶体管 截止,输出电流、电压为0。接着电源又重新开始对C 充电,重复以上过程。
7-7晶闸管的触发电路
• 教学要求: • 1、掌握单结晶体管触发电路的工作原理 • 2、熟悉晶体管触发电路的工作原理
7-7晶闸管的触发电路
• 一、触发电路:为必须与晶闸管阳极电压同步, 以保证晶闸管在每一周期的同一时刻触发。 (2)触发电压应满足主电路移相范围的要求, 移相范围即主电路导通角的变化范围。
单结晶体管振荡电路
• 因此,在电容器两端得到锯齿波,在输出端得 到脉冲尖顶波。 • 调整RC可以调整电容充放电速度,使输出波形 前移或移,从而控制晶闸管的触发时刻。RC乘 积较大时,后移。
单结晶体管触发电路
• 3、单结晶体管触发电路 • 由于每半个周期内第一个脉冲将晶体管触发后, 后面的脉冲均无作用,因此只要改变每半周第一 个脉冲产生的时间即改变了控制角α的大小,在实 际中可利用改变充电电阻R的方法来实现改变控 制角从而实现移相的目的。 • 特点:电路简单,调试方便,脉冲前沿陡,抗干 扰能力强,但输出功率和移相范围小,脉冲较窄, 多用中、小容量晶闸管的单相可控整流。
触发电路的要求
• (3)触发脉冲的前沿要陡,以保证触发时 刻的准确,宽度要满足一定的要求,以保 证可靠触发。 • (4)具有一定的抗干扰能力。 • (5)触发电压应有足够的电压和功率,电 压幅度一般4-10v。
触发电路
• 2、触发脉冲的输出方式:直接输出和脉冲 变压器输出。 • 3、触发电路的种类:单结晶体管触发电路 和晶体管触发电路。
单结晶体管触发电路
二、单结晶体管触发电路 1、单结晶体管 (1) 外形及符号 图10.27所示为单结晶体管的外形图及电路符号。
b2 e e b2 b1 b2 e b1 e b2 b 1 (a ) (b ) b1
图10.27 单结管的外形、符号图
(2) 单结管的结构 单结晶体管的结构及等效电路如图所示。 单结晶体管又称为双基极二极管,有一个PN结, 一个发射极和两个基极。