辽宁省各市2012年中考数学分类解析 专题8:平面几何基础

合集下载

2012年中考数学分类解析(159套63专题)专题53_图形的平移变换

2012年中考数学分类解析(159套63专题)专题53_图形的平移变换

2012年全国中考数学试题分类解析汇编(159套63专题)专题53:图形的平移变换一、选择题1. (2012陕西省3分)在平面直角坐标系中,将抛物线2=--向上(下)或向左(右)y x x6平移了m个单位,使平移后的抛物线恰好经过原点,则m的最小值为【】A.1 B.2 C.3 D.6【答案】B。

【考点】二次函数图象与平移变换【分析】计算出函数与x轴、y轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向:当x=0时,y=-6,故函数与y轴交于C(0,-6),当y=0时,x2-x-6=0,解得x=-2或x=3,即A(-2,0),B(3,0)。

由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2。

故选B。

2. (2012广东广州3分)将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为【】A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【答案】A。

【考点】二次函数图象与平移变换。

【分析】根据平移变化的规律,左右平移只改变横坐标,左减右加。

上下平移只改变纵坐标,下减上加。

因此,将二次函数y=x2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x2﹣1。

故选A。

3. (2012浙江义乌3分)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为【】A.6 B.8 C.10 D.12【答案】C。

【考点】平移的性质。

【分析】根据题意,将周长为8个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC。

又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10。

故选C。

4. (2012浙江绍兴4分)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是【】A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位【答案】B。

(统编版)2020年中考数学试题分项版解析汇编第期专题平面几何基础含解析0

(统编版)2020年中考数学试题分项版解析汇编第期专题平面几何基础含解析0

专题08 平面几何基础一、选择题1.(2017四川省南充市)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°【答案】B.【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.2.(2017四川省南充市)如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B.考点:1.圆锥的计算;2.点、线、面、体.3.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.4.(2017四川省达州市)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于()A.50°B.55°C.60°D.65°【答案】B.【解析】试题分析:如图所示:由三角形的外角性质得:∠3=∠1+30°=55°,∵a∥b,∴∠2=∠3=55°;故选B.考点:平行线的性质.5.(2017四川省达州市)下列命题是真命题的是( ) A .若一组数据是1,2,3,4,5,则它的方差是3 B .若分式方程()()41111mx x x -=+--有增根,则它的增根是1 C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形 D .若一个角的两边分别与另一个角的两边平行,则这两个角相等 【答案】C . 【解析】试题分析:A .若一组数据是1,2,3,4,5,则它的中位数是3,故错误,是假命题; B .若分式方程()()41111mx x x -=+--有增根,则它的增根是1或﹣1,故错误,是假命题; C .对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形,正确,是真命题; D .若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题. 故选C .考点:命题与定理.6.(2017四川省达州市)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )A .2017πB .2034πC .3024πD .3026π 【答案】D . 【解析】试题分析:∵AB =4,BC =3,∴AC =BD =5,转动一次A 的路线长是:904180π⨯ =2π,转动第二次的路线长是:905180π⨯ =52π,转动第三次的路线长是:903180π⨯ =32π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A 转动四次经过的路线长为:52π+32π+2π=6π,∵2017÷4=504…1,∴顶点A 转动四次经过的路线长为:6π×504+2π=3026π,故选D .考点:1.轨迹;2.矩形的性质;3.旋转的性质;4.规律型;5.综合题.7.(2017山东省枣庄市)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A.考点:平行线的性质.8.(2017山西省)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【答案】D.【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.9.(2017山西省)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨 【答案】C .考点:科学记数法—表示较大的数.10.(2017广东省)已知∠A =70°,则∠A 的补角为( )A .110°B .70°C .30°D .20° 【答案】A . 【解析】试题分析:∵∠A =70°,∴∠A 的补角为110°,故选A . 考点:余角和补角.11.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 【答案】D . 【解析】试题分析:根据图中尺规作图的痕迹,可得∠DAE =∠B ,故A 选项正确,∴AE ∥BC ,故C 选项正确,∴∠EAC =∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.考点:1.作图—复杂作图;2.平行线的判定与性质;3.三角形的外角性质.12.(2017河北省)用量角器测得∠MON的度数,下列操作正确的是()A. B.C.D.【答案】C.【解析】试题分析:量角器的圆心一定要与O重合,故选C.考点:角的概念.13.(2017河北省)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【答案】D.考点:方向角.14.(2017湖北省襄阳市)如图,BD∥AC,BE平分∠AB D,交AC于点E.若∠A=50°,则∠1的度数为()A.65°B.60°C.55°D.50°【答案】A.【解析】试题分析:∵BD∥AC,∠A=50°,∴∠ABD=130°,又∵BE平分∠ABD,∴∠1=12∠ABD=65°,故选A.考点:平行线的性质.二、填空题15.(2017四川省广安市)如图,若∠1+∠2=180°,∠3=110°,则∠4= .【答案】110°.【解析】试题分析:如图,∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案为:110°.考点:平行线的判定与性质.16.(2017山东省济宁市)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.【答案】a +b =0.考点:1.作图—基本作图;2.坐标与图形性质;3.点到直线的距离.17.(2017江苏省盐城市)如图,在边长为1的小正方形网格中,将△ABC 绕某点旋转到△A 'B 'C '的位置,则点B 运动的最短路径长为 .【答案】132π. 【解析】试题分析:如图作线段AA ′、CC ′的垂直平分线相交于点P ,点P 即为旋转中心,观察图象可知,旋转角为90°(逆时针旋转)时B 运动的路径长最短,PB =2223+=13,∴B 运动的最短路径长为=9013π⋅=132π,故答案为:132π.考点:1.轨迹;2.旋转的性质.18.(2017浙江省台州市)如图,已知直线a∥b,∠1=70°,则∠2= .【答案】110°.考点:平行线的性质.三、解答题19.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【答案】(1)5;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.【解析】试题分析:(1)根据平行线的性质以及角平分线的性质得出∠OEC=∠OCE,∠OFC=∠OCF,证出OE=OC=OF,∠ECF=90°,由勾股定理求出EF,即可得出答案;(2)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:连接AE 、AF ,如图所示:当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形.考点:1.矩形的判定;2.平行线的性质;3.等腰三角形的判定与性质;4.探究型;5.动点型. 20.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)153+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案.试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC o =3=93,AB =2BC =18,∠ABC =60°,∴C △ABC =9+9393O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD =30°,在Rt △O 1BD 中,∠O 1DB =90°,∠O 1BD =30°,∴BD =1tan 30O D o 33OO 1=9﹣2﹣3﹣23O 1D =OE =2,O 1D ⊥BC ,OE ⊥BC ,∴O 1D ∥OE ,且O 1D =OE ,∴四边形OEDO 1为平行四边形,∵∠OED =90°,∴四边形OEDO 1为矩形,同理四边形O 1O 2HG 、四边形OO 2IF 、四边形OECF 为矩形,又OE =OF ,∴四边形OECF 为正方形,∵∠O 1GH =∠CDO 1=90°,∠ABC =60°,∴∠GO 1D =120°,又∵∠FO 1D =∠O 2O 1G =90°,∴∠OO 1O 2=360°﹣90°﹣90°=60°=∠ABC ,同理,∠O 1OO 2=90°,∴△OO 1O 2∽△CBA ,∴1212OO O ABC C O O C BC ∆∆=127232793C -=+12OO O C ∆ =153+O 运动的路径长为153考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.21.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(2)111p-+.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB =m ,则AD =m +2,∵△ABD 的面积是5,∴12AD •OB =5,∴12(m +2)•m =5,即22100m m +-= , 解得111m =-+或111m =--(舍去),∵∠BOD =90°,∴点B 的运动路径长为:()111121114p p -+创-+=. 考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.22.(2017重庆市B 卷)如图,直线EF ∥GH ,点A 在EF 上,AC 交GH 于点B ,若∠FAC =72°,∠ACD =58°,点D 在GH 上,求∠BDC 的度数.【答案】50°.【解析】试题分析:由平行线的性质求出∠ABD =108°,由三角形的外角性质得出∠ABD =∠ACD +∠BDC ,即可求出∠BDC 的度数.试题解析:∵EF ∥GH ,∴∠ABD +∠FAC =180°,∴∠ABD =180°﹣72°=108°,∵∠ABD =∠ACD +∠BDC ,∴∠BDC =∠ABD ﹣∠ACD =108°﹣58°=50°.考点:平行线的性质.。

江苏省连云港市2001-2012年中考数学试题分类解析 专题08 平面几何基础

江苏省连云港市2001-2012年中考数学试题分类解析 专题08 平面几何基础

[中考12年]连云港市2001-2012年中考数学试题分类解析专题08平面几何基础一、选择题1. (2001年江苏连云港3分)在比例尺1∶n的某市地图上,规划出一块长5cm、宽2cm的矩形工业园区,则该园区的实际面积是【】(单位:平方米)(A)n1000(B)2n1000(C)10n (D)210n2. (2001年江苏连云港3分)下列四个命题中的真命题是【】(A)同位角相等,则它们的平分线互相垂直(B)内错角相等,则它们的平分线互相垂直(C)同旁内角互补,则它们的平分线互相垂直(D)同旁内角相等,则它们的平分线互相垂直3. (2002年江苏连云港3分)下面给出四个命题,其中假命题是【】A.两条直线被第三直线所截,同位角相等B .不相等的两角不是对顶点C .平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧D .以已知线段AB 为弦的圆的圆心的轨迹是线段AB 的垂直平分线4. (2004年江苏连云港3分)下列图案中,既是中心对称又是轴对称的图案是【 】A .B .C .D .5. (2005年江苏连云港3分)如图,直线1l ∥2l ,3l ⊥4l .有三个命题:①︒=∠+∠9031;②︒=∠+∠9032;③42∠=∠.下列说法中,正确的是【 】(A )只有①正确 (B )只有②正确 (C )①和③正确 (D )①②③都正确6. (2006年江苏连云港3分)下列图案中,不是..中心对称图形的是【】A、 B、 C、 D、7. (2006年江苏连云港3分)多边形的内角和不可能...为【】A、180°B、680°C、1080°D、1980°8. (2008年江苏连云港3分)已知AC为矩形ABCD的对角线,则图中1∠一定不相等∠与2的是【】A. B. C.D.9. (2010年江苏连云港3分)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是【】A.①② B.②③ C.②④ D.①④10. (2011年江苏连云港3分)小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是【】A.B.C.D.11.(2012年江苏连云港3分)下列图案是轴对称图形的是【】A. B. C. D.12.(2012年江苏连云港3分)如图,将三角尺的直角顶点放在直线a上,a∥b,∠1=50°,∠2=60°,则∠3的度数为【】A.50° B.60° C.70° D.80°二、填空题1. (2004年江苏连云港3分)如图,两平面镜OA与OB之间的夹角为110°,光线经平面镜OA反射到平面镜OB上,再反射出去,其中∠1=∠2,则∠1的度数为▲ 度.2. (2005年江苏连云港3分)已知一个五边形的4个内角都是100,则第5个内角的度数是▲ .3. (2006年江苏连云港3分)如图,∠BAC=30°,AB=10。

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无.公共点,则这个反比例函数的表达式是 ▲ (只写出符合条件的一个即可). 【答案】5y x=(答案不唯一)。

【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。

【分析】设反比例函数的解析式为:k y x =, 联立y=2x+6-和k y x=,得k 2x+6x -=,即22x 6x+k 0-= ∵一次函数y=2x+6-与反比例函数k y x= 图象无公共点, ∴△<0,即268k 0<--(),解得k >92。

∴只要选择一个大于92的k 值即可。

如k=5,这个反比例函数的表达式是5y x=(答案不唯一)。

2. (2012广东湛江4分) 请写出一个二元一次方程组 ▲ ,使它的解是x=2y=1⎧⎨-⎩. 【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。

【考点】二元一次方程的解。

【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如: 由x +y=2+(-1)=1得方程x +y=1;由x -y=2-(-1)=3得方程x -y=3;由x +2y=2+2(-1)=0得方程x +2y=0;由2x +y=4+(-1)=3得方程2x +y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。

3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。

【考点】平行投影。

【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。

所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。

无锡新领航教育辽宁省各市2012年中考数学分类解析 专题8:平面几何基础

无锡新领航教育辽宁省各市2012年中考数学分类解析 专题8:平面几何基础

- 1 - 辽宁各市2012年中考数学试题分类解析汇编
专题8:平面几何基础
锦元数学工作室 编辑
一、选择题
1. (2012辽宁鞍山3分)下列图形是中心对称图形的是【 】
A .
B .
C .
D .
【答案】C 。

【考点】中心对称图形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,
根据中心对称图形的定义可知:只有C 选项旋转180°后能和原来的图形重合。

故选C 。

2. (2012辽宁朝阳3分)如图,C 、D 分别EA 、EB 为的中点,∠E=300,∠1=1100,则∠2的度数为【 】
A. 080
B. 090
C. 0100
D. 0110
【答案】A 。

【考点】三角形中位线定理,平行线的性质,三角形外角性质。

【分析】∵C、D 分别EA 、EB 为的中点,∴CD∥AB。

∴∠ECD=∠2。

∵∠1是△ECD 的外角,∴∠E+∠ECD=∠1。

∵∠E=300,∠1=1100,∴∠ECD=1100-300=800。

故选A 。

3. (2012辽宁朝阳3分)下列图形中,既是轴对称图形又是中心对称图形的是【 】。

最新江苏省13市中考数学试题分类解析汇编专题8:-平面几何基础

最新江苏省13市中考数学试题分类解析汇编专题8:-平面几何基础
在我们学校大约有4000多名学生,其中女生约占90%以上。按每十人一件饰品计算,大概需要360多件。这对于开设饰品市场是很有利的。女生成为消费人群的主体。
虽然调查显示我们的创意计划有很大的发展空间,但是各种如“漂亮女生”和“碧芝”等连锁饰品店在不久的将来将对我们的创意小屋会产生很大的威胁。
【答案】700。
【考点】余角。
【分析】根据余角的定义:若两个角的和为90°,则这两个角互余,直接得出结果:900-200=700。
6.(泰州3分)如图,直线 、 被直线l所截, ∥ ,∠1=70°,则∠2=▲。
【答案】1100。
【考点】平行线的性质,平角的概念。
【分析】根据同位角相等的平行线性质和平角等于1800的概念直接得出结论: 。
【分析】根据轴对称图形和中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。可知A是中心对称图形而不是轴对称图形;B也是中心对称图形而不是轴对称图形;C既是轴对称图形又是中心对称图形,它有四条对称轴,分别是连接三个小圆线段所在的水平和竖直直线,这水平和竖直直线之间的两条角平分线;D既不是轴对称图形也不是中心对称图形。故选C。
4.(南京2分)如图,过正五边形ABCDE的顶点A作直线l∥CD,则
∠1=▲.
【答案】360。
【考点】n边形的内角和。
【分析】利用n边形的内角和定理,直接得出正五边形的内角和是(5-2)×180°=5400,再除以5即得每一个内角等于108°,则∠1=(180°-108°)÷2=36°。
5.(南通3分)已知 =20°,则 的余角等于▲.
相同点:
①;
②.[来源:学*科*网]
不同点:
① ;

浙江省温州市2001-2012年中考数学试题分类解析 专题8 平面几何基础

浙江省温州市2001-2012年中考数学试题分类解析 专题8 平面几何基础

2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题8:平面几何基础一、选择题1. (2001年浙江温州3分)如图,正方体ABCD-A1B1C1D1中,与平面A1C1平行的平面是【】A.平面AB1 B.平面AC C.平面A1D D.平面C1D【答案】B。

【考点】认识立体图形。

【分析】根据正方体的概念和特性,相对的面互相平行,因此,和平面A1C1相对的面是平面AC,那么这两个面平行。

故选B。

2. (2002年浙江温州4分)如图,立方体 ABCD—A1B1C1D1中,与棱AD垂直的平面是【】A.平面A1B,平面CD1 B.平面A1D,平面BC1C.平面AC,平面A1C1 D.平面BD,平面AD1【答案】A。

【考点】认识立体图形。

【分析】根据正方体的概念和特性,与棱AD垂直的平面是:平面A1B和平面CD1。

故选A。

3. (2003年浙江温州4分)如图,长方体ABCD-A1B1C1D1中,与平面AC平行的平面是【】A.平面AD1 B.平面A1C1 C.平面BC l D.平面A1B【答案】B。

【考点】认识立体图形。

【分析】根据正方体的概念和特性,相对的面互相平行,因此,和平面AC相对的面是平面A1C1,那么这两个面平行。

故选B。

4. (2004年浙江温州4分)下面给出的四条线段中,最长的是【】(A) a (B) b (C) c (D) d【答案】D。

【考点】比较线段的长短。

【分析】通过观察比较:d线段长度最长。

故选D。

5. (2004年浙江温州4分)高斯用直尺和圆规作出了正十七边形,如图, 正十七边形的中心角∠AOB的度数近似于【】(A) 11° (B) 17° (C) 21° (D) 25°【答案】C。

【考点】正多边形和圆。

【分析】正多边形一定有外接圆,且每条边所对的中心角相等,因此360°÷17≈21°。

故选C。

6. (2005年浙江温州4分)如图,正方体ABCD-A1B1C1D1中,与平面A1C1平行的平面是【】A、平面AB1B、平面ACC、平面A1DD、平面C1D【答案】B。

2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合

2012年全国中考数学试题分类解析汇编(159套63专题)专题60:代数几何综合一、选择题1. (2012浙江义乌3分)一个正方形的面积是15,估计它的边长大小在【 】A .2与3之间B .3与4之间C .4与5之间D .5与6之间【答案】B 。

【考点】算术平方根,估算无理数的大小。

【分析】∵一个正方形的面积是15,∵9<15<16<4。

故选B 。

2. (2012浙江杭州3分)已知抛物线()3y k x 1x k ⎛⎫=+ ⎪⎝⎭-与x 轴交于点A ,B ,与y 轴交于点C ,则能使△ABC 为等腰三角形的抛物线的条数是【 】A .2B .3C .4D .5【答案】B 。

【考点】抛物线与x 轴的交点。

【分析】根据抛物线的解析式可得C (0,﹣3),再表示出抛物线与x 轴的两个交点的横坐标,再根据ABC 是等腰三角形分三种情况讨论,求得k 的值,即可求出答案:根据题意,得C (0,﹣3).令y=0,则()3k x 1x 0k ⎛⎫+= ⎪⎝⎭-,解得x=﹣1或x=3k 。

设A 点的坐标为(﹣1,0),则B (3k,0), ①当AC=BC 时,OA=OB=1,B 点的坐标为(1,0),∴3k =1,k=3; ②当AC=AB 时,点B 在点A 的右面时,∵AC =B 1,0),∴31,k k ==③当AC=AB 时,点B 在点A 的左面时,B 0),∴3k k == 。

∴能使△ABC 为等腰三角形的抛物线的条数是3条。

故选B 。

3. (2012浙江湖州3分)如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于【 】A C .3 D .4 【答案】A 。

【考点】二次函数的性质,等腰三角形的性质,勾股定理,相似三角形的判定和性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁各市2012年中考数学试题分类解析汇编专题8:平面几何基础 锦元数学工作室 编辑一、选择题1. (2012辽宁鞍山3分)下列图形是中心对称图形的是【 】A .B .C .D .【答案】C 。

【考点】中心对称图形。

【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,根据中心对称图形的定义可知:只有C 选项旋转180°后能和原来的图形重合。

故选C 。

2. (2012辽宁朝阳3分)如图,C 、D 分别EA 、EB 为的中点,∠E=300,∠1=1100,则∠2的度数为【 】A. 080B. 090C. 0100D. 0110 【答案】A 。

【考点】三角形中位线定理,平行线的性质,三角形外角性质。

【分析】∵C、D 分别EA 、EB 为的中点,∴CD∥AB。

∴∠ECD=∠2。

∵∠1是△ECD 的外角,∴∠E+∠ECD=∠1。

∵∠E=300,∠1=1100,∴∠ECD=1100-300=800。

故选A 。

3. (2012辽宁朝阳3分)下列图形中,既是轴对称图形又是中心对称图形的是【 】【答案】A。

【考点】轴对称图形和中心对称图形。

【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。

因此,A. 既是轴对称图形又是中心对称图形,选项正确;B. 是轴对称图形不是中心对称图形,选项错误;C. 是中心对称图形不是轴对称图形,选项错误;D. 是轴对称图形不是中心对称图形,选项错误。

故选A。

4. (2012辽宁阜新3分)下列交通标志是轴对称图形的是【】A. B. C. D.【答案】A。

【考点】轴对称图形。

【分析】根据轴对称图形与,轴对称图形两部分沿对称轴折叠后可重合。

因此,只有选项A 符合。

故选择A。

5. (2012辽宁锦州3分)下列各图,不是轴对称图形的是【】【答案】A。

【考点】轴对称图形。

【分析】根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,因此,选项A 不是轴对称图形。

故选A。

6. (2012辽宁锦州3分)下列说法正确的是【】A.同位角相等B.梯形对角线相等C.等腰三角形两腰上的高相等D.对角线相等且垂直的四边形是正方形【答案】C。

【考点】同位角、梯形、等腰三角形的性质,正方形的判定。

【分析】根据同位角、梯形、等腰三角形的性质和正方形的判定逐一作出判断:A.两直线平行,被第三条直线所截,同位角才相等,说法错误;B.等腰梯形的对角线才相等,说法错误;C.根据等腰三角形等边对等角的性质,两腰上的高与底边构成的两直角三角形全等(用AAS),从而得出等腰三角形两腰上的高相等的结论,说法正确;D.对角线相等且垂直的四边形是不一定是正方形,还要对角线互相平分,说法错误。

故选C。

7. (2012辽宁营口3分)若一个多边形的每个外角都等于60,则它的内角和等于【】(A)180(B)1080(D)540720(C)【答案】B。

【考点】多边形的外角和内角性质。

【分析】∵多边形的外角和为3600,∴n600=3600,解得n=6.∴它的内角和=(6-2)×1800=7200。

故选B。

二、填空题1. (2012辽宁鞍山3分)如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是▲ .【答案】25°。

【考点】平行线的性质,直角三角形两锐角的关系。

【分析】∵直线a∥b,∠2=65°,∴∠FDE=∠2=65°。

∵EF⊥CD于点F,∴∠DFE=90°。

∴∠1=90°-∠FDE=90°-65°=25°。

2. (2012辽宁朝阳3分)下列说法中正确的序号有▲ 。

①在Rt△ABC中,∠C=900,CD为AB边上的中线,且CD=2,则AB=4;②八边形的内角和度数为10800;③2、3、4、3这组数据的方差为0.5;④分式方程13x1=x x的解为2x=3;⑤已知菱形的一个内角为600,一条对角线为,则另一对角线为2。

3. (2012辽宁丹东3分)如图,直线a∥b,∠1=60°,则∠2=▲ °.【答案】120。

【考点】平行线的性质,补角的性质。

【分析】如图,先根据平行线的性质求出∠3的度数,再由邻补角的性质即可得出∠2的度数:∵直线a∥b,∠1=60°,∴∠3=∠1=60°。

∴∠2=180°-∠3=180°-60°=120°。

4. (2012辽宁阜新3分)如图,一块直角三角板的两个顶点分别在直尺的对边上.若∠1=30°,那么∠2= ▲ 度.【答案】60。

【考点】平行线的性质,平角的定义。

【分析】如图,由题意得:a∥b,∠ACB=90°。

∵∠1=30°,∴∠3=180°-∠ACB -∠1=180°-90°-30°=60°。

∴∠2=∠3=60°。

5. (2012辽宁沈阳4分)五边形的内角和为 ▲ 度. 【答案】720。

【考点】多边形内角和定理。

【分析】根据多边形内角和定理直接计算:()()000n 2180=52180=720-⋅-⋅。

6. (2012辽宁铁岭3分)如图,已知∠1=∠2,∠B=40°,则∠3= ▲ .【答案】40。

【考点】平行线的判定和性质。

【分析】∵∠1=∠2,∴AB∥CE。

∴∠3=∠B。

又∵∠B=40°,∴∠3=40°。

7. (2012辽宁营口3分)如图,a 、b 、c 为三条直线,a ∥b ,若∠2=0121,则∠1=▲ .【答案】059。

【考点】平行线的性质,平角的定义。

【分析】如图,∵∠2=0121,∴∠3=00018012159-=。

∵a ∥b ,∴∠1=∠3=059。

三、解答题1. (2012辽宁鞍山8分)如图,某社区有一矩形广场ABCD ,在边AB 上的M 点和边BC 上的N 点分别有一棵景观树,为了进一步美化环境,社区欲在BD 上(点B 除外)选一点P 再种一棵景观树,使得∠MPN=90°,请在图中利用尺规作图画出点P 的位置(要求:不写已知、求证、作法和结论,保留作图痕迹).【答案】解:如图所示:点P即为所求。

【考点】作图(应用与设计作图),线段垂直平分线的性质,圆周角定理。

【分析】首先连接MN,作MN的垂直平分线交MN于O,以O为圆心,12MN长为半径画圆,交BD于点P,点P即为所求.2. (2012辽宁丹东8分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中...画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.【答案】解:(1)如图,△A1B1C1即为所求,C1(2,-2)。

(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10【考点】作图(平移和位似变换)。

【分析】(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点C1的坐标。

(2)延长BA到A2,使AA2=AB,延长BC到C2,使CC2=BC,然后连接A2C2即可,再根据平面直角坐标系写出C2点的坐标,利用△A2BC2所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解:△A2BC2的面积=6×4-12×2×6-12×2×4-12×2×4=10。

3. (2012辽宁阜新10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)(3)求∠BCC1的正切值.【答案】解:(1)画图如下:(2)由勾股定理得,OA线段OA 在旋转过程中扫过的图形为以OA 为半径,1AOA ∠为圆心角的扇形,∴(12OAA 90S 2360ππ⋅⋅==扇形。

答:线段OA 在旋转过程中扫过的图形面积为π2. (3)在Rt 1BCC ∆中,111BC 21tan BCC CC 42∠===。

答:∠BCC 1的正切值是12。

【考点】网格问题,旋转变换作图,勾股定理,扇形面积,锐角三角函数的定义。

【分析】(1)根据图形旋转的性质画出旋转后的图形即可。

(2)先根据勾股定理求出OA 的长,再根据线段OA 在旋转过程中扫过的图形为以OA 为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可。

(3)直接根据锐角三角函数的定义即可得出结论。

4. (2012辽宁锦州8分)如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A'B 'C '是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点O ;(2)直接写出△ABC 与△A′B'C'的位似比;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A'B'C'关于点 O 中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.【答案】解:(1)图中点O为所求:(2)△ABC与△A'B'C'的位似比等于2:1 。

(3)△A''B''C''为所求,A''(6,0);B''(3,-2); C''(4,-4)。

【考点】作图(位似和中心对称变换),平面直角坐标系和点的坐标。

【分析】(1)对应点连线的交点即为位似中心点。

(2)根据网格中的距离即可写出△ABC与△A′B'C'的位似比。

(3)作出△A'B'C'关于点 O中心对称的△A″B″C″,根据平面直角坐标系中的位置写出△A″B″C″各顶点的坐标。

5. (2012辽宁营口8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2-,1-)、B(1-).-,1)、C(0,2(1) 点B关于坐标原点O对称的点的坐标为__________;(2) 将△ABC绕点C顺时针旋转90,画出旋转后得到的△A1B1C;(3) 求过点B1的反比例函数的解析式.【答案】解:(1)(1,﹣1)。

(2)作图如下:(3)由(2)得B1点坐标为(3,﹣1),设过点B1的反比例函数解析式为kyx =,把点B1 (3,﹣1) 代入kyx=中,得k=﹣3 。

相关文档
最新文档