2014-2015(1)线性代数试题(B)
线性代数试题线性代数试卷及答案大全(173页大合集)

属于 对应的特征向量为 ,单位化: ,
属于 对应的特征向量为 ,单位化: ,
取 ,则有 。
八、(本题8分)证明:由
得 的特征值 ,
,
故 的最大特征值是 。
试卷2
闭卷考试时间:100分钟
一、填空题(本题15分,每小题3分)
1、若n阶行列式零元素的个数超过n(n-1)个,则行列式为。
三、(本题8分)解:从第一行开始,每行乘 后逐次往下一行加,再按最后一行展开得:
原式= 。
四、(本题12分)解:由 ,得: ,
可逆,故 ;
由于 , 。
五、(本题14分)解:(1)令 , ,
则 线性无关,故 是向量组 的一个极大无关组;
(2)由于4个3维向量 线性相关,
若 线性无关,则 可由 线性表示,与题设矛盾;
A:矩阵A必没有零行
B:矩阵A不一定是阶梯形矩阵
C:矩阵A必有零行
D:矩阵A的非零行中第一个不等于零的元素都是1
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A b)的秩都等于3,A是3×4矩阵,则▁▁▁。【A】
A:方程组有无穷多解
B:无法确定方程组是否有解
C:方程组有唯一解
D:方程组无解
试卷1
4、若 阶实方阵 , 为 阶单位矩阵,则( )。
(A) (B)
(C) (D)无法比较 与 的大小
5、设 , , , ,其中 为任意常数,则下列向量组线性相关的为( )。
(A) ( B) (C) (D)
三、(10分)计算 阶行列式 , 的主对角线上的元素都为 ,其余位置元素都为 ,且 。
四、(10分)设3阶矩阵 、 满足关系: ,且 ,求矩阵 。
B:Ax=0的基础解系中的解向量的个数不可能为n-r
2014年10月04184自学考试线性代数试题(卷)与答案

2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。
说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.23.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为 【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛2115.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错误、不填均无分、 6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值范围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。
14-15-1线代试题答案

2014-2015-1线性代数参考答案及评分标准一(每小题3分,共15分)1、32 2 、3 3 、1 4、2 5、0二(每小题3分,共15分)1 B2 B3 C4 A5 D三(5分)0321103221036666=D ……………………………………………………(2分) 40000400121011116---=…………………………………………… (2分)96-=……………………………………………………………(1分)四(10分)1-=A ,A 可逆…………………………………………………(1分) 121)(---=-=A A E A A B ……………………………………………………(4分)()⎪⎪⎪⎭⎫ ⎝⎛---→100100110010211001,E A⎪⎪⎪⎭⎫ ⎝⎛---=-1001102111A ……………………………………………………………(4分) ⎪⎪⎪⎭⎫ ⎝⎛=000000120B …………………………………………………………………(1分) 五(15分)()211111211112-=-----λλλλλλλ………………………………………………(5分) 0≠λ且2≠λ时,有唯一解…………………………………………………(2分)2=λ时()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛-----=100051103111111111133111,b A3),(2)(=<=b A R A R ,方程组无解…………………………………………(3分)0=λ时,()⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛=000000001111111111111111,b A3),(1)(<==b A R A R 方程组有无穷多解,1321+--=x x x 取2312,c x c x ==得方程组通解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=00110101121321c c x x x x ………………………(5分)六(12分)()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=0000010000712100230102301085235703273812,,,,54321a a a a a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→00000100000121002301……………………………………(4分) 向量组秩为3,……………………………………………………………(2分) 一个最大无关组为:521,,a a a ……………………………………………(2分) 21323a a a +=………………………………………………………………(2分) 2152a a a -=…………………………………………………………………(2分) 七(10分)证明:设存在数1k ,2k ,3k ,使0332211=++βββk k k ………………(2分) 将1β,2β,3β带入并整理得0)32()()2(33212321131=+-+-+-++αααk k k k k k k k …………………(2分)由1α,2α,3α线性无关知⎪⎩⎪⎨⎧=+-=-+-=+03200232132131k k k k k k k k , 因0312111201=---,故齐次线性方程组有非零解,…………………(4分)从而存在1k ,2k ,3k 不全为零,使0332211=++βββk k k ,从而1β,2β,3β是线性相关的。
自学考试-线性代数试卷及答案集合

2014年10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。
说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设3阶行列式111232221131211a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】A.1-B.0C.1D.2 2.设A 为3阶矩阵,将A 的第3行乘以21-得到单位矩阵E , 则A =【 】 A.2- B.21-C.21D.23.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出D.每个向量均可由其余向量线性表出4.设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛---=466353331A ,则下列向量中是A 的属于特征值2-的特征向量为【 】A.⎪⎪⎪⎭⎫ ⎝⎛-011B.⎪⎪⎪⎭⎫ ⎝⎛-101C.⎪⎪⎪⎭⎫ ⎝⎛201D.⎪⎪⎪⎭⎫⎝⎛211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】A.0B.1C.2D.3 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错误、不填均无分、6.设1312)(--=x x f ,则方程0)(=x f 的根是7.设矩阵⎪⎪⎭⎫⎝⎛=0210A ,则*A = 8.设A 为3阶矩阵,21-=A ,则行列式1)2(-A = 9.设矩阵⎪⎪⎭⎫ ⎝⎛=4321B ,⎪⎪⎭⎫⎝⎛=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T)2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出的表示式为11.设向量组TT T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关,则数=k12.3元齐次线性方程组⎩⎨⎧=-=+003221x x x x 的基础解系中所含解向量的个数为13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A 15.设二次型212221212),(x tx x tx x x f ++=正定, 则实数t 的取值围是三、计算题(本大题共7小题,每小题9分,共63分)16.计算4阶行列式3100131001310013=D 的值。
2014-2015(1)期末考试试卷(A)(线性代数)

考试课程:班级:姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------第1页(共1页)3、设⎪⎪⎪⎭⎫ ⎝⎛=100152321A ,⎪⎪⎪⎭⎫ ⎝⎛=141B ,利用初等变换求1-A ,并求解求矩阵方程B AX =。
4、设有向量组TTTT---=--=-==)1,1,3,4(,)3,1,0,3(,)7,1,3,2(,)0,0,1,1(4321αααα,(1)求此向量组的秩和一个极大无关组;(2)将其余向量用极大无关组线性表示。
5、设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,已知4321,,,ηηηη是它的四个解向量,且T )2,2,0,1(1=η,T )8,2,5,1(432=++ηηη,求其通解。
6、λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解?无解?有无穷多组解?7、设⎪⎪⎪⎭⎫ ⎝⎛=1010111a a A 与⎪⎪⎪⎭⎫⎝⎛=b B 10相似,求b a ,的值。
8、求一个正交变换,将二次型2123222132142),,(x x x x x x x x f -+-=化为标准形。
9、设⎪⎪⎪⎭⎫ ⎝⎛=30201t t t t A ,且A 为正定矩阵,求t 的取值范围。
三、证明题(每小题6分,共12分)1、设向量组321,,ααα线性无关,321αααβ++=,证明:1αβ-、2αβ-、3αβ-线性无关。
2、设A 是正交矩阵,证明:A 的特征值为1或1-。
考试课程:班级:姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------满分8分得分4、满分8分得分5、满分8分得分满分8分得分7、满分8分得分8、满分8分得分满分8分得分三、证明题1、满分6分得分2、满分6分得分。
2014-2015学年线性代数试题及答案

2 x1 2 x2 x3 0 1、设线性方程组 x1 x2 2 x3 0 的系数矩阵A,三阶 x x 3 x 0 3 1 2
矩阵B不等于零,且AB=0,试求 的值,并证明 B 0
1 0 1 2 B ( kE A ) 2、设矩阵 A 0 2 0 ,矩阵 ,其中k为 1 0 1
一、填空题(每小题2分,共14分) 1 A 1、设A是3阶矩阵,且 A , 是A的伴随矩阵,则: 2
(3 A) 2 A
1
16 27
T
2、设四元非齐次线性方程组 Ax b 的系数矩阵A的秩为3,且
1 (1,2,3,4) ,2 (2,3,4,5)
T
是该方程组的两个解,则
问当a,b取何值时,方程组有惟一解、无解、有无穷多解, 并求有无穷多解时的通解。
七、(满分10分) 求一正交变换 x Py ,将二次型
f ( x1, x2 , x3 ) x 4x 4x 4x1x2 4x1x3 8x2 x3
2 1 2 2 2 3
化为标准形。
八、(每小题5分,满分10分)
k 2
(k 2)
2
2 3
八、1)解:
2 2 1 A 1 2 0, B 0 1 1 3 并且 AB 0, R( A) 3, R( B) 3
A 0, 1
因为1)可知 R( B) 3, B 0
八、2)解:
1
0 1
4、设A为n阶方阵,且 A a 0 ,则 A ( A )
( A) a
n 1
1 ; ( B) ; (C ) a; ( D)a n . a
2014年4月自考线性代数真题及答案

三、计算题(本大题共7小题,每小题9分,其63分)
1 4 16.计算行列式D= 2 3
3 1 4 2
2 3 1 4
4 2 的值. 3 1
a 21 a 22 a 23 a11 a12 a13 17.设矩阵A= a 21 a 22 a 23 ,B= a11 3a 31 a12 3a 32 a13 3a 33 ,求可逆矩阵P,使得PA=B. a a 31 a 32 a 33 31 a 32 a 33 1 1 2 1 0 0 18.设矩阵A= 2 2 3 ,B= 2 1 1 ,矩阵X满足XA=B,求X. 4 3 3 1 2 2
1 +2 2 + 3 , 1 + 2 +2 3 也是该方程组的基础解系.
全国2014年4月高等教育自学考试线性代数(经管类)答案课程代码:04184
一、单项选择题 1-5 CABDC 二、填空题(本大题共10小题,每小题2分,共20分)
1 0 1 1 4 3 6.0 7.4 8. 9. 10.-2 11. , 12.1 13. 1 k (1 2 ) 14. 15.2 3 2 5 5 0 1
导出组同解方程组为
基础解系 1 (1, 1,1, 0)T , 2 (2,3, 0,1)T ,通解为 * k11 k2 2 , k1 , k2 R.
2
21.解:特征方程 | E A |
0 0
0 0 2 1 ( 2)( 2 a 2 2a 1) 0 1 a
二、填空题(本大题共10小题,每小题2分,共20分)
2 3 4 6.3阶行列式 1 5 2 第2行元素的代数余子式之和A21+A22+A23=________. 1 1 1
中国农业大学2014-2015春线性代数期末考试题解析

2014~2015学年春季学期《线性代数》课程考试试题解析一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1.设A 为3阶可逆矩阵,2A =,*A 为矩阵A 的伴随矩阵,则*A A =.解析:由于3-122,|2A A A*===,则3*5||232A A A A *=⨯==注释本题知识点:(1)1;n A A-*=(2);AA A A A E **==(3).n A A λλ=答案:322.设四元非齐次方程组=Ax b 的系数矩阵A 的秩为3,已知123,,ηηη是它的三个解向量,且1212210⎛⎫ ⎪ ⎪-= ⎪ ⎪⎝⎭ηη,30211⎛⎫⎪⎪= ⎪ ⎪⎝⎭η,则方程组=Ax b 的通解为.解析:由于(A)3R =,未知数的个数为4n =,则齐次方程的基础解系有(A)1n R -=个向量。
已知123,,ηηη是=Ax b 的三个解向量,则1212(2)2,A A A b -=-=ηηηη3A b=η123[(2)]0A --=ηηη所以,即123(2)--ξηηη所以=是非齐次方程的基础解系,方程组=Ax b 的通解为1233x k[(2)]=--+ηηηη注释本题知识点:(1)如果,(A)r m n A R ⨯=,则齐次方程的基础解系有n r -个向量;(2)如果齐次方程组的基础解系为12,,,n r ξξξ- ,非齐次方程组的特解为*η,则非齐次方程的通解为1122*n r n r x k k k ξξξη--=++++ 。
(3)如果12,ηη是非齐次方程组的解,则12ηη-是其次方程组的解。
答案:1002,0111k k ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪+ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭为任意实数.3.设向量组123,,ααα线性无关,11222331232,3,βααβααβααα=+=+=-+,则向量组123,,βββ是线性(相关、无关)的.解析:方法一,定义法计算;方法二,123123201(,,)(,,)111031βββααα⎛⎫ ⎪=- ⎪ ⎪⎝⎭令123B (,,)βββ=,123(,,)A ααα=,201111031K ⎛⎫⎪=- ⎪ ⎪⎝⎭,则B AK =;又因为0K ≠,所以(A)R(B)=R .又因为向量组123,,ααα线性无关,则(A)R(B)3==R .所以向量组123,,βββ是线性无关.注释本题知识点:(1)如果11220m m x x x βββ+++= 有非零解(仅有零解),向量组12,,,m βββ 是线性相关(无关);(2)如果12(,,,)(m)或m R m βββ<= ,向量组12,,,m βββ 是线性相关(无关)。