28.2 解直角三角形(4)(含答案)

合集下载

解直角三角形练习题及答案经典

解直角三角形练习题及答案经典

28.2 解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )(A).1(B).2 (C).22 (D).22 2、如果α是锐角,且54cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513 (B )1213 (C )1013 (D )512 4、. 以下不能构成三角形三边长的数组是 ( )(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52)5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).(A )B A sin sin = (B )B A cos sin =(C )B A tan tan = (D )B A cot cot =6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ).(A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元8、已知α为锐角,tan (90°-α)=3,则α的度数为( )(A )30° (B )45° (C )60° (D )75°9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )(A )135 (B )1312 (C )125 (D )512 10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). A B CDE ︒15020米30米(A )21 (B )22 (C )23 (D )1 二、填空题 11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =22, 则BC = w12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

2023学年人教版九年级数学下册《28-2解直角三角形及其应用》解答题专题提升训练(附答案)

2023学年人教版九年级数学下册《28-2解直角三角形及其应用》解答题专题提升训练(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》解答题专题提升训练(附答案)1.如图,在Rt△ABC中,∠ABC=90°,AB<BC.点D是AC的中点,过点D作DE⊥AC交BC于点E.延长ED至点F,使得DF=DE,连结AE、AF、CF.(1)求证:四边形AECF是菱形;(2)若=,则tan∠BCF的值为.2.如图,在△ABC中,∠B=45°,CD是AB边上的中线,过点D作DE⊥BC,垂足为点E,若CD=5,sin∠BCD=.(1)求BC的长;(2)求∠ACB的正切值.3.如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且ED=BF,连接AF,CE,AC,EF,且AC与EF相交于点O.(1)求证:四边形AFCE是平行四边形;(2)若AC平分∠F AE,AC=8,tan∠DAC=,求四边形AFCE的面积.4.在△ABC中,AC=4,BC=6,∠C为锐角且tan C=1.(1)求△ABC的面积;(2)求AB的值;(3)求cos∠ABC的值.5.如图,在△ABC中,CD是边AB上的高,AE是BC边上的中线,已知AD=8,BD=4,cos∠ABC=.(1)求高CD的长;(2)求tan∠EAB的值.6.如图,在四边形ABCD中,∠B=∠DCB=90°,AB=6,CD=2,△ABP与△PCD全等.(1)求AD的长;(2)求tan∠DAC的值.7.如图,在△ABC中,点D是BC的中点,联结AD,AB=AD,BD=4,tan C=.(1)求AB的长;(2)求点C到直线AB的距离.8.我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can),如图1,在△ABC中,AB=AC,底角∠B的邻对记作canB,这时canB==.容易知道一个角的大小与这个角的邻对值是一一对应的,根据上述角的邻对的定义,解下列问题:(1)can30°=,若canB=1,则∠B=°.(2)如图2,在△ABC中,AB=AC,canB=,S△ABC=48,求△ABC的周长.9.如图,已知在△ABC中,CD⊥AB,垂足为点D,AD=2,BD=6,tan∠B=,点E是边BC的中点.(1)求边AC的长;(2)求∠EAB的正弦值.10.已知:如图,斜坡AP的坡度为1:2.4,坡长AP为39米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)11.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)12.某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B须经过C处才能到达.测得景点B在景点A的北偏东30°方向,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.当地政府为了方便游客浏览,打算修建一条从景区A到景区B的笔直的跨湖栈道AB.(1)求点C到直线AB的距离;(2)栈道修通后,从景点A到景点B走栈道比原路线少走多少米?(结果保留整数,参考数据:≈1.414,≈1.732)13.如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E 的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.解答过程中可直接选用表格中的数据哟!科学计算器按键顺序计算结果(已取近似值)0.1560.1580.2760.28714.如图,有一宽为AB的旗子,小明在点D处测得点B的仰角为60°,随后小明沿坡度为i=1:的斜坡DE走到点E处,又测得点A的仰角为45°.已知DC=6米,DE =4米,求(1)E点到地面DC的距离;(2)旗子的宽度AB.(测角器的高度忽略不计,结果保留根号)15.如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,cosα=.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).(1)求C,D两点的高度差;(2)求居民楼的高度AB.(结果精确到1m,参考数据:≈1.7)16.如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60°的方向,从B处测得渔船在其东北方向,且测得B,P两点之间的距离为20海里.(1)求观测站A,B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B 测得渔船在北偏西15°的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C处,请问补给船能否在83分钟之内到达C处?(参考数据:≈1.73)17.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)18.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)19.随着我国科学技术的不断发展,5G移动通信技术日趋完善,某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G 基站塔AB,小明在坡脚C处测得塔顶A的仰角为45°,然后他沿坡面CB行走了50米到达D处,D处离地平面的距离为30米且在D处测得塔顶A的仰角53°.(点A、B、C、D、E均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求坡面CB的坡度;(2)求基站塔AB的高.20.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB的坡度为1:,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米).(参考数据:sin22°≈,cos22°≈,tan22°≈0.4)参考答案1.(1)证明:∵点D是AC的中点,∴AD=CD,∵DF=DE,∴四边形AECF是平行四边形,又∵DE⊥AC,∴平行四边形AECF是菱形;(2)解:∵=,∴CE=4BE,设BE=a,则CE=4a,由(1)可知,四边形AECF是菱形,∴AE=CE=4a,AE∥CF,∴∠BEA=∠BCF,∵∠ABC=90°,∴AB===a,∴tan∠BCF=tan∠BEA===,故答案为:.2.解:(1)设DE=3x,DE⊥BC,∵sin∠BCD=,∴,∴CD=5x,CE=4x,∵CD=5,∴x=1,∴CE=4,∵∠B=45°,∴DE=BE=3x,∴BC=BE+CE=7x=7.(2)过点A作AF⊥BC于点F,∴DE∥AF,∵D是AB的中点,∴DE是△ABF的中位线,∴AF=2DE,BF=2BE,由(1)可知:DE=BE=3,∴AF=6,BF=6,∴CF=BC﹣BF=1,∴tan∠ACB=6.3.(1)证明:∵在平行四边形ABCD中,AD=BC.AE∥FC,∵ED=BF,∴AD﹣ED=BC﹣BF,∴AE=FC,∴四边形AFCE是平行四边形;(2)解:∵AE∥FC,∴∠EAC=∠ACF,∴∠EAC=∠F AC,∴∠ACF=∠F AC,∴AF=FC,∵四边形AFCE是平行四边形,∴平行四边形AFCE是菱形,∴AO=AC=4,AC⊥EF,在Rt△AOE中,AO=4,tan∠DAC=,∴EO=3,∴S△AEO=AO•EO=6,S菱形=4S△AEO=24.4.解:(1)过点A作AD⊥BC,垂足为D.∴∠ADC=∠ADB=90°.∵∠C为锐角且tan C=1,∴∠C=45°=∠DAC.∴AD=DC.∵sin C=,AC=4,∴DC=AD=sin45°×AC=×4=4.∴S△ABC=BC×AD=×6×4=12.(2)∵DC=AD=4,BC=6,∴BD=BC﹣DC=2.在Rt△ABD中,AB===2.(3)在Rt△ABD中,cos∠ABC===.5.解:(1)在Rt△BCD中,∵cos∠ABC=,∴,∴BC=5,∴CD==3;(2)过点E作EF⊥AB,垂足为F,如图,∵EF⊥BD,∴CD∥EF,∵E为BC的中点,∴EF是△BCD的中位线,∴EF===,DF===2,∴AF=AD+DF=8+2=10,在Rt△AEF中,∴tan∠EAB===.6.解:(1)∵△ABP≌△PCD,∴AB=CP=6,BP=CD=2,AP=PD,∠APB=∠CDP,∵∠PCD=90°,∴∠CPD+∠CDP=90°,∴∠APB+∠CPD=90°,∴∠APD=90°,∴PD===2,∴AD===4;(2)过点D作DH∠AC于点H.在Rt△ABC中,∠B=90°,AB=6,BC=8,∴AC===10.∵AB∥CD,∴∠CAB=∠DCH,∵∠B=∠CHD=90°,∴△ABC∽△CHD,∴==,∴==,∴CH=,DH=,∴AH=AC﹣CH=10﹣=,∴tan∠DAC===.7.解:(1)∵过点A作AH⊥BD,垂足为点H.∵AB=AD,∴BH=HD=BD=2.∵点D是BC的中点,∴BD=CD=4.∴HC=HD+CD=6.∵=,∴.∵==.(2)过点C作CG⊥BA,交BA的延长线于点G.∵,∴.∴.∴点C到直线AB的距离为.8.解:(1)如图:过点A作AD⊥BC,垂足为D,∵AB=AC,AD⊥BC,∴BC=2BD,∵∠B=30°,∴BD=AB cos30°=AB,∴BC=2BD=AB,∴can30°===,若canB=1,∴canB==1,∴BC=AB,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠B=60°,故答案为:,60;(2)过点A作AD⊥BC,垂足为D,∵canB=,∴=,∴设BC=8x,AB=5x,∵AB=AC,AD⊥BC,∴BD=BC=4x,∴AD==3x,∵S△ABC=48,∴BC•AD=48,∴•8x•3x=48,∴x2=4,∴x=±2(负值舍去),∴x=2,∴AB=AC=10,BC=16,∴△ABC的周长为36,答:△ABC的周长为36.9.解:(1)∵CD⊥AB,∴△ACD、△BCD均为直角三角形.在Rt△CDB中,∵BD=6,tan∠B==,∴CD=4.在Rt△CDA中,AC===2.(2)过点E作EF⊥AB,垂足为F.∵CD⊥AB,EF⊥AB,∴CD∥EF.又∵点E是边BC的中点,∴EF是△BCD的中位线.∴DF=BF=3,EF=CD=2.∴AF=AD+DF=5.在Rt△AEF中,AE===.∴sin∠EAB===.10.解:(1)过点A作AH⊥PQ,垂足为点H,∵斜坡AP的坡度为1:2.4,∴,设AH=5a米,则PH=12a米,由勾股定理得,AP==13a(米),∴13a=39,解得a=3,∴AH=15米.答:坡顶A到地面PQ的距离为15米.(2)延长BC交PQ于点D,由题意得,CD=AH=15米,AC=DH,∵∠BPD=45°,∴PD=BD.设BC=x米,则BD=PD=(x+15)米,由(1)可得PH=12×3=36(米),∴AC=HD=PD﹣PH=x+15﹣36=(x﹣21)米,在Rt△ABC中,tan76°=≈4.01,解得x≈28,经检验,x≈28是原方程的解且符合题意.∴古塔BC的高度约为28米.11.解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.12.解:(1)过点C作CD⊥AB于点D,由题意得,∠CAD=30°,AC=600米,在Rt△ACD中,sin30°=,解得CD=300,∴点C到直线AB的距离为300米.(2)在Rt△ACD中,cos30°=,解得AD=,在Rt△BCD中,∠CBD=75°﹣30°=45°,CD=300米,∴BD=300米,BC=米,∴AB=AD+BD=(300+)米,AC+BC=(600+)米,∵600+﹣(300+)≈205(米),∴从景点A到景点B走栈道比原路线少走205米.13.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:由题意知,EG=BF=40米,EF=BG=12.88米,∠HAE=16°=∠AEG=16°,∠CAH =9°,在Rt△AEG中,tan∠AEG=,∴tan16°=,即0.287≈,∴AG=40×0.287=11.48(米),∴AB=AG+BG=11.48+12.88=24.36(米),∴HD=AB=24.36米,在Rt△ACH中,AH=BD=BF+FD=80米,tan∠CAH=,∴tan9°=,即0.158≈,∴CH=80×0.158=12.64(米),∴CD=CH+HD=12.64+24.36=37.00(米),答:综合楼的高度约是37.00米.14.解:(1)过点E作EF⊥地面DC,垂足为F,∵斜坡DE的坡度为i=1:,∴==,在Rt△EFD中,tan∠EDF==,∴∠EDF=30°,∴EF=ED=2(米),∴E点到地面DC的距离为2米;(2)过点E作EG⊥AC,垂足为G,则EF=GC=2米,EG=CF,∵=,∴DF=EF=2(米),∵DC=6米,∴EG=FC=DF+DC=(2+6)米,在Rt△AEG中,∠AEG=45°,∴AG=EG•tan45°=(2+6)米,在Rt△BDC中,∠BDC=60°,∴BC=CD•tan60°=6(米),∴AB=AG+GC﹣BC=2+6+2﹣6=(8﹣4)米,∴旗子的宽度AB为(8﹣4)米.15.解:(1)过点D作DE⊥BC,交BC的延长线于点E,∵在Rt△DCE中,cosα=,CD=15m,∴(m).∴(m).答:C,D两点的高度差为9m.(2)过点D作DF⊥AB于F,由题意可得BF=DE,DF=BE,设AF=xm,在Rt△ADF中,tan∠ADF=tan30°=,解得DF=x,在Rt△ABC中,AB=AF+FB=AF+DE=(x+9)m,BC=BE﹣CE=DF﹣CE=(x﹣12)m,tan60°==,解得,经检验,是原方程的解且符合题意,∴AB=++9≈24(m).答:居民楼的高度AB约为24m.16.解:(1)过点P作PD⊥AB于D点,∴∠BDP=∠ADP=90°,在Rt△PBD中,∠PBD=90°﹣45°=45°,BP=20海里,∴DP=BP•sin45°=20×=10(海里),BD=BP•cos45°=20×=10(海里),在Rt△P AD中,∠P AD=90°﹣60°=30°,∴AD===10(海里),∴AB=BD+AD=(10+10)海里,∴观测站A,B之间的距离为(10+10)海里;(2)补给船能在82分钟之内到达C处,理由:过点B作BF⊥AC,垂足为F,∴∠AFB=∠CFB=90°由题意得:∠ABC=90°+15°=105°,∠P AD=90°﹣60°=30°,∴∠C=180°﹣∠ABC﹣∠P AD=45°,在Rt△ABF中,∠BAF=30°,∴BF=AB=(5+5)海里,在Rt△BCF中,∠C=45°,∴BC===(10+10)海里,∴补给船从B到C处的航行时间=×60=30+30≈81.9(分钟)<83分钟,∴补给船能在83分钟之内到达C处.17.解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴,在Rt△BDE中,∴,∴(米),答:隧道AB的长为米.18.解:如图,以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO与⊙O交于点Q,由题意得:PD=145m,DQ=55m,∴PQ=PD﹣DQ=145﹣55=90(m),∴OA=OP=PQ=45(m),∴风轮叶片OA的长度为45m;(2)如图,过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,则四边形ODEF是矩形,∴∠DOF=90°,EF=OD,由题意得:∠AOB=120°,∠AOD=14.4°,∴∠BOF=∠AOB+∠AOD﹣∠DOF=44.4°,∴BF=OB sin44.4°≈45×0.70=31.5(m),∵OD=PD﹣OP=145﹣45=100(m),∴EF=OD=100m,∴BE=BF+EF=131.5(m),∴此时风叶OB的端点B距地面的高度为131.5m.19.解:(1)如图,过点D作AB的垂线,交AB的延长线于点F,过点D作DM⊥CE,垂足为M.由题意可知:CD=50米,DM=30米.在Rt△CDM中,由勾股定理得:CM2=CD2﹣DM2,∴CM=40米,∴斜坡CB的坡度=DM:CM=3:4;(2)设DF=4a米,则MN=4a米,BF=3a米,∵∠ACN=45°,∴∠CAN=∠ACN=45°,∴AN=CN=(40+4a)米,∴AF=AN﹣NF=AN﹣DM=40+4a﹣30=(10+4a)米.在Rt△ADF中,∵DF=4a米,AF=(10+4a)米,∠ADF=53°,∴tan∠ADF=,∴=,∴解得a=,∴AF=10+4a=10+30=40(米),∵BF=3a=米,∴AB=AF﹣BF=40﹣=(米).答:基站塔AB的高为米.20.解:(1)过点B作BF⊥AD于点F,如图:在Rt△ABF中,BF:AF=1:=3:4,AB=3米,设BF=3x米,则AF=4x米∴(3x)2+(4x)2=32,解得x=0.6,∴BF=3×0.6=1.8(米).答:真空管上端B到AD的距离约为1.8米;(2)在Rt△ABF中,cos∠BAF=,则AF=AB•cos∠BAF=3×cos37°≈2.4(米),∵BF⊥AD,CD⊥AD,BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=1.3米,在Rt△EAD中,tan∠EAD=,则AD=≈=3.25(米),∴BC=DF=AD﹣AF=3.25﹣2.4≈0.9(米),答:安装热水器的铁架水平横管BC的长度约为0.9米.。

人教版数学九年级下册第28章28.2-解直角三角形及其应用

人教版数学九年级下册第28章28.2-解直角三角形及其应用

课堂小结
解 直 角 三 角 形
依据
勾股定理 两锐角互余 锐角的三角函数
解法:只要知道五个元素中的两个元素(至 少有一个是边),就可以求出余下的三个未 知元素
对接中考
对接中考
H
对接中考
A
B
C
对接中考
A
B
C D
对接中考
B
CD
A
对接中考
B
C D
A
课后作业 请完成课本后习题第1题.
12 、能者上,庸者下,平者让。谁砸企业的牌子,企业就砸谁的饭碗。 19 、生活中的许多事,并不是我们不能做到,而是我们不相信能够做到。 5 、当你手中抓住一件东西不放时,你只能拥有一件东西,如果你肯放手,你就有机会选择更多。( ) 1 、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 17 、再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。 17 、忍耐力较诸脑力,尤胜一筹。 15 、如果你不给自己烦恼,别人也永远不可能给你烦恼。因为你自己的内心,你放不下。 19 、你不能左右天气,但可以改变心情。你不能改变容貌,但可以掌握自己。你不能预见明天,但可以珍惜今天。 7 、如果我们投一辈子石块,即使闭着眼睛,也肯定有一次击中成功。 1 、生活是一面镜子。你对它笑,它就对你笑;你对它哭,它也对你哭。 19 、经营信为本,买卖礼当先。心态决定成败,有志者事竟成。 10 、人生有顺境也有逆境,输什么也不能输了心情;人生有进有退,输什么也不要输掉自己。 7 、成功在于好的心态与坚持,心态决定状态,心胸决定格局,眼界决定境界。 7 、喜欢一个人不是回复他每条动态,而是研究下面可疑的评论。 13 、用冷静的目光去看待人世间的一切,才能活得坦荡,活得超然。 6 、人的一生要面临许多选择,而每次选择都会带来一阵阵剧痛,而这种剧痛叫做成长。 12 、天下没有免费的午餐,一切成功都要靠自己的努力去争取。机会需要把握,也需要创造。 6 、大部分人往往对已经失去的机遇捶胸顿足,却对眼前的机遇熟视无睹。 16 、并不是先有了勇气才敢于说话,而是在说话的同时培养了勇气。 13 、不要在你的智慧中夹杂着傲慢,不要使你的谦虚心缺乏智慧。 12 、你希望别人怎样对待自己,你首先应该怎样来对待别人。

28.2_解直角三角形_达标训练(含答案)

28.2_解直角三角形_达标训练(含答案)

28.2 解直角三角形 达标训练一、基础·巩固达标1.如图28.2-21,电线杆AB 的中点C 处有一标志物,在地面D 点处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为a ,则电线杆AB 的长可表示为( )A.aB.2aC.a 23D.a 25图28.2-21 图28.2-22 (第3题)2.如图28.2-22,梯形护坡石坝的斜坡AB 的坡度i=1∶3,坝高BC 为2米,则斜坡AB 的长是( ) A.52米 B.102米 C.54米 D.6米3.AE 、CF 是锐角△ABC 的两条高,如果AE ∶CF=3∶2,则sinA ∶sinC 等于( )A.3∶2B.2∶3C.9∶4D.4∶94.如图28.2-23,等腰三角形ABC 的顶角为120°,腰长为10,则底边上的高AD=________.图28.2-23 图28.2-24 5.如图28.2-24是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角∠COD=_______度(不考虑青蛙的身高).6.如图28.2-25,小勇想估测家门前的一棵树的高度,他站在窗户C 处,观察到树顶端A 正好与C 处在同一水平线上,小勇测得树底B 的俯角为60°,并发现B 点距墙脚D 之间恰好铺设有六块边长为0.5米的正方形地砖,因此测算出B 点到墙脚之间的距离为3米,请你帮助小勇算出树的高度AB 约多少米?(结果保留1位小数)图28.2-25二、综合•应用达标7.如图28.2-26,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°.已知AB=20 米,点C和直线AB在同一铅垂平面上,求气球离地面的高度(结果保留一位小数).图28.2-268.初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图28.2-27所示,A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长. (结果精确到0.01米)图28.2-279.如图28.2-28,城市规划期间,要拆除一电线杆AB ,已知距电线杆水平距离14米的D 处有一大坝,背水坡的坡度i=2∶1,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2米的人行道.请问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域).图28.2-28三、回顾•展望达标10.如图28.2-29,某飞机于空中A 处探测倒地面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1 200米,则飞机到目标B 的距离AB 为( )A.1 200米B.2 400米C.3400米D.31200米图28.2-29 图28.2-30 图28.2-3111.一人乘雪橇沿坡比1∶3的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为( )A.72 mB.36 mC.36 mD.318 m12.如图28.2-31,测量队为了测量某地区山顶P 的海拔高度,选M 点作为观测点,从M 点测量山顶P 的仰角为30°,在比例尺为1∶50 000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为( )A.1 732米B.1 982米C.3 000米D.3 250米13. 某商场门前的台阶截面积如图28.2-32所示.已知每级台阶的席度(如CD)均为0.3 m,高度(如BE)均为0.2 m.现将此台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角∠A 为9°,计算从斜坡的起点A到台阶前点B的距离(精确到0.1 m)(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16).图28.2-3214.如图28.2-33,海上有一灯塔P,在它周围3海里处有暗礁.一艘客轮以9海里/时 的速度由西向东航行,行至A点处测得P在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?图28.2-3315.如图28.2-34,由山脚下的一点A测得山顶D的仰角是45°,从A沿倾斜角为30°的山坡前进1 500米到B,再次测得山顶D的仰角为60°,求山高CD.图28.2-3416.如图28.2-35所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河宽,且CD与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:方案一:E→D→A→B;方案二:E→C→B→A.4千米,BC=10千米,C E=6千米,∠BDC=45°,∠ABD=15°.经测量得AB=3已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.图28.2-3517.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图28.2-36,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?图28.2-36参考答案一、基础·巩固达标1.如图28.2-21,电线杆AB 的中点C 处有一标志物,在地面D 点处测得标志物的仰角为45°,若点D 到电线杆底部点B 的距离为a ,则电线杆AB 的长可表示为( )图28.2-21A.aB.2aC.a 23 D.a 25 思路解析:直接用等腰直角三角形的性质.答案:B2.如图28.2-22,梯形护坡石坝的斜坡AB 的坡度i=1∶3,坝高BC 为2米,则斜坡AB 的长是( )图28.2-22 A.52米 B.102米 C.54米 D.6米思路解析:坡度的定义ACBC i,所以BC ∶AC ∶AB=1∶3∶10. 答案:B3.AE 、CF 是锐角△ABC 的两条高,如果AE ∶CF=3∶2,则sinA ∶sinC 等于( )A.3∶2B.2∶3C.9∶4D.4∶9思路解析:画出图形,在Rt △AFC 中,sinA=AC CF ;在Rt △AEC 中,sinC=ACAE .所以sinA ∶sinC=ACAE AC CF :=CF ∶AE=2∶3. 答案:B 4.如图28.2-23,等腰三角形ABC 的顶角为120°,腰长为10,则底边上的高AD=________.图28.2-23思路解析:等腰三角形顶角平分线垂直平分底边,Rt △ADC 中,AC=10,∠DAC=60°. 答案:55.如图28.2-24是一口直径AB 为4米,深BC 为2米的圆柱形养蛙池,小青蛙们晚上经常坐在池底中心O 观赏月亮,则它们看见月亮的最大视角∠COD=_______度(不考虑青蛙的身高).图28.2-24思路解析:在Rt △OBC 中,OB=OC ,可以得到∠BOC=45°,所以∠COD=2∠BOC=90°. 答案:90°6.如图28.2-25,小勇想估测家门前的一棵树的高度,他站在窗户C 处,观察到树顶端A 正好与C 处在同一水平线上,小勇测得树底B 的俯角为60°,并发现B 点距墙脚D 之间恰好铺设有六块边长为0.5米的正方形地砖,因此测算出B 点到墙脚之间的距离为3米,请你帮助小勇算出树的高度AB 约多少米?(结果保留1位小数)图28.2-25思路解析:在Rt △ABC 中,∠A=90°,∠BCA=60°,AC=3米,用正切函数关系求出AB 的长.解:如图,在Rt △ABC 中,AC=BD=3米,tan ∠BCA=ACAB , 所以AB=AC×tan ∠BCA=3×tan60°=3×3≈5.2 (米).答:树的高度AB 约为5.2米.二、综合•应用达标 7.如图28.2-26,天空中有一个静止的广告气球C ,从地面A 点测得C 点的仰角为45°,从地面B 点测得C 点的仰角为60°.已知AB=20 米,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度(结果保留一位小数).图28.2-26思路解析:作出气球离地面的高度,构成了直角三角形,利用直角三角形求解.解:作CD ⊥AB,垂足为D.设气球离地面的高度是x 米.在Rt △ACD 中,∠CAD=45°,所以AD=CD=x.在Rt △CBD 中,∠CBD=60°,所以tan60°=BD CD ,BD=x 33. 因为AB=AD -BD ,所以20=x -x 33.解得x≈47.3(米). 答:气球离地面的高度约是47.3米.8.初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图28.2-27所示,A 、D 是人工湖边的两座雕塑,AB 、BC 是湖滨花园的小路,小东同学进行如下测量,B 点在A 点北偏东60°方向,C 点在B 点北偏东45°方向,C 点在D 点正东方向,且测得AB=20米,BC=40米,求AD 的长. (结果精确到0.01米)图28.2-27思路解析:作高构造直角三角形并寻找线段之间的关系.解:过点B 作BE ⊥AD ,BF ⊥CD ,垂足分别为E 、F.由题意,知AD ⊥CD.因为四边形BFDE 为矩形,所以BF=ED.在Rt △ABE 中,AE=AB×cos ∠EAB ,在Rt △BCF 中,BF=BC×cos ∠FBC ,所以AD=AE+BF=20×cos60°+40×cos45°=20×21+40×22=10+220, 即AD≈10+20×1.414=38.28(米).9.如图28.2-28,城市规划期间,要拆除一电线杆AB ,已知距电线杆水平距离14米的D 处有一大坝,背水坡的坡度i=2∶1,坝高CF 为2米,在坝顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2米的人行道.请问:在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B 为圆心,以AB 长为半径的圆形区域为危险区域).图28.2-28思路解析:有没有必要将此人行道封上,就要看电线杆倒下时,能不能到达人行道上,若AB >BE ,则电线杆会倒到人行道上.只要计算出AB 的长,利用30°仰角这个条件,可以在点C处作CH ⊥AB ,在Rt △AHC 中解直角三角形.解:在拆除电线杆AB 时,不需要将此人行道封上.理由如下:作CH ⊥AB ,垂足为H.在Rt △CDF 中,I=1:2 DF CF ,所以DF=21 CF=21×2=1(米). 所以HC=BF=BD+DF=14+1=15(米). 在Rt △AHC 中,tan ∠ACH=AC AH , 所以AH=HC×tan ∠ACH=15×tan30°=15×33≈8.7(米). 因此AB=AH+HB=AH+CF=8.7+2=10.7(米).因为BE=BD -DE=14-2=12(米),10.7<12,所以电线杆不会倒到人行道上,不需要将此人行道封上.三、回顾•展望达标10.如图28.2-29,某飞机于空中A 处探测倒地面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1 200米,则飞机到目标B 的距离AB 为( )图28.2-29A.1 200米B.2 400米C.3400米D.31200米 思路解析:∠ABC=α,解直角三角形.答案:B11.一人乘雪橇沿坡比1∶3的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s=10t +2t 2,若滑到坡底的时间为4秒,则此人下降的高度为( )图28.2-30A.72 mB.36 mC.36 mD.318 m思路解析:根据公式,算出斜坡的坡长,构造斜边为s 的直角三角形,用坡比的定义解答.答案:C12.如图28.2-31,测量队为了测量某地区山顶P 的海拔高度,选M 点作为观测点,从M 点测量山顶P 的仰角为30°,在比例尺为1∶50 000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P 的海拔高度为( )图28.2-31A.1 732米B.1 982米C.3 000米D.3 250米 思路解析:等高线地图上,两点的图上距离是指两点的水平距离,山顶的海拔高度是指P 点的竖直高度,画出视线、两点的水平距离、高度的示意图,它们可以构成直角三角形,通过解直角三角形求出.如图,在Rt △POM 中,∠O=90°,∠M=30°,OM=6×500=3 000(米),因为tanM=OM OP ,所以OP=OM×tan30°=3 000×33≈1 732(米). 答案:A13. 某商场门前的台阶截面积如图28.2-32所示.已知每级台阶的席度(如CD)均为0.3 m ,高度(如BE)均为0.2 m.现将此台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角∠A 为9°,计算从斜坡的起点A 到台阶前点B 的距离(精确到0.1 m)(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16).图28.2-32思路解析:根据图形,构造直角三角形.解:如图,过C 作CF ⊥AB 交AB 的延长线于F.由条件,得CF=0.8 m ,BF=0.9 m.在Rt △CAF 中,∵tanA=AF CF ,∴AF≈16.08.0=5(m). ∴AB=AF -BF=5-0.9=4.1(m).答:从斜坡起点A 到台阶前点B 的距离约为4.1 m.14.如图28.2-33,海上有一灯塔P ,在它周围3海里处有暗礁.一艘客轮以9海里/时 的速度由西向东航行,行至A 点处测得P 在它的北偏东60°的方向,继续行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险?图28.2-33思路解析:构造直角三角形,用方程求解点P 到AB 的距离,若这个距离大于3海里,表明客轮在暗礁范围外,客轮不会触礁.解:过P 作PC ⊥AB 于C 点,据题意知: AB=9×62=3.∵∠PCB=90°,∠PBC=90°-45°=45°,∴PC=BC.在Rt △PAC 中,∠PAB=90°-60°=30°,∴tan30°=PCPC BC AB PC AC PC +=+=3, 即PC PC +=333.∴32333>+=PC . ∴客轮不改变方向继续前进无触礁危险.15.如图28.2-34,由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1 500米到B ,再次测得山顶D 的仰角为60°,求山高CD.图28.2-34思路解析:题目中知道AB的长,需要把AB转化到直角三角形中,考虑∠DBE=60°,过点B分别向AC、DC作垂线,构成直角三角形.解:过点B作CD、AC的垂线,垂足分别为E、F.∵∠BAC=30°,AB=1 500米,750米.∴BF=EC=750米,AF=3设FC=x米,∵∠DBE=60°,∴DE=x3米.又∵∠DAC=45°,∴AC=CD,750+x=750+3米.得x=750.即3750)米.∴CD=(750+3750)米.答:山高CD为(750+316.如图28.2-35所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河宽,且CD与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:图28.2-35方案一:E→D→A→B;方案二:E→C→B→A.经测量得AB=34千米,BC=10千米,C E=6千米,∠BDC=45°,∠ABD=15°. 已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD 的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.思路解析:这是一道几何应用题,解题时要善于把实际问题抽象成几何图形,并领会图形中的几何元素代表的意义,由题意可分析出,当A 点距台风中心不超过160千米时,会受台风影响,若过A 作AD ⊥BC 于D ,设E ,F 分别表示A 市受台风影响的最初、最后时台风中心的位置,则AE=AF=160千米;当台风中心位于D 处时,A 市受台风影响的风力最大.解:(1)如图,经过点A 作AD ⊥BC ,垂足为D.在Rt △ABD 中,AB=220,∠B=30°.所以AD=110(千米).由题意,当A 点距台风中心不超过160千米时,将会受到台风的影响.故该城市会受到这次台风的影响.(2)由题意,当A 点距台风中心不超过160千米时,将会受到台风的影响,由对称性可以知道AE=AF=160千米.当台风中心从E 处移到F 处时,该城市都会受到这次台风的影响.在Rt △ADE 中,由勾股定理,得530502701101602222=⨯=-=-=AD AE DE .所以EF=1560 (千米).因为该台风中心以15千米/时的速度移动. 所以这次台风影响该城市的持续时间为154151560= (小时). (3)当台风中心位于D 处时,A 市所受这次台风的风力最大,其最大风力为5.62011012=-(级). 17.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图28.2-36,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C 移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称为受台风影响.图28.2-36(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?思路解析:本题的实质是解两个非直角三角形,一般是适当作高,运用特殊角解直角三角形.在△ABD 中,过点B 作AD 边的高,得到一个等腰直角三角形(大三角形)和一个含30°的特殊直角三角形.同理,CD 的长也可以在△BCD 中作高计算得到.比较两个方案,就是计算两种方案的铺设费用大小,A→D 需铺设水下电缆.解:(1)过点B 作BF ⊥AD ,交DA 的延长线于F(如图), 在Rt △ABF 中,AB=34,∠BAF=60°,所以BF=AB×sin60°=2334⨯=6(千米), AF=AB×cos60°=322134=⨯(千米). 在Rt △BDF 中,DF=BF=6(千米),所以 BD=262/2645sin ==︒AB (千米).因此,河宽AD=DF -AF=6-32(千米).(2)作BH ⊥CD 于点H.在Rt △BDH 中,BH=HD=6千米,在Rt △CBH 中,86102222=-=-=BH BC CH (千米). 因此,公路CD=CH+HD=14(千米).(3)选择方案二铺设电缆的费用低.理由如下:方案一需要的费用:8×2+(6-32)×4+34×2=40(万元);方案二需要的费用:6×2+10×2+34×2=22+38≈35.9(万元).。

28.2解直角三角形(方向角及坡比问题)2014年3月18日

28.2解直角三角形(方向角及坡比问题)2014年3月18日

解: (1 ) 过点 A 作 AD 垂直于
BC ,垂足为
D
ABC
30
0
, AB 160 米
AD 80 米 100 米 ,
在 Rt ABD 中,解得
所以受噪声影响。
以点 A 为圆心, 100 米长为半径画圆弧分别
线段 EF 为受影响的路段 .
交 BC 于 E , F 两点
1 8 .4
沿水库拦河坝的背水坡将坝顶加宽2 米,坡度由原来的1:2改为1:2.5, 已知坝高6米,坝长50米。 (1)求加宽部分横断面AFEB (2)完成这一工程需要多少方土?
F
2
A D
6Leabharlann EBNM
1.在解直角三角形及应用时经常接触到 的一些概念(方位角;坡度、坡角等)
2.实际问题向数学模型的转化
sin B PC PB

65° P
A C
34°
PB
PC sin B

72.8 sin 34

72.8 0.559
B
130.23
当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.
气象台发布的卫星云图显示,代号为W的台风在某海岛(设为 点O)的南偏东45°方向的B点生成,测得 O B 1 0 0 6 k m . 台 风中心从点B以40km/h的速度向正北方向移动,经5h后到达海 面上的点C处.因受气旋影响,台风中心从点C开始以30km/h 的速度向北偏西60°方向继续移动.以O为原点建立如图12所示 的直角坐标系. (1)台风中心生成点B的坐标为 ,台风中心转折点C的 坐标为 ;(结果保留根号) (2)已知距台风中心20km的范围内均会受到台风的侵袭.如 果某城市(设为A点)位于点O的正北方向且处于台风中心的移 动路线上,那么台风从生成到最初侵袭该城要经过多长时间? 北

人教版数学九年级下册28.2解直角三角形-仰角、俯角问题教案

人教版数学九年级下册28.2解直角三角形-仰角、俯角问题教案
其次,正切函数的应用是一个教学难点。尽管我在课堂上进行了详细的解释和示例,但仍有学生在计算时感到困惑。这可能是因为他们对正切函数的记忆不够牢固,或者是对角度与正切值之间的关系理解不深。我考虑在下一节课前,设计一些复习活动,如小测验或游戏,来帮助学生巩固这部分知识。
另外,小组讨论和实践活动环节,学生的参与度很高,他们积极讨论,热烈交流,这让我很欣慰。但我也观察到,有些小组在分享成果时表达不够清晰,这可能是他们在整理思路和语言表达上还存在不足。在以后的教学中,我需要加强对学生表达能力的训练,鼓励他们更加自信、条理清晰地表达自己的观点。
(1)通过实际情境引入仰角、俯角的概念;
(2)掌握正切函数的定义,并应用于仰角、俯角问题的求解;
(3)通过例题讲解和练习,让学生熟练运用解直角三角形的方法解决实际生活中的仰角、俯角问题。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提高数学建模素养;
2.通过对正切函数的运用,增强学生的数学运算和数据分析能力;
五、教学反思
在今天的课程中,我们探讨了解直角三角形中的仰角、俯角问题。我发现学生们在理解仰角、俯角概念上并没有太大困难,他们对于这些新知识充满了好奇。但在实际应用上,特别是在构建直角三角形模型和运用正切函数时,部分学生遇到了一些挑战。
首先,我注意到在案例分析环节,有些学生在确定直角三角形的边长和角度时显得犹豫不决。这说明他们对于如何将实际问题转化为数学模型还不够熟练。在未来的教学中,我需要提供更多的实际例子,让学生有更多的机会去练习和体会这一过程。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解仰角与俯角的基本概念。仰角是我们从水平线向上看时,视线与水平线所形成的角;俯角则是我们从水平线向下看时,视线与水平线所形成的角。它们在测量、建筑等领域有着广泛的应用。

28.2解直角三角形(4)

28.2解直角三角形(4)


2、如何将这个三角形转化为两个直角三角形?
3、在 Rt△BCP 中,能直接求出 PB 吗?还缺什么元素?你认为求出哪条边最方便计算?
4、在 Rt△APC 中,求 PC 是,若用正弦函数求解应选用哪个关系式?若用余弦函数呢?
5、请你选择一种方法写出解题过程
三、学生展示——面对困难别退缩,相信自己一定行!! ! 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在 北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测 得灯塔 M 在北偏西 45°,问该货轮继续向北航行时,与灯塔 M 之间的最短 距离是多少?(精确到 0.1 海里, 3 1.732 )
沉默是金难买课堂一分,跃跃欲试不如亲身尝试!
学法指导 合作交流、讨论、
一、自主先学————相信自己,你最棒! 1、利用解直角三角形的知识解决实际问题的一般过程是怎样的?
北 B
2、方位角:指北或指南方向线与目标方向线所成的小于 90 的水平角叫做方位角,如图所示目标方向线 OA、OB、 OD 的方向角分别是北偏东 60 、________20 、南偏西 45 、 _______60 ,比如我们习惯上所说的 “东南方”是指 目标线为南偏东 45 等等。
0 0 0 0 0
0ቤተ መጻሕፍቲ ባይዱ
20 O 450
0
A
0
60
东 60
0
D C
二、展示时刻——集体的智慧是无穷的,携手解决下面的问题吧!
O
例 5 如图,一艘海轮位于灯塔 P 的北偏东 65 方向,距离灯塔 80 海里的 A 处,它沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东 34 方向上 的 B 处.这时,海轮所在的 B 处距离灯塔 P 有多远?(精确到 0.01) 1、点 A、B、P 三点构成△ABP,你能写出这个三角形中已知那些元素,要 求的又是那一个元素?

28.2.4解直角三角形(4)

28.2.4解直角三角形(4)

3.如图是某公路路基的设计简图,等腰梯形ABCD表示它的 横断面,原计划设计的坡角为A=22°37′,坡长AD=6. 5米,现 考虑到在短期内车流量会增加,需增加路面宽度,故改变设 计方案,将图中1,2两部分分别补到3,4的位置,使横断面 EFGH为等腰梯形,重新设计后路基的坡角为32°,全部工 程的用土量不变,问:路面宽将增加多少? 12 5 (选用数据:sin22°37′≈ ,cos22°37′ ≈ , 13 13 5 tan 22°37′ ≈ 12 , D C G H 3 4 5 tan 32° ≈ )
8
A
1 E
M
N
F
2
B
2 如图, △在ABC中, ∠ A为锐角,sina= ,AB+AC=6cm, 3 设AC=xcm, △ABC的面积为ycm2.
(1)求y关于x的函数关系式和自变量x的取值范围;
(2)何时△ABC的面积最大,最大面积为多少?
C
1 S= ab sina 2
A
B
5、如图,某人在山坡坡脚A处测得电视塔尖点 C的仰角为60o,沿山坡向上走到P处再测得点C 的仰角为45o,已知OA=100米,山坡坡度i=1:2, 且O,A,B在同一条直线上.求电视塔OC的高度 以及此人所在位置P点的铅直高度.(测倾器高 度忽略不计,结果保留根号形式)
达险坦 到勇的 光 于大在 辉 攀道科 的 登,学 顶 的只上 点 人有从 马 ,不没 克 才畏有 思 能艰平
(1)测量工具 (2)示意图如右图 (3)CD=a ,BD=b √ (4)AB = a + 3 3 b 实际应用能力提升 C D
M
30°
N
E B
测量对象:一铁塔的高度,测量工具皮尺一根教学 三角板一副高度为1.5米的测角仪(能测仰角和俯角的仪器) 一架。 请选择测量工具,并设计方案,写出必需的测量数据 (用字母表示),并画出测量图形,并用测量数据(用字母表 示)写出计算铁塔高度的算式。 A 方案2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.2 解直角三角形(4)
班级 姓名 座号 月 日
主要内容:运用解直角三角形的知识解决航行、斜坡等问题 一、课堂练习:
1.(课本95页)海中有一个小岛A ,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30方向上,如果渔船不改变航线继续向东航行,有没有触礁危险?
2.(课本95页)如图,拦水坝的横断面为梯形ABCD (图中13i =:是指坡面的铅直高度DE 与
水平宽度CE 的比),根据图中数据求:
(1)坡角α和β(精确到0.01); (2)斜坡AB 的长(精确到0.1m ).
二、课后作业:
1.(课本96页)如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m .测得斜坡的倾斜角是24,求斜坡上相邻两树间的坡面距离(精确到0.1m ).
2.(课本97页)为方便行人,打算修建一座高5m 的过街天桥,已知天桥的斜面坡度为11.5:,计算斜坡AB 的长度(精确到1m ).
A C α
β
6m 13i =:11.5i =:
A B
C D E F 1.5
3.(课本97页)如图,某海域直径为30海里的暗礁区中心有一哨所A ,值班人员发现有一轮船从哨所正西方向90海里的B 处向哨所驶来,哨所及时向轮船发出了危险信号,但轮船没有收到信号,又继续前进了15海里到达C 处,此时哨所第二次发出紧急信号.
(1)若轮船收到第一次信号后,为避免触礁,航向改变角度至少为东偏北α度,求sin α的值.
(2)当轮船收到第二次信号时,为避免触礁,轮船航向改变的角度至少应为多少(精确到
0.01)?
4.气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B 点生成,
测得OB =.台风中心从点B 以40km h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km h 的速度向北偏西
60方向继续移动.以O 为原点建立如图所示的直角坐标系.
(1)台风中心生成点B 的坐标为________________,台风中心转折点C 的坐标为____________________;(结果保留根号)
(2)已知距台风中心20km 范围内均会受到台风侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?
km
参考答案
一、课堂练习:
1.(课本95页)海中有一个小岛A ,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B 点测得小岛A 在北偏东60方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30方向上,如果渔船不改变航线继续向东航行,有没有触礁危险? 解:过点A 作AC BD ⊥于点C ,由题意,得30ABC ∠=,60ADC ∠=
在Rt ABC ∆中,tan AC ABC ∠=
∴3tan tan30
AC AC BC ABC ===∠ 在Rt ADC ∆中,tan AC ADC
CD
∠=
∴tan tan60AC AC CD AC ADC =
==∠
又∵
12BC CD BD -=
=
12AC =
解得10.48AC => ∴没有触礁危险
2.(课本95页)如图,拦水坝的横断面为梯形ABCD (图中13i =:是指坡面的铅直高度DE 与水平宽度CE 的比),根据图中数据求: (1)坡角α和β(精确到0.01); (2)斜坡AB 的长(精确到0.1m ).
解:(1)∵1tan 0.6667α=≈ 1tan 0.3333β=≈
∴33.69α≈ 18.43β≈
(2)∵1AF = ∴ 1.5 1.569BF AF ==⨯=
在Rt
ABF ∆中
,10.8()AB m =≈
答:坡角α约为3 3.69,坡角β约为18.43,斜坡AB 的长约为10.8m
.
二、课后作业:
1.(课本96页)如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m .测得斜坡的倾斜角是24,求斜坡上相邻两树间的坡面距离(精确到0.1m ).
解:由题意得,在Rt ABC ∆中,24B ∠=, 5.5BC =
∵cos BC B AB
= ∴ 5.5 6.0cos cos24
BC AB B ==≈
答:斜坡上相邻两树间的坡面距离约为6.0m .
2.(课本97页)为方便行人,打算修建一座高5m 的过街天桥,已知天桥的斜面坡度为11.5:,计算斜坡AB 的长度(精确到1m ). 解:∵11.5
AC BC = ∴ 1.5 1.557.5BC AC ==⨯
=
在Rt ABC
∆中
9AB ===≈ 答:斜坡AB 的长度约为9m .
A
C D α
β
6m 13i =:11.5i =:
A
B
C D E F 1.5
3.(课本97页)如图,某海域直径为30海里的暗礁区中心有一哨所A ,值班人员发现有一轮船从哨所正西方向90海里的B 处向哨所驶来,哨所及时向轮船发出了危险信号,但轮船没有收到信号,又继续前进了15海里到达C 处,此时哨所第二次发出紧急信号.
(1)若轮船收到第一次信号后,为避免触礁,航向改变角度至少为东偏北α度,求sin α的值.
(2)当轮船收到第二次信号时,为避免触礁,轮船航向改变的角度至少应为多少(精确到
0.01)? 解:(1)如图①,作BP 切A 于点P ,连接PA ,则BP AP ⊥
在Rt ABP ∆中,151sin 906
PA B AB === ∴1sin 6
α=
(2)如图②,作CM 切A 于点M ,连接AM ,则CM AM ⊥
在Rt ACM ∆中,15sin 0.29015
AM ACM CM ∠=
==- ∴11.54ACM ∠≈
∴轮船航向改变的角度至少应为11.54
4.气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B 点生成,
测得OB =.台风中心从点B 以40km h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km h 的速度向北偏西
60方向继续移动.以O 为原点建立如图所示的直角坐标系. (1)台风中心生成点B
的坐标为,台风中心转折点C
的坐标为- ;(结果保留根号)
(2)已知距台风中心20km 范围内均会受到台风侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?
解:过点C 作CD OA ⊥于点D ,
则CD =30ACD ∠= 在Rt ACD ∆中,cos CD ACD AC
∠=
∴200cos CD AC ACD ==∠
∵20020630
-=,6511+=
∴台风从生成到最初侵袭该城要经过11小时.
km。

相关文档
最新文档