2019九年级数学上册 第二十一章21.2.4 一元二次方程的根与系数的关系习题

合集下载

第二十一章21.2.4一元二次方程的根与系数的关系

第二十一章21.2.4一元二次方程的根与系数的关系

在ax2+bx+c=0(a≠0)中,当b2-4ac≥0时,由求根公式可得x1= b
b2 4ac 2a
b b2 4ac
,x2= 2a
,
所以x1+x2=b
b2
2a
4ac
&(b2 4ac) 4a 2
=
c a
=-
b a
,x1·x2=
*21.2.4 一元二次方程的根与系数的关系
栏目索引
4.(2016山东德州中考)方程2x2-3x-1=0的两根为x1,x2,则 x12 + x22 =
.
13
答案 4
解析 由根与系数的关系可得x1+x2=- ba = 32 ,x1·x2= ac =- 12 ,∴ x12 + x22 =(x1+x2)2-
*21.2.4 一元二次方程的根与系数的关系
栏目索引
5.(2018上海静安期末)已知关于x的方程x2+(3-2k)x+k2+1=0的两个实数
根分别是x1、x2,当|x1|+|x2|=7时,k的值是
.
答案 -2
解析 由题意得Δ=(3-2k)2-4×1×(k2+1)≥0,9-12k+4k2-4k2-4≥0,∴k≤ 5 ,
12
∵x1·x2=k2+1>0,∴x1、x2同号.分两种情况:①当x1、x2同为正数时,x1+x2=7,
把x1+x2、x1·x2的值整体代入,即可求出所求代数式的值.
*21.2.4 一元二次方程的根与系数的关系
题型三 利用根与系数的关系求字母的值或取值范围
栏目索引
例3 (2018湖北仙桃中考)已知关于x的一元二次方程x2+(2m+1)x+m2-2=0. (1)若该方程有两个实数根,求m的最小整数值; (2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.

人教版数学九年级上册 21.2.4一元二次方程的根与系数的关系 教案设计

人教版数学九年级上册  21.2.4一元二次方程的根与系数的关系 教案设计

人教版九年级数学第二十一章2.4节21.2.4 一元二次方程的根与系数关系一教学目标知识与技能:1.理解一元二次方程根与系数之间关系的推导过程2.掌握一元二次方程根与系数的关系3.能够不解方程,应用根与系数关系解决问题过程与方法:1.通过学生探究、发现根与系数的关系,培养学生观察能力,思考归纳概括能力和探究精神2.通过探究学习,让学生体会从特殊到一般,再从一般到特殊的解决问题的思路。

3.让学生经历观察、实验、猜想、证明的数学活动,发展推理能力,培养创新精神。

情感态度与价值观:1.通过情境教学,激发学生的求知欲望,培养积极的学习态度2.通过对根与系数之间的关系探究,体会事物之间的联系,更好的认识世界。

3.体验教学活动充满着探究和创造,享受成功快乐。

二教学重点难点重点:一元二次方程根与系数关系及应用难点:探究根与系数之间关系过程三 教学过程教师准备:多媒体课件1-4 学生准备:预习学习内容 1.新课导入课件1 完成下列表格2.新知构建 一 探究活动观察以上表格,思考问题 ⑴通过观察你发现了什么规律? ⑵语言叙述你发现的规律? ⑶设x ²+px+q=0的两根为x ₁,x ₂ 用式子表示发现的规律【师生活动】:小组讨论,共同探究,对有困难学生进行指导 二 探究活动 课件2 完成下列表格填表,思考下列问题:⑴上面发现的结论在这里成立吗?⑵你能发现两根之和、两根之积与方程的系数有何关系? ⑶用语言表述你的发现。

⑷进一步猜想:方程ax ²+bx+c=0(a ≠0)的根x ₁,x ₂与a ,b ,c 之间的关系 ⑸你能证明上面的猜想吗?【师生互动】:小组合作交流,公同探究,教师及时指导学生把证明过程写板书。

课件3:一元二次方程ax ²+bx+c=0(a ≠0)a2ac 4b b x 21-+-= a 2ac 4b b x 22---=∴ x ₁+x ₂=a 2ac 4b b 2-+-+a 2ac 4b b 2--- = -abx ₁• x ₂=a 2ac 4b b 2-+- • a 2ac 4b b 2--- = ac【设计意图】:学生经历“实践、观察、发现、猜想、证明”的过程,使学生既动手、动脑又动口,教师引导启发,体现学生的主体学习特征,培养学生的创新精神。

21.2.4一元二次方程的根与系数的关系

21.2.4一元二次方程的根与系数的关系
那么x1 x2 p, x1 • x2 q
例1:已知方程:5x2 kx 6 0,的一个根是2, 求它的另一个根及k的值
解:设方程的另一个根为x1,那么
x1
2
6 5
x1
3 5
又 3 2 k
5
5
k
5
3 5
2
7
所以,方程的另一根是 3,k的值是 7。 5
【跟踪训练】
1.已知 x=1 是方程 x2+bx-2=0 的一个根,则方程的另
练 习
2、设 X1、X2是方程X2-4X+1=0的两个根,则
X1+X2 = _4__ ,X1X2 = _1___,
X12+X22 = ( X1+X2)2 - _2_X_ 1X2= __1_4
( X1-X2)2 = ( __X_1+)X2 -2 4X1X2 = ___12 3、判断正误:
以2和-3为根的方程是X2-X-6=0 (× )
4、已知两个数的和是1,积是-2,则这两个数是 __2_和__-1。
5、下列方程中,两根的和与两根的积各是多少?
1.x2 3x 1 0 2.3x2 2x 2
3.2x2 3x 0
4.4x2 1 2x
6、已知方程 3x2 19x m 0 的一个根是 1,
求它的另一个根和m的值。
7、设 x1 、 x2是方程 2x2 4x 3 0 利用
例2、利用根与系数的关系,求一元二次方程
2x2 3x 1 0
两个根的;(1)平方和;(2)倒数和
解:设方程的两个根是x1 x2,那么
3
1
x1 x2 2 , x1 x2 2
1x1 x2 2 x12 2x1x2 x22

九年级数学上册21.2.4一元二次方程的根与系数的关系教案

九年级数学上册21.2.4一元二次方程的根与系数的关系教案

21.2.4一元二次方程的根与系数的关系一、教学目标1.掌握一元二次方程根与系数的关系。

2.能运用根与系数的关系求:已知方程的一个根,求方程的另一个根及待定系数;根据方程求代数式的值。

二、课时安排1课时三、教学重点掌握一元二次方程根与系数的关系。

四、教学难点能运用根与系数的关系求:已知方程的一个根,求方程的另一个根及待定系数;根据方程求代数式的值。

五、教学过程(一)导入新课如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用前面学过的配方法的步骤求出它们的两根,请同学独立完成下面这个问题.(二)讲授新课【问题】已知ax 2+bx+c =0(a ≠0)且b 2-4ac ≥0,试推导它的两个根为∴x 1+x 2和x 1x 2的值。

分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c •也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c 二次项系数化为1,得x 2+b a x =-c a配方,得:x 2+b a x +(2b a )2=-c a +(2b a )2 即(x +2b a)2=2244b ac a∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0直接开平方,得:x +2b a即x∴x 1,x 2∴x 1+x 2= - ba , x 1x 2=q归纳总结:如果方程x 2+px+q=0的两根是x 1 ,x 2,那么x 1+x 2= -p , x 1x 2= ca(三)重难点精讲例1、不解方程,求方程两根的和与两根的积:(1)2310x x +-=(2)22410x x -+=解:(1)123x x +=- ,121x x ⋅=-(2)原方程可化为:21202x x -+=122x x +=,1212x x ⋅=例题2、已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值。

解:原方程可化为:26055kx x +-=设方程的另一根是x 1,那么2 x 1= 65- ∴x 1= 35- 又∵(35-)+2= 5k- ∴ k=-5[(35-)+2]=-7答:方程的另一个根是 35- ,k 的值是-7。

人教版数学九年级上册 21.2.4 一元二次方程的根与系数的关系 课件(共19张PPT)

人教版数学九年级上册 21.2.4 一元二次方程的根与系数的关系 课件(共19张PPT)
的关系进行简单计算。
情感态度与价值观:
1)培养学生主动探究知识、自主学习和合作交流的意识。
2)激发学生对学数学的兴趣,体会学数学的快乐,培养用数学的意
识。
教学重难点
掌握一元二次方程根与系数的关系。
利用一元二次方程根与系数的关系进行简单
计算。
复习引入:
1.一元二次方程的一般式:ax2+bx+c=0(a≠0).
b2-6b+4=0,且
A.


B.




a≠b,则 + 的值是( A )



C.


D.



解:∵ a2-6a+4=0 和 b2-6b+4=0 两个等式的
形式相同,且 a≠b,∴ a,b 可以看成是方
程 x2-6x+4=0 的两个根,∴ a+b=6,ab=4,





+ =


+


=
+
巩固练习:
1.不解方程,求下列方程两个根的和与积.
(1) x2-3x=15;
(2) 3x2+2=1-4x;
(3) 5x2-1=4x2+x;
(4) 2x2-x+2=3x+1.
解:(1)方程化为 x2-3x-15=0,
x1+x2=-(-3)=3,x1x2=-15.
(2)方程化为 3x2+4x+1=0,
2.判断一元二次方程根的情况.
b2 - 4ac > 0 时,方程有两个不相等的实数根.
b2 - 4ac = 0 时,方程有两个相等的实数根.
b2 - 4ac < 0 时,方程无实数根.

人教版九年级数学上册(RJ)第21章 一元二次方程 一元二次方程的根与系数的关系

人教版九年级数学上册(RJ)第21章 一元二次方程 一元二次方程的根与系数的关系

第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x x x x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相12-132课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+--= 22b a -=.ba=- 1222b b x x a a•-+--⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1.;-3. 2. 1 ; -2.1161.3c x a116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。

21.2.4 一元二次方程根与系数的关系 课件(共17张PPT) 人教版数学九年级上册

21.2.4  一元二次方程根与系数的关系  课件(共17张PPT) 人教版数学九年级上册

求 a 的值及该方程的另一个根.
解:由方程有两个实数根,得 Δ = a2 - 4 ≥0,
即 a ≥ 2或a ≤ -2.
由根与系数的关系得 x1 + x2 = 2a,x1 x2 = 16.

x1 x2
x1 x2
1
1



1
x1
x2
x1 x2
16
解得 a = 8
21.2.4 一元二次方程根与系数的关系
x1 x2 x12 x22 ( x1 x2 )2 2 x1 x2
3.


;
x2 x1
x1 x2
x1 x2
4.( x1 1)( x2 1) x1 x2 ( x1 x2 ) 1;
5. x1 x2 ( x1 x2 )2 ( x1 x2 )2 4 x1 x2 .
21.2.4 一元二次方程
的根与系数的关系
九年级上
学习目标


新课引入
新知学习
随堂练习
课堂小结
21.2.4 一元二次方程根与系数的关系
学习目标
1. 了解一元二次方程的根与系数的关系. (2022年版课标将*删除)
2. 会用一元二次方程的根与系数的关系解决简单问题.
21.2.4 一元二次方程Βιβλιοθήκη 与系数的关系7-9
(2) x1+x2=- ,x1 x2= =-3.
3
3
(3)方程化为 4x2-5x+1=0,∴
x1+x2=-
1
5 5
= , x1 x2= .
4
4 4
21.2.4 一元二次方程根与系数的关系
1
1

人教版九年级数学上册21.2.4《一元二次方程的根与系数的关系》教案

人教版九年级数学上册21.2.4《一元二次方程的根与系数的关系》教案

《一元二次方程的根与系数的关系》教案教学目标1、掌握一元二次方程a 2x +bx +c =0(a ≠0)的两根和系数之间的关系,了解关系式的推导过程.2、会正确写出根与系数的关系式.3、会利用根与系数的关系式解题.教学重点熟练利用一元二次方程根与系数的推导过程教学难点利用一元二次方程根与系数的关系式解题教学过程一、回顾与复习1、解一元二次方程的基本策略是 ,把二次方程转化为 来解2、一元二次方程有四种解法(1)、因式分解法,方程一边是两个一次式的 的形式,另一边为 .(2)、直接开平方法,方程一边是 形式,另一边是 . (3)、配方法,通过配方配成完全平方形式来解一元二次方程的方法.(4)、公式法:关于x 的一元二次方程a 2x +bx +c =0(a ≠0)的根的判别式为∆= 当0∆≥时,实数根可写成1,2x = ;3、在用适当方法解一元二次方程时,先考虑用 、 ;再考虑用配方法和公式法.4、一元二次方程最多有 个实数根. 二、新课讲授:(一)、解方程求出两个解12x x ,,并计算两个解的和与积,填入下表:方程1x2x12x x +12x x ⋅230x x -= 2320x x -+=2210x x ++= 2490x -= 2250x x +=22310x x -+=观察表格中方程的两个解的和、两个解的乘积,与原方程中的系数之间的关系有什么规律?写出你的结论: .猜测:一元二次方程a 2x +bx +c =0(a ≠0)的两根12x x ,和系数a b c ,,之间的关系 (二)、推导过程.一元二次方程的一般形式为a 2x +bx +c =0(a ≠0),根据求根公式可知,方程的两根为:221244,22b b ac b b ac x x a a-----==计算12x x += = ;因此,方程的两根12,x x 和系数,,a b c 有如下关系:用文字叙述一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的乘积等于常数项与二次项系数的比.(三)、例题和练习例一、根据一元二次方程根与系数的关系,求下列方程两根12,x x 的和与积 (1)、26150x x --= (2)、2397x x =- (3)、2514x x -= 解:(学生独立完成)1、练习:求下列方程两根12,x x 的和与积(1)、2315x x -= (2)、22514x x x -=+ (3)、2320x x -+= (4)、2550x x +-= (5)、256x x x +=+ (6)、2758x x -=+ 2、练习(1)、已知关于x 的方程20x mx n ++=的两个根为5,7-,求m n -的值. (2)、已知关于x 的方程260x kx +-=的一个根为3,求k 的值和方程的另一个根. (3)、已知关于x 的方程2240x x m ++=的两个根的和等于两个根的积,求m 的值. (4)、已知关于x 的一元二次方程220x mx --=①、若1x =-是方程的一个根,求m 的值和方程的另一根.②对于任意实数m ,判断方程的根的情况,并说明理由.3、练习(1)、已知12,x x 是方程2420x x -+=的两根,求下列式子的值(2)、已知关于x 的一元二次方程2(1)10x k x k --++=的两个实数根的平方和等于4,求实数k 的值.(3)、已知关于x 的一元二次方程2210x x m -+-=,①、当m 取何值时,方程有两个不相等的实数根?②、设12,x x 是方程的两个实数根,且满足2211221x x x x ++=,求m 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.2.4 一元二次方程的根与系数的关系
01 基础题
知识点1 利用根与系数的关系求两根之间关系的代数式的值
1.(钦州中考)若x 1,x 2是一元二次方程x 2
+10x +16=0的两个根,则x 1+x 2的值是(A)
A .-10
B .10
C .-16
D .16
2.(怀化中考)若x 1,x 2是一元二次方程x 2-2x -3=0的两个根,则x 1x 2的值是(D)
A .2
B .-2
C .4
D .-3
3.(凉山中考)已知x 1,x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是(D)
A .-43 B.83 C .-83 D.43
4.(眉山中考)已知一元二次方程x 2-3x -2=0的两个实数根为x 1,x 2,则(x 1-1)(x 2-1)的值是-4.
5.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:
(1)x 1+x 2;
解:x 1+x 2=3.
(2)x 1x 2;
解:x 1x 2=-1.
(3)x 21+x 22;
解:x 21+x 22=(x 1+x 2)2-2x 1x 2
=32-2×(-1)
=11.
(4)1x 1+1x 2
; 解:1x 1+1x 2=x 1+x 2x 1x 2=3-1
=-3.
(5)(x 1-1)(x 2-1);
解:(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1
=-1-3+1
=-3.
(6)x 2x 1+x 1x 2
. 解:x 2x 1+x 1x 2=x 21+x 2
2x 1x 2
=11-1 =-11.
知识点2 利用根与系数的关系求方程中待定字母的值
6.(雅安中考)已知x 1,x 2是一元二次方程x 2
+2x -k -1=0的两根,且x 1x 2=-3,则k 的值为(B)
A .1
B .2
C .3
D .4
7.(新疆中考)已知关于x 的方程x 2+x -a =0的一个根为2,则另一个根是(A)
A .-3
B .-2
C .3
D .6
8.已知关于x 的方程x 2+px +q =0的两根为-3和-1,则p ,q 的值分别为4,3.
9.已知关于x 的一元二次方程x 2+(4m +1)x +2m -1=0.
(1)求证:不论m 为任何实数,方程总有两个不相等的实数根;
(2)设方程的两根分别为x 1,x 2,且满足1x 1+1x 2=-12
,求m 的值. 解:(1)证明:∵a=1,b =4m +1,c =2m -1,
∴Δ=(4m +1)2-4(2m -1)
=16m 2+8m +1-8m +4
=16m 2+5.
∵16m 2≥0,
∴Δ>0.
∴不论m 为任何实数,方程总有两个不相等的实数根.
(2)根据题意,得x 1+x 2=-(4m +1),x 1x 2=2m -1,
∵1x 1+1x 2=-12
, ∴
x 1+x 2x 1x 2=-12. ∴-(4m +1)2m -1=-12, ∴m=-12
.
易错点 忽视隐含条件
10.若关于x 的方程x 2+(a -1)x +a 2
=0的两个根互为倒数,求a 的值.
解:因为方程的两根互为倒数,所以两根的积为1.
由根与系数的关系,得a 2=1.
解得a =±1.
当a =1时,原方程化为x 2+1=0,根的判别式Δ<0,此方程没有实数根,所以舍去a =1.所以a =-1. 02 中档题
11.(易错题)下列一元二次方程两实数根和为-4的是(D)
A .x 2+2x -4=0
B .x 2-4x +4=0
C .x 2+4x +10=0
D .x 2+4x -5=0
12.(烟台中考)若x 1,x 2是方程x 2-2mx +m 2-m -1=0的两个根,且x 1+x 2=1-x 1x 2,则m 的值为(D)
A .-1或2
B .1或-2
C .-2
D .1
13.(达州中考)设m ,n 分别为一元二次方程x 2+2x -2 018=0的两个实数根,则m 2+3m +n =2__016.
14.在解某个关于x 的一元二次方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两个根为8,2,则这个方程为x 2-10x +9=0.
15.已知实数m ,n 满足3m 2+6m -5=0,3n 2+6n -5=0,且m≠n,则n m +m n =-225
. 16.(十堰中考)已知关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2.
(1)求实数k 的取值范围;
(2)若x 1,x 2满足x 21+x 22=16+x 1x 2,求实数k 的值.
解:(1)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2,
∴Δ=(2k -1)2-4(k 2-1)=-4k +5≥0,
解得k≤54
. ∴实数k 的取值范围为k≤54
. (2)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2,
∴x 1+x 2=1-2k ,x 1x 2=k 2-1.
∵x 21+x 22=(x 1+x 2)2-2x 1x 2=16+x 1x 2,
∴(1-2k)2-2(k 2-1)=16+(k 2-1),即k 2-4k -12=0,
解得k =-2或k =6(不符合题意,舍去).
∴实数k 的值为-2.
17.已知关于x 的一元二次方程x 2
-(2k +1)x +4k -3=0.
(1)求证:无论k 取什么实数值,该方程总有两个不相等的实数根;
(2)当Rt△ABC 的斜边长a 为31,且两条直角边的长b 和c 恰好是这个方程的两个根时,求△ABC 的周长. 解:(1)证明:Δ=[-(2k +1)]2-4(4k -3)=4k 2-12k +13=(2k -3)2+4.
∵(2k-3)2≥0,
∴(2k-3)2+4>0,即Δ>0,
∴无论k 取什么实数值,该方程总有两个不相等的实数根.
(2)∵b,c 是方程x 2-(2k +1)x +4k -3=0的两个根,
∴b+c =2k +1,bc =4k -3.
∵a 2=b 2+c 2,a =31,
∴k 2-k -6=0.
∴k 1=3,k 2=-2.
∵b,c 均为正数,
∴4k-3>0.
∴k=3.此时原方程为x 2-7x +9=0,
∴b+c =7.
∴△ABC 的周长为7+31.
03 综合题
18.(换元思想)阅读材料:
材料1 若一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1、x 2,则x 1+x 2=-b a ,x 1x 2=c a
. 材料2 已知实数m 、n 满足m 2-m -1=0,n 2-n -1=0,且m≠n,求n m +m n
的值. 解:由题知m ,n 是方程x 2-x -1=0的两个不相等的实数根,根据材料1,得m +n =1,mn =-1.
∴n m +m n =m 2+n 2mn =(m +n )2-2mn mn =1+2-1
=-3. 根据上述材料解决下面的问题:
(1)一元二次方程x 2-4x -3=0的两根为x 1,x 2,则x 1+x 2=4,x 1x 2=-3;
(2)已知实数m ,n 满足2m 2-2m -1=0,2n 2-2n -1=0,且m ≠n ,求m 2n +mn 2的值;
(3)已知实数p ,q 满足p 2=3p +2,2q 2=3q +1,且p≠2q,求p 2+4q 2的值.
解:(2)∵m,n 满足2m 2-2m -1=0,2n 2
-2n -1=0, ∴m,n 可看作方程2x 2-2x -1=0的两实数根.
∴m+n =1,mn =-12
. ∴m 2n +mn 2=mn(m +n)=-12×1=-12
. (3)设t =2q ,代入2q 2=3q +1化简为t 2=3t +2, 则p 与t(即2q)为方程x 2-3x -2=0的两实数根, ∴p+2q =3,p·2q=-2,
∴p 2+4q 2=(p +2q)2-2p·2q=32-2×(-2)=13.。

相关文档
最新文档