八年级数学下册期末调研考试试题
八年级下册数学期末检测试题

八年级下册数学期末检测试题(青岛版带答案)一、选择题(每题5分,共30分)1、.若最简二次根式是同类二次根式,则X的值为()A. B. C. D.2、如图,已知那么添加下列一个条件后,仍无法判定的是()A.B.C.D.3、如图在△ABD和△ACE都是等边三角形,则ΔADC≌ΔABE的根据是()A. SSSB. SASC. ASAD. AAS4、①;②;③;④.AC:AD=AB:AC其中单独能够判定的个数为()A.1 B.2 C.3 D.45、如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB6、下列四个三角形,与右图中的三角形相似的是()二、填空题(每题5分,30分)7、三个相似多边形面积的和是232平方厘米,它们对应边的比为2:3:4,则这三个多边形的面积分别是。
8、已知,则9、在比例尺为地图上,量得甲、乙两地在地图上的距离为12 cm,,那么甲、乙两地的实际距离为;10、如图,已知D、E分别是的AB、AC边上的点,且S△ADE︰S四边形DBEC=1︰8,那么等于()A.1 : 9 B.1 : 3 C.1 : 8 D.1 : 211、如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC 和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有______________________(把你认为正确的序号都填上)。
12、若成立,则x的取值范围是_____ _____.三解答题(共60分,要求必须写出具体的解题步骤,书写认真)13、(10分)计算:+(3+)214、(10分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.(精确到0.1米)15、(10分).如图, △ABC中,AD为BC边上的高,∠ B AC=90度,AD=4,AB=6.求BD、BC的长度。
2020人教版八年级下册数学《期末检测试卷》(附答案解析)

人教版数学八年级下册期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8B. x <8C. x≤8D. x >0且x≠82.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 34.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个) 35 38 42 44 40 47 45 45 则这组数据的中位数、平均数分别是( ) A. 42、42B. 43、42C. 43、43D. 44、435.在实验课上,小亮利用同一块木板测得小车从不同高度()h 与下滑的时间()t 的关系如下表:下列结论错误的是( ) A. 当40h =时,t 约2.66秒 B. 随高度增加,下滑时间越来越短 C. 估计当80h cm =时,t 一定小于2.56秒 D. 高度每增加了10cm ,时间就会减少0.24秒 6.如果点A (﹣2,a )在函数y 12=-x +3的图象上,那么a 的值等于( ) A. ﹣7B. 3C. ﹣1D. 4Y的周长为( 7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD)A. 20B. 16C. 12D. 88.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差11.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A. 1B. 2C. 3D. 412.如图,点E,F 是▱ABCD 对角线上两点,在条件①DE=BF;②∠ADE=∠CBF;③AF=CE;④∠AEB( )=∠CFD 中,添加一个条件,使四边形DEBF 是平行四边形,可添加的条件是A. ①②③B. ①②④C. ①③④D. ②③④13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.三、解答题(本大题共7小题,共63分)20.计算:12 (27246)12 33+-⋅21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据;(1)计算甲车间样品合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.答案与解析一、选择题(本题共14小题,每小题3分,共42分)1.如果8x -是二次根式,那么x 应满足的条件是( ) A. x≠8 B. x <8C. x≤8D. x >0且x≠8【答案】C 【解析】根据二次根式的性质,被开方数大于等于0可得: 80x -≥,解得: 8x ≤,故选C. 2.下列等式不一定成立的是( ) A. 2(5)5-=B.ab a b =C.2(3)3ππ-=-D.82233= 【答案】B 【解析】 【分析】直接利用二次根式的性质分别化简的得出答案. 【详解】A .(5-)2=5,正确,不合题意; B .ab a b =(a ≥0,b ≥0),故此选项错误,符合题意; C .23π-=()π﹣3,正确,不合题意;D .82233=,正确,不合题意. 故选B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.3.如图,△ABC 中,AB=AC=5,BC=6,点D 在BC 上,且AD 平分∠BAC ,则AD 的长为( )A. 6B. 5C. 4D. 3【答案】C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD=22AB BD-=4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.4.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:42442+=43,x=18(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.5.在实验课上,小亮利用同一块木板测得小车从不同高度()h与下滑的时间()t的关系如下表:下列结论错误的是()A. 当40h=时,t约2.66秒B.随高度增加,下滑时间越来越短C. 估计当80h cm=时,t一定小于2.56秒D. 高度每增加了10cm,时间就会减少0.24秒【答案】D 【解析】【分析】一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.【详解】A选项:当h=40时,t约2.66秒;B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;D选项:错误,因为时间的减少是不均匀的;故选D.【点睛】考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).6.如果点A(﹣2,a)在函数y12=-x+3的图象上,那么a的值等于()A. ﹣7B. 3C. ﹣1D. 4 【答案】D【解析】【分析】把点A的坐标代入函数解析式,即可得a的值.【详解】根据题意,把点A的坐标代入函数解析式,得:a12=-⨯(﹣2)+3=4.故选D.【点睛】本题考查了一次函数图象上点的坐标特征,是基础题型.7.如图,Y ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCDY的周长为( )A. 20B. 16C. 12D. 8【答案】B【解析】【分析】首先证明:OE=12BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=12 BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.若kb>0,则函数y=kx+b的图象可能是()A. B. C. D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.9.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形【答案】D【解析】【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】A. 根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项不符合题意;B. 根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项不符合题意;C. 根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项不符合题意;D. 根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项符合题意; 故选D.【点睛】此题考查平行四边形的性质,菱形的判定,矩形的判定,正方形的判定,解题关键在于掌握判定定理.10.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:关于以上数据,说法正确的是( )A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差 【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7, 26778==65x ++++甲, ()()()()()2222221S =26666767865⎡⎤⨯-+-+-+-+-⎣⎦甲=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,23488==55x 乙++++, ()()()()()2222221S =25354585855乙⎡⎤⨯-+-+-+-+-⎣⎦=6.4, 所以只有D 选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键. 11.对于函数y=﹣2x+2,下列结论:①当x >1时,y <0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y 的值随x 的增大而增大,其中正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0, ∴一次函数中y 随x 的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x >1时,y <0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y 随x 的增大而减小,④不正确.故选B【点睛】本题考核知识点:一次函数性质. 解题关键点:熟记一次函数基本性质.12.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF是平行四边形,故①错误;添加条件②∠ADE=∠CBF.∵ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAC=∠BCA,∴△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴DEBF是平行四边形,故②正确;添加条件③AF=CE.易得AD=BC,∠DAC=∠BCA,∴△ADF≌△CBE,∴DF=BE,∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故③正确;添加条件④∠AEB=∠CFD.∵ABCD是平行四边形,DC=AB,DC∥AB,∴∠DCF=∠BAE.∵∠AEB=∠CFD,∴△ABE≌△CDF,∴DF=BE.∵∠AEB=∠CFD,∴∠DFE=∠BEF,∴DF∥BE,∴DEBF是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D.点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.13.如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A. 23B. 24C. 25D. 无答案【答案】B【解析】【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2mn即四个直角三角形的面积和,从而不难求得(m+n)2.【详解】(m+n)2=m2+n2+2mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣2)=24.故选B.【点睛】本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.14.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.【答案】C【解析】【分析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=12x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态二、填空题(本大题共5小题,每小题3分,共15分)15.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.【答案】8米.【解析】【分析】在Rt△ABC中,利用勾股定理即可求出BC的值.【详解】在Rt△ABC中,AB2=AC2+BC2.∵AB=10米,AC=6米,∴BC22=-=8米,即梯子的底端到墙的底端的距离为8米.AB AC故答案为8米.【点睛】本题考查了勾股定理的应用,解答本题的关键是掌握勾股定理在直角三角形中的表达式.16.某班的中考英语口语考试成绩如表:考试成绩/分30 29 28 27 26学生数/人 3 15 13 6 3则该班中考英语口语考试成绩的众数比中位数多_____分.【答案】1【解析】这组数出现次数最多的是29;∴这组数的众数是29.∵共42人,∴中位数应是第21和第22人的平均数,位于最中间的数是28,28,∴这组数的中位数是28.∴该班中考英语口语考试成绩的众数比中位数多29﹣28=1分,故答案为1.【点睛】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.17.把直线y=﹣2x﹣1沿x轴向右平移3个单位长度,所得直线的函数解析式为_____.【答案】y=﹣2x+5【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】把函数y=﹣2x﹣1沿x轴向右平移3个单位长度,可得到的图象的函数解析式是:y=﹣2(x﹣3)﹣1=﹣2x+5.故答案为y=﹣2x+5.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.18.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.【答案】20【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-600.当y=0时,30x-600=0,解得:x=20.故答案为20.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.19.如图,在▱ABCD中,AB=10,AD=6,AC⊥BC,则BD=__________.【答案】13【解析】【分析】由AC ⊥BC ,AB =10,AD =BC=6,根据勾股定理求得AC 的长,得出OA 的长,然后再由勾股定理求得OB 即可.【详解】∵四边形ABCD 是平行四边形,∴BC=AD=6,OD=OB,OA=OC,∵AC ⊥BC ,∴=8,∴OC=4,∴∴【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.三、解答题(本大题共7小题,共63分)20.计算:【答案】6【解析】分析:先将二次根式化为最简,然后合并同类二次根式,根据二次根式的乘法进行运算即可.详解:原式1633⎛=⨯⨯⨯ ⎝⎭=⨯==6.点睛:考查二次根式混合运算,掌握运算顺序是解题的关键.21.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.(1)在图中以格点为顶点画一个面积为5的正方形.(2)如图2所示,A ,B ,C 是小正方形的顶点,求∠ABC 的度数.【答案】(1)见解析;(2)∠ABC =45°.【解析】【分析】(1)根据勾股定理作出边长为5的正方形即可得;(2)连接AC ,根据勾股定理逆定理可得△ABC 是以AC 、BC 为腰的等腰直角三角形,据此可得答案.【详解】(1)如图1所示:(2)如图2,连AC ,则22221251310BC AC AB ==+==+=,.∵2225510+=()()(),即BC 2+AC 2=AB 2,∴△ABC 为直角三角形,∠ACB =90°,∴∠ABC =∠CAB =45°.【点睛】本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.22.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:mm):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别165.5~170.5 170.5~175.5 175.5~180.5 180.5~185.5 185.5~190.5 190.5~195.5频数甲车间 2 4 5 6 2 1乙车间 1 2 a b 2 0分析数据:车间平均数众数中位数方差甲车间180 185 180 43.1乙车间180 180 180 22.6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.【答案】(1)甲车间样品的合格率为55% (2)乙车间的合格产品数为750个;(3)乙车间生产的新产品更好,理由见解析.【解析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm 的产品的频数即可得到结论;(2)用总数20减去乙车间不合格样品的频数得到乙车间样品的合格产品数,从而得到乙车间样品的合格率,用合格率乘以1000即可得到结论.(3)可以根据合格率或方差进行比较.详解:(1)甲车间样品的合格率为56100%55%20+⨯=; (2)∵乙车间样品的合格产品数为()2012215-++=(个), ∴乙车间样品的合格率为15100%75%20⨯=, ∴乙车间的合格产品数为100075%750⨯=(个).(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好.②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.点睛:本题考查了频数分布表和方差.解题的关键是求出合格率,用样本估计总体.23.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.【答案】(1) y=2x+1;(2)不;(3)0.25. 【解析】【分析】(1)用待定系数法求解函数解析式;(2)将点P 坐标代入即可判断;(3)求出函数与x 轴、y 轴的交点坐标,后根据三角形的面积公式即可求解.【详解】解答:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(-1,1)代入函数解析式,1≠-2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12 -,此函数与x轴、y轴围成的三角形的面积为:11110.25 224⨯⨯-==24.如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.求证:DF∥AC.【答案】见解析;【解析】【分析】连接BD交AC于点O,根据平行四边形的性质证明即可.【详解】连接BD交AC于点O.∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.【点睛】本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.25.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?【答案】(1) y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.26.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【答案】见解析【解析】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.。
【人教版】数学八年级下册《期末检测试题》附答案

A. B. C. D.
【答案】D
【解析】
【分析】
根据正方形的判定,画出正方形即可解决问题;
【详解】解:如图所示:一共有11个正方形.故选D.
【点睛】本题考查正方形的判定和性质,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22.小慧根据学习函数的经验,对函数 的图像与性质进行了探究.下面是小慧的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是;
(2)列表,找出 与 的几组对应值.
-1
0
1
2
3
1
0
1
2
其中, ;
(3)在平面直角坐标系xOy中,描出上表中以各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,解决下列问题.
2020-2021学年第二学期期末测试
人教版数学八年级试题
学校________班级________姓名________成绩________
一、选择题
1.下列格式中,属于最简二次根式的是()
A. B. C. D.
2.下列以线段a、b、c的长为边的三角形中,不能构成直角三角形的是()
A. B.
C. D.
16.如图,过点A(2,0)的两条直线 , 分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB= .
(1)求点B 坐标;
(2)若△ABC的面积为4,求 的解析式.
17.如图,矩形ABCD中,点E为边CD上的一点,将矩形ABCD沿BE翻折,点A,D分别落在 处, 与 相交于点P,请用无刻度的直尺分别按下列要求画图(保留画图痕迹)
人教版八年级下册数学期末考试试题及答案

人教版八年级下册数学期末考试试题及答案人教版八年级下册数学期末测试试卷1.下列运算正确的是()A。
3+4=7B。
12=32C。
(-2)^2=4D。
1421÷36=39.472.使得式子有意义的x的取值范围是()A。
x≥4B。
x>4C。
x≤4D。
x<43.由线段a,b,c可以组成直角三角形的是()A。
a=5,b=8,c=7B。
a=2,b=3,c=4C。
a=24,b=7,c=25D。
a=5,b=5,c=64.下列结论中,矩形具有而菱形不一定具有的性质是()A。
内角和为360°B。
对角线互相平分C。
对角线相等D。
对角线互相垂直5.某校规定学生的学期数学成绩满分为1分,其中研究性研究成绩占4%,期末卷面成绩占6%,XXX的两项成绩(百分制)依次是8分,9分,则XXX这学期的数学成绩是()A。
8分B。
82分C。
84分D。
86分6.对于一次函数y=(3k+6)x-k,y随x的增大而减小,则k 的取值范围是()A。
k<0B。
k<-2C。
k>-2D。
-2<k<77.直线y=2x-7不经过()A。
第一象限B。
第二象限C。
第三象限D。
第四象限8.已知直角三角形的两直角边长分别为3和4,则斜边上的高为()A。
5B。
3C。
1.2D。
2.49.在庆祝新中国成立7周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛。
如果小明知道了自己的比赛成绩,要判断能否进入决赛,XXX需要知道这11名同学成绩的()A。
平均数B。
中位数C。
众数D。
方差10.如图,当y1>y2时,x的取值范围是()A。
x>1B。
x>2C。
x<1D。
x<211.如图,在△ABC中,∠B=50°,CD⊥XXX于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A。
125°B。
浙江省金华义乌市2024届数学八年级第二学期期末综合测试试题含解析

浙江省金华义乌市2024届数学八年级第二学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,从几何图形的角度看,下列这些图案既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.a 、b 、c 为ABC ∆三边,下列条件不能判断它是直角三角形的是( ) A .222a c b =-B .3a =,4b =,5c =C .::3:4:5A B C ∠∠∠=D .5a k =,12b k =,13c k =(k 为正整数)3.如果式子1x -有意义,那么x 的范围在数轴上表示为( ) A . B . C .D .4.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或75.如图,菱形的边长为2,∠ABC=45°,则点D 的坐标为( )A .(2,2)B .(22)C .(22)D 22)6.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中小明离家的距离y (km )与时间x (min )之间的对应关系.根据图象,下列说法中正确的是( )A .小明吃早餐用了17minB .食堂到图书馆的距离为0.8kmC .小明读报用了28minD .小明从图书馆回家的速度为0.8km /min7.如图,在Rt △ABC 中,∠A =30°,DE 是斜边AC 的中垂线,分别交AB ,AC 于D 、E 两点,若BD =2,则AC 的长是( )A .23B .33C .43D .838.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .43C .32D .29.如图,在▱ABCD 中,AB=3,AD=5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为( )A .3B .2.5C .2D .1.510.若式子2x -有意义,则x 的取值范围为( ) A .2x ≥ B .2x ≠C .2x >D .0x ≥11.已知,,是反比例函数的图象上的三点,且,则、、的大小关系是( ) A .B .C .D .12.已知()()()1231,,2,,1,A y B y C y --是一次函数13y x =-的图像上三点,则123,,y y y 的大小关系为( ) A .312y y y <<B .321y y y <<C .123y y y <<D .213y y y <<二、填空题(每题4分,共24分)13.对于实数x ,我们[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[410x +]=5,则x 的取值范围是______.14.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.15.在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.16.计算:12+3=_______.17.如图,平行四边形ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD =10,则DOE 的周长为_____.18.化简:321025xyx y =_________. 三、解答题(共78分) 19.(8分)有这样一个问题:探究函数|3|12x x y --+=的图象与性质.小东根据学习函数的经验,对函数|3|12x x y --+=的图象与性质进行了探究.下面是小东的探究过程,请补充完成: (1)填表x… 1-0 1 2 3 4 5 6 . . . y…321- 1-. . .(2)根据(1)中的结果,请在所给坐标系中画出函数2y =的图象;(3)结合函数图象,请写出该函数的一条性质.20.(8分)如图,点C为AD的中点,过点C的线段BE⊥AD,且AB=DE.求证:AB∥ED.21.(8分)如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.22.(10分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.23.(10分)在△ABC 中,D 是BC 边的中点,E、F 分别在AD 及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF ≌△CDE;(2)若DE =12BC,试判断四边形BFCE 是怎样的四边形,并证明你的结论.24.(10分)计算:(-4)-(3-2)25.(12分)如图,Rt△ABC中,分别以AB、AC为斜边,向△ABC的内侧作等腰Rt△ABE、Rt△ACD,点M是BC的中点,连接MD、ME.(1)若AB=8,AC=4,求DE的长;(2)求证:AB-AC=2DM.26.如图1,□ABCD的顶点A,B,D的坐标分别是(2,0),(6,0),D(0,t),t>0,作▱ABCD关于直线CD对称的□A'B'CD,其中点A的对应点是点A'、点B的对应点是点B'.(1)请你在图1中画出▱A′B′CD,并写出点A′的坐标;(用含t的式子表示)(2)若△OA′C的面积为9,求t的值;(3)若直线BD沿x轴的方向平移m个单位长度恰好经过点A′,求m的值.参考答案一、选择题(每题4分,共48分) 1、B 【解题分析】根据轴对称图形和中心对称图形的定义对各个选项一一判断即可得出答案. 【题目详解】A.是轴对称图形,不是中心对称图形;B.既是轴对称图形,又是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形. 故选B. 【题目点拨】本题考查了中心对称图形和轴对称图形的识别.熟练应用中心对称图形和轴对称图形的概念进行判断是解题的关键. 2、C 【解题分析】根据三角形内角和定理可得C 是否是直角三角形;根据勾股定理逆定理可判断出A 、B 、D 是否是直角三角形. 【题目详解】解:A. 222a c b =-即222a b c +=,根据勾股定理逆定理可判断△ABC 为直角三角形;B. 3a =,4b =,5c =,因为222345+=,即222a b c +=,,根据勾股定理逆定理可判断△ABC 为直角三角形;C. ::3:4:5A B C ∠∠∠= 根据三角形内角和定理可得最大的角518075345C ∠=︒⨯=︒++,可判断△ABC 为锐角三角形;D. 5a k =,12b k =,13c k =(k 为正整数),因为2222(5)(12)(13)169k k k k +==,即222a b c +=,根据勾股定理逆定理可判断△ABC 为直角三角形; 故选:C 【题目点拨】本题考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断. 3、D 【解题分析】根据二次根式有意义的条件可得x ﹣1≥0,求出不等式的解集,再在数轴上表示. 【题目详解】 由题意得:x ﹣1≥0, 解得:x ≥1, 在数轴上表示为:故选D . 【题目点拨】本题主要考查了二次根式有意义的条件,以及在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”. 4、D 【解题分析】分4是直角边、4是斜边,根据勾股定理计算即可. 【题目详解】当4是直角边时,斜边2234+,当4是斜边时,另一条直角边22473-=, 故选:D . 【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 1+b 1=c 1. 5、B【解题分析】根据坐标意义,点D坐标与垂线段有关,过点D向X轴垂线段DE,则OE、DE长即为点D坐标.【题目详解】过点D作DE⊥x轴,垂足为E,则∠CED=90°,∵四边形ABCD是菱形,∴AB//CD,∴∠DCE=∠ABC=45°,∴∠CDE=90°-∠DCE=45°=∠DCE,∴CE=DE,在Rt△CDE中,CD=2,CD2+DE2=CD2,∴CE=DE=2,∴OE=OC+CE=2+2,∴点D坐标为(2+2,2),故选B.【题目点拨】本题考查了坐标与图形性质、菱形的性质、等腰直角三角形的判定与性质,勾股定理等,正确添加辅助线是解题的关键.6、A【解题分析】根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解;由图象可得:小明吃早餐用了25﹣8=17min,故选项A正确;食堂到图书馆的距离为0.8﹣0.6=0.2km,故选项B错误;小明读报用了58﹣28=30min,故选项C错误;小明从图书馆回家的速度为0.8÷(68﹣58)=0.08km/min,故选项D错误.故选A . 【题目点拨】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 7、C 【解题分析】直接利用线段垂直平分线的性质得出AD=CD ,进而结合已知角得出DC ,BC 的长,进而利用勾股定理得出答案. 【题目详解】 连接DC ,在Rt △BCA 中,∵DE 为AC 的垂直平分线, ∴AD =CD ,∴∠A =∠DCA =30°, ∴∠BDC =60°, 在Rt △CBD 中,BD=2,BD 1cos DC 2BDC ∠==, 解得:DC =4,BC =3,在Rt △CBA 中,BC =3,AC =2BC =3故选C . 【题目点拨】此题主要考查了含30度角的直角三角形和线段垂直平分线的性质,正确得出DC 的长是解题关键. 8、C 【解题分析】试题解析:设AG x = ,因为ADG A DG ∠=∠' ,90A DA G '∠=∠=︒ ,所以A G AG x '== ,在BA G ' 与BAD 中,90A BG ABDBA G A ''∠=∠⎧⎨∠=∠=︒⎩所以 BA G '∽BAD ,那么x BG AD BD = ,22345BD =+= ,则435xx,解得32x = ,故本题应选C.9、C【解题分析】由平行四边形ABCD中,CE平分∠BCD,可证得△BCE是等腰三角形,继而利用AE=BE-AB,求得答案.【题目详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AE=BE-AB=5-3=2.故选C.【题目点拨】此题考查了平行四边形的性质以及等腰三角形的判定与性质.能证得△BCE是等腰三角形是解此题的关键.10、A【解题分析】根据二次根式有意义的条件可得x−2≥0,再解不等式可得答案.【题目详解】解:由题意得:x−2≥0,解得:x≥2,故选:A.【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.11、C【解题分析】先根据反比例函数y=的系数2>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x2<0<x3,判断出y1、y2、y3的大小.【题目详解】解:函数大致图象如图,∵k>0,则图象在第一、三象限,在每个象限内,y 随x 的增大而减小,又∵x 1<x 2<0<x 3,∴y 2<y 1<y 3.故选C.【题目点拨】本题考查了反比例函数图象上点的坐标特征.12、A【解题分析】根据k 的值先确定函数的变化情况,再由x 的大小关系判断y 的大小关系.【题目详解】解:30k =-<∴y 随x 的增大而减小又211-<-<213y y y ∴>>,即312y y y <<故答案为:A【题目点拨】本题考查了一次函数的性质,0k >时,y 随x 的增大而增大,k 0<时,y 随x 的增大而减小,灵活运用这一性质是解题的关键.二、填空题(每题4分,共24分)13、46≤x <1【解题分析】分析:根据题意得出5≤410x +<6,进而求出x 的取值范围,进而得出答案. 详解:∵[x ]表示不大于x 的最大整数,[410x +]=5,∴5≤410x +<6 解得:46≤x <1.故答案为46≤x <1.点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.14、m<1【解题分析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.15、(5,1)【解题分析】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【题目详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为(5,1).【题目点拨】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.16、【解题分析】化成.【题目详解】原式故答案为【题目点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.17、1【解题分析】由平行四边形的性质得出AB=CD,AD=BC,OB=OD=12BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=12CD,由三角形中位线定理得出OE=12BC,△DOE的周长=OD+OE+DE=OD+12(BC+CD),即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴AB =CD ,AD =BC ,OB =OD =12BD =5, ∵平行四边形ABCD 的周长为36,∴BC +CD =18,∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE =12CD , ∴OE =12BC , ∴△DOE 的周长=OD +OE +DE =OD +12(BC +CD )=5+9=1; 故答案为:1.【题目点拨】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键. 18、225x y【解题分析】分子分母同时约去公因式5xy 即可.【题目详解】 解:321025xy x y =225x y. 故答案为225x y. 【题目点拨】此题主要考查了分式的约分,关键是找出分子分母的公因式.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)见解析【解题分析】(1)将x 的值代入函数|3|12x x y --+=中,再求得y 的值即可; (2)根据(1)中x 、y 的值描点,连线即可;(3)根据(2)中函数的图象写出一条性质即可,如:不等式|3|10x x --+>成立的x 的取值范围是2x <.【题目详解】(1)填表如下:x . . .1- 0 1 2 3 4 5 6 . . . y . . . 3 2 1 0 1- 1- 1- 1- . . . (2)根据(1)中的结果作图如下:(3)根据(2)中的图象,不等式|3|10x x --+>成立的x 的取值范围是2x <.【题目点拨】考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.20、详见解析【解题分析】由AC=CD ,∠ACB=∠DCE=90°,根据HL 证出Rt △ACB ≌Rt △DCE ,推出∠A=∠D 即可.【题目详解】∵点C 为AD 的中点,∴AC=CD ,∵BE ⊥AD ,∴∠ACB=∠DCE=90°,在Rt △ACB 和Rt △DCE 中,AB DE AC DC =⎧⎨=⎩, ∴Rt △ACB ≌Rt △DCE (HL ),∴∠A=∠D ,∴AB ∥ED .考点:全等三角形的判定与性质21、 (1) D (1,0)(2) y=32x-6(3) 可求得点C(2,-3) ,则S △ADC =92【解题分析】 解:(1)因为D 是1L :33y x =-+与x 轴的交点,所以当0y =时,1x =,所以点(1,0)D ;(2)因为3(4,0),(3,)2A B -在直线2L 上,设2L 的解析式为 403{{23362k b k y kx b k b b +===+∴∴+=-=-,所以直线2L 的函数表达式362y x =-; (3)由326{{2333x y x y y x ==-∴=-=-+,所以点C 的坐标为(2,3)-,所以ADC ∆的底413,AD =-=高为C 的纵坐标的绝对值为3,所以193322ADC S ∆=⨯⨯=; 【题目点拨】此题考查一次函数解析式的求法,一次函数与坐标轴交点的求.和二元一次方程组的解法,两条直线交点的求法,即把两个一次函数对应的解析式构成二元一次方程组,求出方程组的解就是两条直线的交点坐标,也考查了三角形面积的求法; 22、(1)y=-x-2;(2)2;(3)P (-1,02) 【解题分析】【分析】(1)把A 、B 两点代入可求得k 、b 的值,可得到一次函数的表达式;(2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;(3)根据轴对称的性质,找到点A 关于x 的对称点A′,连接BA′,则BA′与x 轴的交点即为点P 的位置,求出直线BA′的解析式,可得出点P 的坐标.【题目详解】(1)把A (-1,-1)B(1,-3)分别代入y=kx+b ,得: 13k b k b -+=-⎧⎨+=-⎩,解得:12k b =-⎧⎨=-⎩, ∴一次函数表达式为:y=-x-2;(2)设直线与x 轴交于C ,与y 轴交于D ,y=0代入y=-x-2得x=-2,∴OC=2,x=0代入y=-x-2 得:y=-2,∴OD=2,∴S △COD =12×OC×OD=12×2×2=2; (3)点A 关于x 的对称点A′,连接BA′交x 轴于P ,则P 即为所求,由对称知:A′(-1,1),设直线A′B解析式为y=ax+c,则有13a ca c-+=⎧⎨+=-⎩,解得:21ac=-⎧⎨=-⎩,∴y=-2x-1,令y=0得, -2x-1=0,得x=-12,∴P(-1,02).【题目点拨】本题考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,轴对称-最短路线问题,熟练掌握待定系数法的应用是解题的关键.23、见解析【解题分析】分析:(1)由已知条件易得∠CED=∠BFD,BD=CD,结合∠BDF=∠CDE即可证得:△BDF≌△CDE;(2)由△BDF≌△CDE易得DE=DF,结合BD=CD可得四边形BFCE是平行四边形,结合DE=12BC可得EF=BC,由此即可证得平行四边形BFCE是矩形. 详解:(1)∵CE∥BF,∴∠CED=∠BFD.∵D是BC边的中点,∴BD=DC,在△BDF和△CDE中,BFD CEDBDF CDEBD DC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(AAS).(2)四边形BFCE是矩形.理由如下:∵△BDF≌△CDE,∴DE=DF,又∵BD=DC,∴四边形BFCE是平行四边形.∵DE=12BC,DE=12EF,∴BC=EF,∴平行四边形BFCE是矩形.点睛:熟悉“平行四边形和矩形的判定方法”是解答本题的关键.24、3.【解题分析】先将每个二次根式化成最简二次根式之后,再去掉括号,将同类二次根式进行合并. 【题目详解】解:(-4)-(3-2)=(4-)-(-)=4--+=3.故答案为3.【题目点拨】本题考查了二次根式的加减混合运算,最终结果必须是最简二次根式.25、(1)2(2)证明见解析.【解题分析】试题分析:(1)根据三角函数求得AE和AD的长,二者的差就是所求.(2)延长CD交AB于点F,证明MD是△BCF的中位线,AF=AC,据此即可证得.(1)直角△ABE中,2AB=42在直角△ACD中,AD=22AC=22则DE=AE-AD=2-2222如图,延长CD交AB于点F.在△ADF和△ADC中,∠FAD=∠CAD,AD=AD,∠ADF=∠ADC,∴△ADF≌△ADC(ASA).∴AC=AF,CD=DF.又∵M是BC的中点,∴DM是△CBF的中位线.∴DM=12BF=12(AB-AF)=12(AB-AC).∴AB-AC=2DM.考点:1.三角形中位线定理;2.等腰直角三角形3.全等三角形的判定和性质.26、(1)▱A′B′CD如图所示见解析,A′(2,2t);(2)t=3;(3)m=1.【解题分析】(1)根据题意逐步画出图形.(2)根据三角形的面积计算方式进行作答.(3)根据平移的相关性质进行作答. 【题目详解】(1)▱A ′B ′CD 如图所示,A ′(2,2t ).(2)∵C ′(4,t ),A (2,0),∵S △OA ′C =10t ﹣12×2×2t ﹣12×6×t ﹣12×4×t =2. ∴t =3.(3)∵D (0,t ),B (6,0),∴直线BD 的解析式为y =﹣6t x +t , ∴线BD 沿x 轴的方向平移m 个单位长度的解析式为y =﹣6t x +6t (6+m ), 把点A (2,2t )代入得到,2t =﹣3t +t +6tm , 解得m =1.【题目点拨】 本题主要考查了三角形的面积计算方式及平移的相关性质,熟练掌握三角形的面积计算方式及平移的相关性质是本题解题关键.。
人教版八年级下册数学期末试题(附答案)

2021——2022学年第二学期数学期末检测卷一、选择题(每小题3分,共30分)1.代数式11x -有意义,则x 的取值范围是( ) A . x ≥0 B . x ≠1 C . x >0 D . x ≥0且x ≠12.如果一次函数 y =x +k 的图象经过第一、三、四象限,那么 k 的取值范围是 ( ) k >0 B . k <0 C . k >1 D . k <13.如图,在平行四边形 ABCD 中,∠A =140∘,则 ∠B 的度数是 ( )A. 40∘B . 70∘C . 110∘D . 140∘ 书名 《西游记》 《水浒传》 《三国演义》 《红楼梦》销量量/本 180120 125 85 些《西游记》,你认为最影响该书店决策的统计量是( )A .平均数B .众数C .中位数D .方差5.已知点(-3,y 1)、(2,y 2)都在直线y =-2x +1上,则y 1、y 2的大小关系是( )A . y 1<y 2B . y 1=y 2C . y 1>y 2D . 不能比较6.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠( )A .22︒B .68︒C .96︒D .112︒7.如图,一圆柱高8cm ,底面半径为cm ,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm8.如图,直线l 是一次函数y=kx+b 的图象,若点A (3,m )在直线l 上,则m 的值是( )A .﹣5B .C .D .79.实数a ,b 在数轴上的位置如图所示,则化简√(a -2)2-√(a +b)2的结果是( )A.-b-2 B.b+2 C.b-2 D.-2a-b-210.如图,在平行四边形ABCD中,对角线AC,BD相交于O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③EG=GF;④EA平分∠GEF.其中正确的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(每小题3分,共12分)11.在二次根式√7,√14,√21,√28,√35,√42,√49中,属于最简二次根式的有个12.某校举办广播体操比赛,评分项目包括精神面貌,整齐程度,动作规范这三项,总评成绩按以上三项得分2:3:5的比例计算,已知八(1)班在比赛中三项得分依次是8分,9分,10分,则八(1)班这次比赛的总成绩为__________分.13.古希腊的哲学家柏拉图曾指出:如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是____________14.关于自变量x的函数y=(k-3)x+2k,下列结论:①当k≠3时,此函数是一次函数;②无论k取什么值,函数图象必经过点(-2,6);③若函数经过二、三、四象限,则k的取值范围是k<0;④若函数图象与x轴的交点始终在正半轴,则k的取值范围是k<3.其中结论正确的序号是__________.三、解答题(本大题共5小题,共58分.解答时应写出文字说明、证明过程或演算步骤)15.计算2132)4882-16.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.17.如图,在平面直角坐标系中,直线y=-12x -1与直线y =-2x +2相交于点P . (1)求交点P 的坐标; (2)请把图象中直线y =-2x +2在直线y =-12x -1上方的 部分描黑加粗,并写出不等式-2x +2>-12x -1的解集.18.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人19.甲、乙两地间的直线公路长为400千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y (千米)与轿车所用的时间x (小时)的关系如图所示,请结合图象解答下列问题: x yO A BP y =-2x +2 y =-12x -1(1)货车的速度是_______千米/小时;轿车的速度是_______千米/小时;t 值为_______. (2)求轿车距其出发地的距离y (千米)与所用时间x (小时)之间的函数关系式并写出自变量x 的取值范围;(3)请直接写出货车出发多长时间两车相距90千米.20.天水市某商店准备购进A 、B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用2000元购进A 种商品和用1200元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A 、B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)“五一”期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠()1020m m <<元,B 种商品售价不变,在(2)的条件下,请设计出m 的不同取值范围内,销售这40件商品获得总利润最大的进货方案.答案:一、选择题1.B2.B C3.A4.B5.C6.B7.C8.C9.B 10.B二、填空题11.5 12.9.3 13. 20,99,101 14.②③三、解答题15.716.证明:∵BE ∥AC ,CE ∥DB ,∴四边形OBEC 是平行四边形,又∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠AOB=90°,∴平行四边形OBEC 是矩形.17. (1)(2,-2) (2)x<218. (1)200 (2)C (3)略(4)36019.解:(1)车的速度是50千米/小时;轿车的速度是:()4007280÷-=千米/小时;240803t =÷=.故答案为:50;80;3;(2)由题意可知:()3,240A ,()4,240B ,()7,0C ,设直线OA 的解析式为()110y k x k =≠,∴()8003y x x =≤≤,当34x ≤≤时,240y =,设直线BC 的解析式为()20y k x b k =+≠,把()4,240B ,()7,0C 代入得:22424070k b k b +=⎧⎨+=⎩,解得280560k b =-⎧⎨=⎩, ∴80560y =-+,∴()()()8003240348056047x x y x x x ⎧≤≤⎪=≤≤⎨⎪-+≤≤⎩;(3)设货车出发x 小时后两车相距90千米,根据题意得:()5080140090x x +-=-或()5080240090x x +-=+,解得3x =或5.答:货车出发3小时或5小时后两车相距90千米.20.解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为()20x -元. 依题意得2000120020x x =-,解得50x =, 经检验50x =是原方程的解且符合题意当50x =时,2030x -=.答:A 种商品每件的进价为50元,B 种商品每件的进价为30元;(2)设购进A 种商品a 件,购进B 种商品()40a -件, 依题意得5030(40)15601(40)2a a a a +-⎧⎪⎨-⎪⎩ 解得40183a , ∵a 为整数∴14,15,16,17,18a =.∴该商店有5种进货方案;(3)设销售A 、B 两种商品总获利y 元,则()()()()805045304015600y m a a m a =--+--=-+.①当15m =时,150m -=,y 与a 的取值无关,即(2)中的五种方案都获利600元; ②当1015m <<时,150m ->,y 随a 的增大而增大,∴当18a =时,获利最大,即在(2)的条件下,购进A 种商品18件,购进B 种商品22件,获利最大;③当1520m <<时,150m -<,y 随a 的增大而减小,∴当14a =时,获利最大,∴在(2)的条件下,购进A 种商品14件,购进B 种商品26件,获利最大.。
【人教版】数学八年级下册《期末检测试题》含答案

17.用圆规和直尺作图,不写作法,保留作图痕迹
已知 及其边 上一点 .在 内部求作点 ,使点 到 两边的距离相等,且到点 , 的距离相等.
四、解答题(本题满分68分,共8道小题)
18.计算:
(1) ;
(2) ;
(3)先化简再求值 ,其中 , .
19.如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为 .小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
23.问题:将边长为 的正三角形的三条边分别 等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.
探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?
3.下列事件中是必然事件是()
A. 明天太阳从西边升起
B. 篮球队员在罚球线投篮一次,未投中
C. 实心铁球投入水中会沉入水底
D. 抛出一枚硬币,落地后正面向上
【答案】C
【解析】
【分析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.
【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;
A、添加 可利用SAS定理判定 ,故此选项不合题意;
B、添加 可利用AAS定理判定 ,故此选项不合题意;
C、添加 可利用ASA定理判定△ABD≌△ACD,故此选项不合题意;
D、添加 不能判定 ,故此选项符合题意;
八年级数学下册期末质量检测试题1

八年级下学期期末质量检测数学试题一、选择题:(每小题3分,共10小题,本题共30分) 1.下列多项式中能用平方差公式分解囚式的是( )A .9一x 2B .a 2+2ab+b 2C .x 2—2xy+y 2D .5m 2—20mn 2.如果a>b ,那么下列各式中一定正确的是( )A .a 一2>b+2B .2a> a +bC .一a>一bD .a c > b c 3.若2y 一7x=0,则x :y 等于( )A .2:7B .4:7C .7:2D .7:44.人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差分别为:186x =,286x =,21259s =,22186s =.则成绩较为稳定的班级是( )A .八(1)班B .八(2)班C .两个班成绩一样稳定D .无法确定5.解关于x 的方程611x m x x -=--产生增根,则常数m 的值等于( )A .一2B .一3C .1D .一56.如图,已知等腰三角形ABC 中,腰AB=6,底BC=5,AB 的中 垂线MN 交AC 于点D ,交AB 于点M ,则BD+DC=( ) A .3 B .4 C .5 D .67.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .16040018(120%)xx+=+ B 、16040016018(120%)x x -+=+C 、1604001601820%xx-+= D .40040016018(120%)xx-+=+8.下列命题是真命题的是( )A .相等的角是对顶角B .两直线被第三条直线所截,内错角相等C .相似三角形的面积比等于相似比D .有一角对应相等的两个菱形相似9.如图,将图中的∆ABC 以B 点为位似中心,放大到2倍,则点A 对应点的坐标是( ) A .(—3,—1) B .(0,—2) C .(—3,—3) D .(一1,2)10.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,阿时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为( )A.11.5米 B.11.75米 C.11.8米 D.12.25米二、填空题(每小题3分,共8小题,本题共24分)11. 若分式33xx-+的值为零,则x= ____________.12.如图,要使△ACD △ABC,需添加条件_________________________________.(只需写出一种适合的条件即可)13.已知一个样本l,3,2,5,x,它的平均数是3,则这个样本的标准差是___________.14.如图,△ABC中,BD是角平分线,过D作DE∥AB交BC于点E,AB=5cm,BE=3cm,则EC:CB= ____________.15.一个主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20米,一个主持人现在站在A处,则她应至少走____________米才最理想.(精确到0.1米)16.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其周长是___________。