井研县高中2018-2019学年高三下学期第三次月考试卷数学

合集下载

井研县一中2018-2019学年上学期高三数学10月月考试题

井研县一中2018-2019学年上学期高三数学10月月考试题

井研县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .2. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱3. 将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .4. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)5. 阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( ) A .28 B .36 C .45 D .120 6. 已知集合,则A0或 B0或3C1或D1或37. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .8. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 9. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为( )A.4πB.25πC. 5πD. 225π+π【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.10.下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形11.12,e e 是平面内不共线的两向量,已知12AB e ke =-,123CD e e =-,若,,A B D 三点共线,则的值是( )A .1B .2C .-1D .-212.设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .0二、填空题13.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)14.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.15.数列{a n }是等差数列,a 4=7,S 7= .16.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).三、解答题17.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.18.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.19.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.(1)求0x =,1y =,2z =的概率;(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.20.中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p (0<p <1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率(Ⅰ)设通讯器械上正常工作的元件个数为X ,求X 的数学期望,并求该通讯器械正常工作的概率P ′(列代数式表示)(Ⅱ)现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率.21.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.22.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.23.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC′,证明:BC′∥面EFG.井研县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.2. 【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 3. 【答案】C【解析】函数f (x )=sin (2x+θ)(﹣<θ<)向右平移φ个单位,得到g (x )=sin (2x+θ﹣2φ),因为两个函数都经过P (0,),所以sin θ=,又因为﹣<θ<,所以θ=,所以g (x )=sin (2x+﹣2φ),sin (﹣2φ)=,所以﹣2φ=2k π+,k ∈Z ,此时φ=k π,k ∈Z ,或﹣2φ=2k π+,k ∈Z ,此时φ=k π﹣,k ∈Z ,故选:C .【点评】本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,三角函数求值,难度中档4. 【答案】C【解析】如图,由双曲线的定义知,a PF PF2||||21=-,a QF QF 2||||21=-,两式相加得a PQ QF PF4||||||11=-+,又||||1PF PQ λ=,1PF PQ ⊥, ||1||121PF QF λ+=∴, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλ,λλ-++=21114||aPF ①,λλλλ-+++-+=∴22211)11(2||a PF ②,在12PF F ∆中,2212221||||||F F PF PF =+,将①②代入得+-++22)114(λλa22224)11)11(2(c a =-+++-+λλλλ,化简得:+-++22)11(4λλ22222)11()11(e =-+++-+λλλλ,令t =-++λλ211,易知λλ-++=211y 在]34,125[上单调递减,故]35,34[∈t ,22222284)2(4t t t t t t e +-=-+=∴]25,2537[21)411(82∈+-=t ,]210,537[∈e ,故答案 选C.5. 【答案】C【解析】解析:本题考查程序框图中的循环结构.121123mn n n n n m S C m---+=⋅⋅⋅⋅=,当8,10m n ==时,82101045m n C C C ===,选C .6. 【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。

数学2018-2019学年度高三下学期三模(理科)试题

数学2018-2019学年度高三下学期三模(理科)试题

2018—2019学年度下学期高三年级三模试题数学(理科)试卷第一命题人:康艳华第二命题人:王战普第Ⅰ卷(选择题共60分)一、选择题(每小题5分,共60分。

下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)理科数学1.已知集合A={x∈R|x+1>0},B={x∈Z|x≤1},则A∩B=A.{x|0≤x≤1}B.{x|﹣1<x≤1}C.{0,1}D.{1}2.复数1122ii++的共轭复数的虚部为A.110B .110-C.310D.310-3.有一散点图如图所示,在5个(x,y)数据中去掉D(3,10)后,下列说法正确的是A.残差平方和变小B.相关系数r变小C.相关指数R2变小D.解释变量x与预报变量y的相关性变弱4.已知双曲线22:1124x yC-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为P,Q,若△POQ为直角三角形,则|PQ|=A.2B.4C.6D.85.中华人民共和国国旗是五星红旗,旗面左上方缀着的五颗黄色五角星,四颗小五角星环拱于大星之右,象征中国共产党领导下的革命人民大团结和人民对党的衷心拥护.五角星可通过正五边形连接对角线得到,且它具有一些优美的特征,如221211121111512A EB A A BB A A B B E-===.现在正五边形A1B1C1D1E1内随机取一点,则此点取自正五边形A2B2C2D2E2内部的概率为A.512-B.251()2-C.351()2-D.451()2-6.已知某算法的程序框图如图所示,则该算法的功能是A.求首项为1,公比为2的等比数列的前2017项的和B.求首项为1,公比为2的等比数列的前2018项的和C.求首项为1,公比为4的等比数列的前1009项的和D.求首项为1,公比为4的等比数列的前1010项的和7.如图1,已知正方体ABCD-A1B1C1D1的棱长为2,M,N,Q分别是线段AD1,B1C,C1D1上的动点,当三棱锥Q-BMN的正视图如图2所示时,三棱锥俯视图的面积为A.2B.1 C.32D.528.如图直角坐标系中,角02παα⎛⎫<< ⎪⎝⎭、角02πββ⎛⎫-<< ⎪⎝⎭的终边分别交单位圆于A 、B 两点,若B 点的纵坐标为513-,且满足3AOB S ∆=,则1sin 3cos sin 2222ααα⎛⎫-+ ⎪⎝⎭ 的值 A .513-B .1213C .1213- D .5139. 已知函数()sin 3cos (0)f x x x ωωω=->,若集合{(0x ∈,)|()1}f x π=-含有4个元素,则实数ω的取值范围是A .35[,)22B .35(,]22C .725[,)26D .725(,]2610.已知抛物线24y x =上有三点A ,B ,C ,AB ,BC ,CA 的斜率分别为3,6,2-,则ABC ∆的重心坐标为A .14(,1)9B .14(,0)9C .14(,0)27D .14(,1)2711.函数11()22x x aaf x eex +-=+-- 的零点个数是A.0B.1C.2D.312. 在等腰直角ABC ∆中, AB AC ⊥, 2BC =, M 为BC 中点, N 为AC 中点,D 为BC 边上一个动点, ABD ∆沿AD 翻折使BD DC ⊥,点A 在面BCD 上的投影为点O ,当点D 在BC 上运动时,以下说法错误的是A .线段NO 为定长B .2CO ⎡∈⎣C .180AMO ADB ∠+∠>︒D .点O 的轨迹是圆弧二、 填空题(共4题,每题5分)13. 已知二项式2nx x ⎛- ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为14. 数学老师给出一个定义在R 上的函数f (x ),甲、乙、丙、丁四位同学各说出了这个函数的一条性质:甲:在(﹣∞,0]上函数单调递减;乙:在[0,+∞)上函数单调递增; 丙:函数f (x )的图象关于直线x =1对称;丁:f (0)不是函数的最小值. 老师说:你们四个同学中恰好有三个人说的正确,那么,你认为说法错误的同学是 15. 已知△ABC 的一内角3A π=,O 为△ABC 所在平面上一点,满足|OA |=|OB |=|OC |,设AO mAB nAC =+ ,则m +n 的最大值为16.已知ABC ∆的内角A B C 、、的对边分别为a b c 、、,若2A B =,则2c bb a+的取值范围为__________.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤。

四川省乐山市井研县井研中学2018-2019学年高三数学文测试题含解析

四川省乐山市井研县井研中学2018-2019学年高三数学文测试题含解析

四川省乐山市井研县井研中学2018-2019学年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量||=||=|﹣|=1,则|2﹣|=( )A.2 B.C.3 D.2参考答案:B考点:平面向量数量积的运算.分析:由已知两边平方可得,=2=1,则|2﹣|==,代入可求.解答:解:∵||=||=|﹣|=1,∴=,∴=2=1,则|2﹣|===.故选B点评:本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础试题.2. 在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有A.辆 B.辆C.辆 D.辆参考答案:D考点:频率分布表与直方图以正常速度通过该处的汽车频率为:所以以正常速度通过该处的汽车约有:辆3. P?Q为三角形ABC中不同的两点,若,,则为()A.B.C.D.参考答案:B令为的中点,化为,即,可得,且点在边上,则,设点分别是的中点,则由可得,设点是的中点,则,设点是的中点,则,因此可得,所以,故选B.4. 已知为不同的直线,为不同的平面,则下列说法正确的是A.B.C.D.参考答案:【知识点】空间中直线与平面之间的位置关系.G4 G5【答案解析】D 解析:A选项可能有,B选项也可能有,C选项两平面可能相交,故选D.【思路点拨】分别根据线面平行和线面垂直的性质和定义进行判断即可.5. 函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度参考答案:D略6. 若、, 则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不是充分也不是必要条件参考答案:B7. 下列命题正确的是()A.若直线l1∥平面α,直线l2∥平面α,则l1∥l2B.若直线l上有两个点到平面α的距离相等,则l∥αC.直线l与平面α所成角的取值范围是(0,)D.若直线l1⊥平面α,直线l2⊥平面α,则l1∥l2参考答案:D【考点】空间中直线与平面之间的位置关系.【分析】根据各选项条件举出反例.【解答】解:对于A,若直线l1∥平面α,直线l2∥平面α,则l1与l2可能平行,可能相交,也可能异面,故A错误.对于B,若直线l与平面α相交于O点,在交点两侧各取A,B两点使得OA=OB,则A,B 到平面α的距离相等,但直线l与α不平行,故B错误.对于C,当直线l?α或l∥α时,直线l与平面α所成的角为0,当l⊥α时,直线l与平面α所成的角为,故C错误.对于D,由定理“垂直于同一个平面的两条直线平行“可知D正确.故选:D.8. 函数的定义域为()A. B. C. D.参考答案:D9. 设α,β都是锐角,且cosα=,sin(α﹣β)=,则cosβ=()A.B.﹣C.或﹣D.或参考答案:A【考点】两角和与差的余弦函数.【专题】三角函数的求值.【分析】注意到角的变换β=α﹣(α﹣β),再利用两角差的余弦公式计算可得结果.【解答】解:∵α,β都是锐角,且cosα=,sin(α﹣β)=,∴sinα==;同理可得,∴cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=?+?=,故选:A.【点评】本题考查两角和与差的余弦公式,考查同角三角函数间的关系式的应用,属于中档题.10. 抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,且该焦点到双曲线C的渐近线的距离为1,则双曲线C的方程为()A.x2﹣=1 B.y2﹣=1 C.﹣y2=1 D.﹣y2=1参考答案:D【考点】抛物线的简单性质;双曲线的简单性质.【分析】先求出抛物线的焦点坐标,即可得到c=2,再求出双曲线的渐近线方程,根据点到直线的距离求出b的值,再求出a,问题得以解决.【解答】解:∵抛物线y2=8x中,2p=8,∴抛物线的焦点坐标为(2,0).∵抛物线y2=8x与双曲线C:﹣=1(a>0,b>0)有相同的焦点,∴c=2,∵双曲线C:﹣=1(a>0,b>0)的渐近线方程为y=±x,且该焦点到双曲线C的渐近线的距离为1,∴=1,即=1,解得b=1,∴a2=c2﹣b2=3,∴双曲线C的方程为﹣y2=1,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,在中,是边上一点,,则的长为参考答案:【知识点】余弦定理.C8解析:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°,在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.,【思路点拨】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.12. 已知是等比数列,且,,则,的最大值为.参考答案:5,13. 已知集合,,则参考答案:14. 在中,若,则的最大值.参考答案:【知识点】半角公式;余弦定理;最值问题.C6 C8而在中,有,令,,两式联立可得:,易知此方程有解,故,解得,故答案为。

井研县实验中学2018-2019学年上学期高三数学10月月考试题

井研县实验中学2018-2019学年上学期高三数学10月月考试题

井研县实验中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣22. 已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2π D .23π3. 执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .354. 已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为( )A .B .C .D .5. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.6. 一个骰子由1~6六个数字组成,请你根据图中三种状态所显示的数字,推出“”处的数字是( ) A .6 B .3 C .1 D .27. 已知变量,x y 满足约束条件20170x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则y x 的取值范围是( )A .9[,6]5B .9(,][6,)5-∞+∞ C .(,3][6,)-∞+∞ D .[3,6] 8. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=59. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)10.设数集M={x|m ≤x ≤m+},N={x|n﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A. B.C.D.二、填空题11.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .12.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;②若点P 到点A 的距离为,则动点P 的轨迹所在曲线是圆;③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)13.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.14.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .15.函数的单调递增区间是 .16.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.三、解答题17.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF=EF ;(2)求证:PA 是圆O 的切线.18.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?19.已知cos (+θ)=﹣,<θ<,求的值.20.(本小题满分10分)选修4-1:几何证明选讲1111]如图,点C 为圆O 上一点,CP 为圆的切线,CE 为圆的直径,3CP =.(1)若PE 交圆O 于点F ,165EF =,求CE 的长; (2)若连接OP 并延长交圆O 于,A B 两点,CD OP ⊥于D ,求CD 的长.21.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.22.(本小题满分13分)椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,直线:1l x my =-经过点1F 与椭圆C 交于点M ,点M 在x 轴的上方.当0m =时,1||2MF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)若点N 是椭圆C 上位于x 轴上方的一点, 12//MF NF ,且12123MF F NF F S S ∆∆=,求直线l 的方程.井研县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】D【解析】:解:∵∥,∴﹣4﹣2x=0,解得x=﹣2.故选:D.2.【答案】A【解析】考点:三角函数的图象性质.3.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C4.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.5.【答案】B【解析】因为(1)(N )nx n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 6. 【答案】A 【解析】试题分析:根据与相邻的数是1,4,3,而与相邻的数有1,2,5,所以1,3,5是相邻的数,故“?”表示的数是,故选A .考点:几何体的结构特征. 7. 【答案】A 【解析】试题分析:作出可行域,如图ABC ∆内部(含边界),yx 表示点(,)x y 与原点连线的斜率,易得59(,)22A ,(1,6)B ,992552OAk ==,661OB k ==,所以965y x ≤≤.故选A .考点:简单的线性规划的非线性应用. 8. 【答案】B【解析】解:线段AB 的中点为,k AB ==﹣,∴垂直平分线的斜率 k==2,∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,故选B .【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.9. 【答案】C【解析】如图,由双曲线的定义知,a PF PF2||||21=-,a QF QF 2||||21=-,两式相加得 a PQ QF PF 4||||||11=-+,又||||1PF PQ λ=,1PF PQ ⊥,||1||121PF QF λ+=∴, a PF PQ QF PF 4||)11(||||||1211=-++=-+∴λλ,λλ-++=21114||aPF ①,λλλλ-+++-+=∴22211)11(2||a PF ②,在12PF F ∆中,2212221||||||F F PF PF =+,将①②代入得+-++22)114(λλa22224)11)11(2(c a =-+++-+λλλλ,化简得:+-++22)11(4λλ22222)11()11(e =-+++-+λλλλ,令t =-++λλ211,易知λλ-++=211y 在]34,125[上单调递减,故]35,34[∈t ,22222284)2(4t t t t t t e +-=-+=∴]25,2537[21)411(82∈+-=t ,]210,537[∈e ,故答案 选C.10.【答案】C【解析】解:∵集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集,∴根据题意,M 的长度为,N 的长度为, 当集合M ∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .二、填空题11.【答案】.【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则BE=B1F=,EF=1∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.【答案】①②④【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,②正确;对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,∴P点轨迹所在曲线是双曲线,⑤错误.故答案为:①②④.【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.13.【答案】()2212x y -+=或()2212x y ++=【解析】试题分析:由题意知()0,1F ,设2001,4P x x ⎛⎫⎪⎝⎭,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2212x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()2212x y ++=.1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质. 14.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【答案】 [2,3) .【解析】解:令t=﹣3+4x ﹣x 2>0,求得1<x <3,则y=,本题即求函数t 在(1,3)上的减区间.利用二次函数的性质可得函数t 在(1,3)上的减区间为[2,3), 故答案为:[2,3).16.【答案】2【解析】解:由,消去t得:2x﹣y+5=0,由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.三、解答题17.【答案】【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.18.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求. 19.【答案】【解析】解:∵<θ<,∴+θ∈(,),∵cos (+θ)=﹣,∴sin (+θ)=﹣=﹣,∴sin (+θ)=sin θcos+cos θsin=(cos θ+sin θ)=﹣,∴sin θ+cos θ=﹣,①cos (+θ)=coscos θ﹣sin sin θ=(cos θ﹣cos β)=﹣,∴cos θ﹣sin θ=﹣,②联立①②,得cos θ=﹣,sin θ=﹣,∴====.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.20.【答案】(1)4CE =;(2)CD =. 【解析】试题分析:(1)由切线的性质可知ECP ∆∽EFC ∆,由相似三角形性质知::EF CE CE EP =,可得4CE =;(2)由切割线定理可得2(4)CP BP BP =+,求出,BP OP ,再由CD OP OC CP ⋅=⋅,求出CD 的值. 1 试题解析:(1)因为CP 是圆O 的切线,CE 是圆O 的直径,所以CP CE ⊥,090CFE ∠=,所以ECP ∆∽EFC ∆,设CE x =,EP =,又因为ECP ∆∽EFC ∆,所以::EF CE CE EP =,所以2x =4x =.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质. 21.【答案】(1)21sin 212cos a S a a θθ=⋅+- (2)2a =【解析】试题解析:(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:22212cos x ax ax θ=+-,所以22112cos x a a θ=+-, 所以211sin 2212cos a S ax x sin a a θθθ=⋅⋅=⋅+-,(2)因为()()222cos 12cos 2sin sin 1212cos a a a a a S a a θθθθθ+--⋅=+-'⋅, ()()2222cos 121212cos a a aa a θθ+-=⋅+-, 令0S '=,得022cos ,1aa θ=+ 且当0θθ<时,022cos 1aaθ>+,0S '>,当0θθ>时,022cos 1aaθ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以22112a a =+,解得2a = 因为1a >,则2a =点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。

城区高中2018-2019学年高三下学期第三次月考试卷数学(1)

城区高中2018-2019学年高三下学期第三次月考试卷数学(1)

城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤02. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )A .(﹣1,0)∪(1,+∞)B .(﹣∞,﹣1)∪(0,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)3. 已知点A (0,1),B (﹣2,3)C (﹣1,2),D (1,5),则向量在方向上的投影为( )A.B.﹣C.D.﹣4.设=(1,2),=(1,1),=+k,若,则实数k 的值等于( )A.﹣ B.﹣ C. D.5. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件6. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7.不等式恒成立的条件是( )A .m >2B .m <2C .m <0或m >2D .0<m <28. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。

问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈9. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=10.满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .2C .3D .411.已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1)D .[﹣9,1)12.已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( ) A .[﹣2,0] B .[﹣3,﹣1] C .[﹣5,1] D .[﹣2,1)二、填空题13.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .14.已知(1+x+x 2)(x)n (n ∈N +)的展开式中没有常数项,且2≤n ≤8,则n= .15.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .16.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 . 17.函数y=sin 2x ﹣2sinx 的值域是y ∈ .18.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .三、解答题19.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.(I )求p 的值;(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.20.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.21.(本小题满分12分)已知函数f (x )=12x 2+x +a ,g (x )=e x .(1)记曲线y =g (x )关于直线y =x 对称的曲线为y =h (x ),且曲线y =h (x )的一条切线方程为mx -y -1=0,求m 的值;(2)讨论函数φ(x )=f (x )-g (x )的零点个数,若零点在区间(0,1)上,求a 的取值范围.22.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是梯形,//AB DC ,2ABD π∠=,AD =22AB DC ==,F为PA 的中点.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PB PD ===P BDF -的体积.23.(本小题满分12分)ABCDPF在等比数列{}n a 中,3339,22a S==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.24.(本小题满分12分)已知向量(cos sin ,sin )m x m x x w w w =-a ,(cos sin ,2cos )x x n x w w w =--b ,设函数()()2n f x x R =??a b的图象关于点(,1)12p对称,且(1,2)w Î. (I )若1m =,求函数)(x f 的最小值;(II )若()()4f x f p£对一切实数恒成立,求)(x f y =的单调递增区间.【命题意图】本题考查三角恒等变形、三角形函数的图象和性质等基础知识,意在考查数形结合思想和基本运算能力.25.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;(2)若f(1)=g(1)①求实数a的值;②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.26.(本小题满分10分)选修4-1:几何证明选讲1111]CP=.如图,点C为圆O上一点,CP为圆的切线,CE为圆的直径,3(1)若PE交圆O于点F,16EF=,求CE的长;5⊥于D,求CD的长. (2)若连接OP并延长交圆O于,A B两点,CD OP城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.2.【答案】D【解析】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.【点评】本题综合考查奇函数定义与它的单调性.3.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.4.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.5.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.6.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.7.【答案】D【解析】解:令f(x)=x2+mx+=(x+)2﹣+则f min(x)=﹣+.∵恒成立,∴﹣+>0解得0<m<2.故选D.【点评】本题考查了函数恒成立问题,是基础题.8.【答案】【解析】解析:选B.如图,设E 、F 在平面ABCD 上的射影分别为P ,Q ,过P ,Q 分别作GH ∥MN ∥AD 交AB 于G ,M ,交DC 于H ,N ,连接EH 、GH 、FN 、MN ,则平面EGH 与平面FMN 将原多面体分成四棱锥E -AGHD 与四棱锥F -MBCN 与直三棱柱EGH -FMN .由题意得GH =MN =AD =3,GM =EF =2,EP =FQ =1,AG +MB =AB -GM =2,所求的体积为V =13(S 矩形AGHD +S 矩形MBCN )·EP +S △EGH ·EF =13×(2×3)×1+12×3×1×2=5立方丈,故选B.9. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数; 对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D .【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 10.【答案】B【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .11.【答案】D【解析】解:函数f (x )=lg (1﹣x )在(﹣∞,1)上递减, 由于函数的值域为(﹣∞,1], 则lg (1﹣x )≤1, 则有0<1﹣x ≤10, 解得,﹣9≤x <1. 则定义域为[﹣9,1), 故选D .【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.12.【答案】A【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a≤0故选A二、填空题13.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.14.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.15.【答案】6.【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB过焦点F,∴|AB|=x1+x2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题.16.【答案】.【解析】解:如图,设AC中点为M,连接OM,则OM为△ABC的中位线,于是△OFM∽△AFB,且==,即=可得e==.故答案为:.【点评】本题考查椭圆的方程和性质,主要是离心率的求法,运用中位线定理和三角形相似的性质是解题的关键.17.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.18.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.三、解答题19.【答案】【解析】解:(I )由题意可知,抛物线y 2=2px (p >0)的焦点坐标为,准线方程为.所以,直线l 的方程为…由消y 并整理,得…设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=3p ,又|AB|=|AF|+|BF|=x 1+x 2+p=4, 所以,3p+p=4,所以p=1…(II )由(I )可知,抛物线的方程为y 2=2x .由题意,直线m 的方程为y=kx+(2k ﹣1).…由方程组(1)可得ky 2﹣2y+4k ﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y 2=2x ,得.这时.直线m 与抛物线只有一个公共点.…当k ≠0时,方程(2)得判别式为△=4﹣4k (4k ﹣2).由△>0,即4﹣4k (4k ﹣2)>0,亦即4k 2﹣2k ﹣1<0.解得.于是,当且k ≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m 与抛物线有两个不同的公共点,…因此,所求m 的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.20.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3)借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。

城区高中2018-2019学年高三下学期第三次月考试卷数学(2)

城区高中2018-2019学年高三下学期第三次月考试卷数学(2)

城区高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. “双曲线C 的渐近线方程为y=±x ”是“双曲线C的方程为﹣=1”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .不充分不必要条件 2. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )A .9B .25C .162D .503. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <04. 已知命题p :“若直线a 与平面α内两条直线垂直,则直线a 与平面α垂直”,命题q :“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为( ) A .p ∧q B .p ∨q C .¬p ∨q D .p ∧¬q5. 下列哪组中的两个函数是相等函数( ) A .()()4f x x =g B .()()24=,22x f x g x x x -=-+ C .()()1,01,1,0x f x g x x >⎧==⎨<⎩ D .()()=f x x x =,g 6. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, } B .{,, } C .{V|≤V≤} D .{V|0<V≤}7. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣38. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a的 取值范围是( )A .(1,)-+∞B .(1,0)- C. (2,)-+∞ D .(2,0)- 9. 如图,1111DC B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .D .10.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .(x ≠0)B .(x ≠0)C .(x ≠0)D .(x ≠0)11.圆222(2)x y r -+=(0r >)与双曲线2213yx -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力. 12.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .二、填空题13.设椭圆E :+=1(a >b >0)的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是 .14.长方体1111ABCD A B C D -中,对角线1A C 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .15.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .16.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .17.已知三棱柱ABC ﹣A 1B 1C 1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O 的表面上,且球O 的表面积为7π,则此三棱柱的体积为 . 18.命题“若1x ≥,则2421x x -+≥-”的否命题为.三、解答题19.设函数f (x )=mx 2﹣mx ﹣1.(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.20.在平面直角坐标系xOy中,圆C:x2+y2=4,A(,0),A1(﹣,0),点P为平面内一动点,以PA为直径的圆与圆C相切.(Ⅰ)求证:|PA1|+|PA|为定值,并求出点P的轨迹方程C1;(Ⅱ)若直线PA与曲线C1的另一交点为Q,求△POQ面积的最大值.21.已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=2cos(θ﹣),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线C2的直角坐标方程;(2)求曲线C2上的动点M到直线C1的距离的最大值.22.已知y=f(x)的定义域为[1,4],f(1)=2,f(2)=3.当x∈[1,2]时,f(x)的图象为线段;当x∈[2,4]时,f(x)的图象为二次函数图象的一部分,且顶点为(3,1).(1)求f(x)的解析式;(2)求f(x)的值域.23.已知椭圆E :=1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.24.已知圆C :(x ﹣1)2+y 2=9内有一点P (2,2),过点P 作直线l 交圆C 于A ,B 两点. (1)当l 经过圆心C 时,求直线l 的方程;(2)当弦AB 被点P 平分时,求直线l 的方程.25.(本小题满分12分)已知函数1()ln (42)()f x m x m x m x=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.26.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:若双曲线C的方程为﹣=1,则双曲线的方程为,y=±x,则必要性成立,若双曲线C的方程为﹣=2,满足渐近线方程为y=±x,但双曲线C的方程为﹣=1不成立,即充分性不成立,故“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的必要不充分条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据双曲线和渐近线之间的关系是解决本题的关键.2.【答案】D【解析】解:∵5x>0,5y>0,又x+y=4,∴5x+5y≥2=2=2=50.故选D.【点评】本题考查基本不等式,关键在于在应用基本不等式时灵活应用指数运算的性质,属于基础题.3.【答案】B【解析】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B4.【答案】C【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q 为假命题.则¬p∨q为真命题,其余都为假命题,故选:C.【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.5.【答案】D111]【解析】考点:相等函数的概念.6.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.7.【答案】A【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,若p是q的充分不必要条件,则a≥1,故选:A.【点评】本题主要考查充分条件和必要条件的判断,比较基础.8. 【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).9. 【答案】D 【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 10.【答案】B【解析】解:∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点.11.【答案】C12.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

井研县高级中学2018-2019学年上学期高三数学10月月考试题

井研县高级中学2018-2019学年上学期高三数学10月月考试题

井研县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 2. 设集合{}|||2A x R x =∈≤,{}|10B x Z x =∈-≥,则A B =( )A.{}|12x x <≤B.{}|21x x -≤≤C. {}2,1,1,2--D. {}1,2【命题意图】本题考查集合的概念,集合的运算等基础知识,属送分题.3. “”是“”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定5. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .①B .②C .③D .④6. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .07. 已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q8. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.9.已知平面向量(12)=,a,(32)=-,b,若k+a b与a垂直,则实数k值为()A.15-B.119C.11D.19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.10.已知函数()3sin cos(0)f x x xωωω=+>,()y f x=的图象与直线2y=的两个相邻交点的距离等于π,则()f x的一条对称轴是()A.12xπ=-B.12xπ=C.6xπ=-D.6xπ=二、填空题11.幂函数1222)33)(+-+-=mmxmmxf(在区间()+∞,0上是增函数,则=m.12.在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB 的距离是.13.函数f(x)=2a x+1﹣3(a>0,且a≠1)的图象经过的定点坐标是.14.已知平面向量a,b的夹角为3π,6=-ba,向量c a-,c b-的夹角为23π,23c a-=,则a 与c 的夹角为__________,a c⋅的最大值为.【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 15.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.16.若x、y满足约束条件⎩⎪⎨⎪⎧x-2y+1≤02x-y+2≥0x+y-2≤0,z=3x+y+m的最小值为1,则m=________.三、解答题17.已知不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2﹣(ac+b)x+bc<0.18.等差数列{a n}的前n项和为S n,已知a1=10,a2为整数,且S n≤S4。

延津县高中2018-2019学年高三下学期第三次月考试卷数学

延津县高中2018-2019学年高三下学期第三次月考试卷数学

延津县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 已知三棱柱111ABC A B C - 的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点, 则异面直线AB 与1CC 所成的角的余弦值为( )ABD .342. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3123. 由两个1,两个2,两个3组成的6位数的个数为( ) A .45B .90C .120D .3604. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为45 5.双曲线=1(m ∈Z )的离心率为( ) A.B .2C.D .36. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.8. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )A.18B.12C.9D.0【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.9. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .864010.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是( )A .1B .C .D .11.若(z a ai =-+为纯虚数,其中∈a R ,则7i 1ia a +=+( ) A .i B .1 C .i - D .1-12.已知数列,则5是这个数列的( ) A .第12项B .第13项C .第14项D .第25项二、填空题13.若点p (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为14.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.15.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .1310 B .3 C .4 D .2110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.16.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .17.已知函数f (x )=,若f (f (0))=4a ,则实数a= .18.已知函数f (x )=x m 过点(2,),则m= .三、解答题19.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.20.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)21.已知x2﹣y2+2xyi=2i,求实数x、y的值.22.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;111](2)求该几何体的表面积S.23.已知函数f(x)=x2﹣mx在[1,+∞)上是单调函数.(1)求实数m的取值范围;(2)设向量,求满足不等式的α的取值范围.24.如图,直三棱柱ABC﹣A1B1C1中,D、E分别是AB、BB1的中点,AB=2,(1)证明:BC1∥平面A1CD;(2)求异面直线BC1和A1D所成角的大小;(3)求三棱锥A1﹣DEC的体积.25.已知函数f(x)=cos(ωx+),(ω>0,0<φ<π),其中x∈R且图象相邻两对称轴之间的距离为;(1)求f(x)的对称轴方程和单调递增区间;(2)求f(x)的最大值、最小值,并指出f(x)取得最大值、最小值时所对应的x的集合.26.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.延津县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】考点:异面直线所成的角.2. 【答案】A【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),该同学通过测试的概率为=0.648.故选:A .3. 【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C 62C 42C 22=90个不同的六位数,故选:B .【点评】本题考查了分步计数原理,关键是转化,属于中档题.4. 【答案】B 【解析】试题分析:因为截面PQMN 是正方形,所以//,//PQ MN QM PN ,则//PQ 平面,//ACD QM 平面BDA ,所以//,//PQ AC QM BD ,由PQ QM ⊥可得AC BD ⊥,所以A 正确;由于//PQ AC 可得//AC 截面PQMN ,所以C 正确;因为PN PQ ⊥,所以AC BD ⊥,由//BD PN ,所以MPN ∠是异面直线PM 与BD 所成的角,且为045,所以D 正确;由上面可知//,//BD PN PQ AC ,所以,PN AN MN DN BD AD AC AD==,而,AN DN PN MN ≠=,所以BD AC ≠,所以B 是错误的,故选B. 1 考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键. 5. 【答案】B【解析】解:由题意,m 2﹣4<0且m ≠0,∵m ∈Z ,∴m=1∵双曲线的方程是y 2﹣x 2=1 ∴a 2=1,b 2=3, ∴c 2=a 2+b 2=4∴a=1,c=2,∴离心率为e==2. 故选:B .【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c 2=a 2+b 2.6. 【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B. 7. 【答案】C 【解析】考点:几何体的结构特征. 8. 【答案】A.【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称, ∴6个实根的和为3618⋅=,故选A.9. 【答案】C【解析】解:由题意及频率分布直方图的定义可知:属于醉酒驾车的频率为:(0.01+0.005)×10=0.15, 又总人数为28800,故属于醉酒驾车的人数约为:28800×0.15=4320. 故选C【点评】此题考查了学生的识图及计算能力,还考查了频率分布直方图的定义,并利用定义求解问题.10.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A ,B ,D 皆有可能,而<1,故C 不可能.故选C .【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.11.【答案】C【解析】∵z 为纯虚数,∴a =∴7i 3i i 1i 3a a +-====-+. 12.【答案】B【解析】由题知,通项公式为,令得,故选B答案:B二、填空题13.【答案】:2x ﹣y ﹣1=0解:∵P (1,1)为圆(x ﹣3)2+y 2=9的弦MN 的中点, ∴圆心与点P 确定的直线斜率为=﹣,∴弦MN 所在直线的斜率为2,则弦MN 所在直线的方程为y ﹣1=2(x ﹣1),即2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0 14.【答案】649π【解析】111]考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.15.【答案】D【解析】16.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.17.【答案】2.【解析】解:∵f(0)=2,∴f(f(0))=f(2)=4+2a=4a,所以a=2故答案为:2.18.【答案】﹣1.【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.三、解答题19.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.20.【答案】【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.21.【答案】【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题.22.【答案】(1)3;(2)623+. 【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD C 均为矩形,2(111312)623S =⨯++⨯=+.1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 23.【答案】【解析】解:(1)∵函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数∴x=≤1 ∴m ≤2∴实数m 的取值范围为(﹣∞,2]; (2)由(1)知,函数f (x )=x 2﹣mx 在[1,+∞)上是单调增函数∵,∵∴2﹣cos2α>cos2α+3∴cos2α<∴∴α的取值范围为.【点评】本题考查函数的单调性,考查求解不等式,解题的关键是利用单调性确定参数的范围,将抽象不等式转化为具体不等式.24.【答案】【解析】(1)证明:连接AC1与A1C相交于点F,连接DF,由矩形ACC1A1可得点F是AC1的中点,又D是AB的中点,∴DF∥BC1,∵BC1⊄平面A1CD,DF⊂平面A1CD,∴BC1∥平面A1CD;…(2)解:由(1)可得∠A1DF或其补角为异面直线BC1和A1D所成角.DF=BC1==1,A1D==,A1F=A1C=1.在△A1DF中,由余弦定理可得:cos∠A1DF==,∵∠A1DF∈(0,π),∴∠A1DF=,∴异面直线BC1和A1D所成角的大小;…(3)解:∵AC=BC,D为AB的中点,∴CD⊥AB,∵平面ABB1A1∩平面ABC=AB,∴CD⊥平面ABB1A1,CD==1.∴=﹣S△BDE﹣﹣=∴三棱锥C﹣A1DE的体积V=…【点评】本题考查线面平行的证明,考查三棱锥的体积的求法,考查异面直线BC1和A1D所成角,是中档题,解题时要注意空间中线线、线面、面面间的位置关系及性质的合理运用.25.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.26.【答案】【解析】解:(1)依题意,知f(x)的定义域为(0,+∞).…当a=2,b=1时,f(x)=lnx﹣x2﹣x,f′(x)=﹣2x﹣1=﹣.令f′(x)=0,解得x=.…当0<x<时,f′(x)>0,此时f(x)单调递增;当x>时,f′(x)<0,此时f(x)单调递减.所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+∞).…(2)F(x)=lnx+,x∈[2,3],所以k=F′(x0)=≤,在x0∈[2,3]上恒成立,…所以a≥(﹣x02+x0)max,x0∈[2,3]…当x0=2时,﹣x02+x0取得最大值0.所以a≥0.…(3)当a=0,b=﹣1时,f(x)=lnx+x,因为方程f(x)=mx在区间[1,e2]内有唯一实数解,所以lnx+x=mx有唯一实数解.∴m=1+,…设g(x)=1+,则g′(x)=.…令g′(x)>0,得0<x<e;g′(x)<0,得x>e,∴g(x)在区间[1,e]上是增函数,在区间[e,e2]上是减函数,…1 0分∴g(1)=1,g(e2)=1+=1+,g(e)=1+,…所以m=1+,或1≤m<1+.…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

井研县高中2018-2019学年高三下学期第三次月考试卷数学一、选择题1. 如图,四面体D ﹣ABC的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A. B .2 C. D .32. 已知函数f (x )=若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(0,1)B .(1,+∞)C .(﹣1,0)D .(﹣∞,﹣1)3. 已知a=log 23,b=8﹣0.4,c=sin π,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a4. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假5. 若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( ) A .1B .2C .3D .46. 已知双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的渐近线方程是( ) A .y=±x B .y=±C .xy=±2xD .y=±x7.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=8. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .0B .1C .2D .39. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件10.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .11.若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3B .2C .3D .412.设关于x 的不等式:x 2﹣ax ﹣2>0解集为M ,若2∈M, ∉M ,则实数a 的取值范围是( ) A .(﹣∞,)∪(1,+∞)B .(﹣∞,)C .[,1)D.(,1)二、填空题13.8名支教名额分配到三所学校,每个学校至少一个名额,且甲学校至少分到两个名额的分配方案为 (用数字作答)14.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .15.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____. 16.求函数在区间[]上的最大值 .17.已知向量、满足,则|+|= .18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx ﹣2)+f (x )<0恒成立,则x 的取值范围为_____.三、解答题19.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.20.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,且PA=AD ,点F 是棱PD 的中点,点E 为CD 的中点. (1)证明:EF ∥平面PAC ; (2)证明:AF ⊥EF .21.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,且990S =,15240S =. (1)求{}n a 的通项公式n a 和前n 项和n S ; (2)设1(1)n n a b n =+,n S 为数列{}n b 的前n 项和,若不等式n S t <对于任意的*n ∈N 恒成立,求实数t 的取值范围.22.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.23.已知全集U为R,集合A={x|0<x≤2},B={x|x<﹣3,或x>1}求:(I)A∩B;(II)(C U A)∩(C U B);(III)C U(A∪B).24.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.25.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.26.已知函数f (x )=cos (ωx+),(ω>0,0<φ<π),其中x ∈R 且图象相邻两对称轴之间的距离为;(1)求f (x )的对称轴方程和单调递增区间;(2)求f (x )的最大值、最小值,并指出f (x )取得最大值、最小值时所对应的x 的集合.井研县高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)一、选择题1. 【答案】 B【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1, 即AD •≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B .【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.2. 【答案】A【解析】解:函数f (x )=的图象如下图所示:由图可得:当k ∈(0,1)时,y=f (x )与y=k 的图象有两个交点, 即方程f (x )=k 有两个不同的实根, 故选:A3. 【答案】B【解析】解:1<log 23<2,0<8﹣0.4=2﹣1.2,sin π=sin π,∴a >c >b , 故选:B .【点评】本题主要考查函数值的大小比较,根据对数函数,指数函数以及三角函数的图象和性质是解决本题的关键.4. 【答案】B【解析】解:∵命题“p ∧q ”为假,且“¬q ”为假, ∴q 为真,p 为假; 则p ∨q 为真, 故选B .【点评】本题考查了复合命题的真假性的判断,属于基础题.5. 【答案】A【解析】解:设=t ∈(0,1],a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),∴a n =5t 2﹣4t=﹣,∴a n ∈,当且仅当n=1时,t=1,此时a n 取得最大值;同理n=2时,a n 取得最小值.∴q ﹣p=2﹣1=1, 故选:A . 【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题.6. 【答案】A【解析】解:抛物线y 2=8x 的焦点(2,0),双曲线C 的一个焦点与抛物线y 2=8x 的焦点相同,c=2,双曲线C 过点P (﹣2,0),可得a=2,所以b=2.双曲线C 的渐近线方程是y=±x .故选:A .【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.7. 【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 8. 【答案】C【解析】解:命题“设a 、b 、c ∈R ,若ac 2>bc 2,则c 2>0,则a >b ”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.9.【答案】A【解析】解:由“|x﹣2|<1”得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,即“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故选:A.10.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为:=4,另一个侧面的面积为:=4,四个面中面积的最大值为4;故选C.11.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.12.【答案】C【解析】解:由题意得:,解得:≤a<1,则实数a的取值范围为[,1).故选C【点评】此题考查了一元二次不等式的解法,以及不等式组的解法,根据题意列出关于a的不等式组是解本题的关键.二、填空题13.【答案】15【解析】解:8名支教名额分配到三所学校,每个学校至少一个名额,则8人可以分为(6,1,1),(5,2,1),(4,3,1),(4,2,2),(3,3,2),∵甲学校至少分到两个名额,第一类是1种,第二类有4种,第三类有4种,第四类有3种,第五类也有3种,根据分类计数原理可得,甲学校至少分到两个名额的分配方案为1+4+4+3+3=15种故答案为:15.【点评】本题考查了分类计数原理得应用,关键是分类,属于基础题.14.【答案】(﹣3,﹣2)∪(﹣1,0).【解析】解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),令y′=0,则x=0或﹣2,﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<﹣2<a+1或a<0<a+1,∴﹣3<a<﹣2或﹣1<a<0.故答案为:(﹣3,﹣2)∪(﹣1,0).15.【答案】11 [133e e⎧⎫+⋃+⎨⎬⎩⎭,)【解析】当x<0时,由f(x)﹣1=0得x2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2, 即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,). 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 16.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+.又x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1],∴sin(2x﹣)+∈[1,].即f(x)∈[1,].故f(x)在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.17.【答案】5.【解析】解:∵=(1,0)+(2,4)=(3,4).∴==5.故答案为:5.【点评】本题考查了向量的运算法则和模的计算公式,属于基础题.18.【答案】2 2,3⎛⎫- ⎪⎝⎭【解析】三、解答题19.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.20.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.21.【答案】【解析】【命题意图】本题考查等差数列通项与前n项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.22.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.23.【答案】【解析】解:如图:(I)A∩B={x|1<x≤2};(II)C U A={x|x≤0或x>2},C U B={x|﹣3≤x≤1}(C U A)∩(C U B)={x|﹣3≤x≤0};(III)A∪B={x|x<﹣3或x>0},C U(A∪B)={x|﹣3≤x≤0}.【点评】本题考查集合的运算问题,考查数形集合思想解题.属基本运算的考查.24.【答案】【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,∴AB⊥平面PAD,∵E、F为PA、PB的中点,∴EF∥AB,∴EF⊥平面PAD;(II)解:过P作AD的垂线,垂足为O,∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.取AO中点M,连OG,EO,EM,∵EF∥AB∥OG,∴OG即为面EFG与面ABCD的交线又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,故OG⊥EO∴∠EOM 即为所求在RT△EOM中,EM=OM=1∴tan∠EOM=,故∠EOM=60°∴平面EFG与平面ABCD所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.25.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析.【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=,即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故1212x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.26.【答案】【解析】解:(1)函数f(x)=cos(ωx+)的图象的两对称轴之间的距离为=,∴ω=2,f(x)=cos(2x+).令2x+=kπ,求得x=﹣,可得对称轴方程为x=﹣,k∈Z.令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数的增区间为,k∈Z.(2)当2x+=2kπ,即x=kπ﹣,k∈Z时,f(x)取得最大值为1.当2x+=2kπ+π,即x=kπ+,k∈Z时,f(x)取得最小值为﹣1.∴f(x)取最大值时相应的x集合为{x|x=kπ﹣,k∈Z};f(x)取最小值时相应的x集合为{x|x=kπ+,k∈Z}.。

相关文档
最新文档