函数的表示法_图文.ppt
合集下载
课件函数的表示法_人教版高中数学必修一PPT课件_优秀版

•
(2)画出该函数的图象;
•
(3)写出该函数的值域.
39
解析:
(2)已知f[g(x)]的解析式,求f(x)的解析式: 令x-1=t,则x=t+1, (1)画函数图象时首先关注函数的定义域,即在定义域内作图; 探究一 函数图象的作法及应用 当a>0时,f(a)=a2=4,得a=2, 作函数图象时应注意的事项: (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; 探究二 函数解析式的求法 【例】 (1)已知f(x)=2x+1,求f(x+1)的表达式; 探究二 函数解析式的求法 (2)已知g(x-1)=2x+6,求g(3). 作函数图象时应注意的事项: ∴g(t)=2(t+1)+6=2t+8,即g(x)=2x+8, 探究二 函数解析式的求法 当x>1或x<-1时,f(x)=1, 探究二 函数解析式的求法 (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; ∴f(x+1)=2(x+1)+1=2x+3
学表达式叫作函数的解析式.
• 2 .图像法 • 以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各
个点,这些点构成了函数y=f(x)的图象,这种用 图象 表示两个变量之间对应关系
的方法叫作图象法.
3
知识点聚焦:
• 3.列表法 • 列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种列
函以数自f变(x量)的x定的义取• 域值当为为R横x. 坐∈标[,0对,2应]时的函,数值图y为象纵坐是标直,在线平面的直一角坐部标系分中,描出观各个察点图,这象些点可构知成了,函数其y=值f(x域)的图为象,[1这,5种]用.图象 表示两个变量之间对应关系的方法叫作图象
法. (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; (1)画函数图象时首先关注函数的定义域,即在定义域内作图; (2)已知f[g(x)]的解析式,求f(x)的解析式: (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; 【解析】选择容易计算的几个数值,列表如下: 当x>1或x<-1时,f(x)=1, 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下:
1【课件(人教版)】第1课时 函数的表示法

法二:(换元法) 令 x+1=t(t≥1),则 x=(t-1)2(t≥1), 所以 f(t)=(t-1)2+2 (t-1)2=t2-1(t≥1). 所以 f(x)=x2-1(x≥1). (3)f(x)+2f1x=x,令 x=1x, 得 f1x+2f(x)=1x.
于是得到关于 f(x)与 f1x的方程组
(3)消元法(或解方程组法):在已知式子中,含有关于两个不同变量的函数, 而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的 关于这两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变 量,得到目标变量的解析式,这种方法叫做消元法(或解方程组法).
1.(2020·辽源检测)设函数 f11- +xx=x,则 f(x)的表达式为
解析:选 A.法一:令 2x+1=t,则 x=t-2 1.
所以 f(t)=6×t-2 1+5=3t+2,
所以 f(x)=3x+2.
法二:因为 f(2x+1)=3(2x+1)+2,
所以 f(x)=3x+2.
()
3.已知函数 f(x)=x-mx ,且此函数的图象过点(5,4),则实数 m 的值为 ________. 解析:因为函数 f(x)=x-mx 的图象过点(5,4), 所以 4=5-m5 ,解得 m=5. 答案:5
5.已知 f(x)是二次函数,且满足 f(0)=1,f(x+1)-f(x)=2x,求 f(x). 解:因为 f(x)是二次函数,设 f(x)=ax2+bx+c(a≠0), 由 f(0)=1,得 c=1. 由 f(x+1)-f(x)=2x, 得 a(x+1)2+b(x+1)+1-ax2-bx-1=2x.
4.下表表示函数 y=f(x),则 f(x)>x 的整数解的集合是________.
函数的概念及表示法ppt课件

(1)对于x的每一个值,y都满足有唯一的值与之对应吗?
不满足
(2)y是x的函数吗?为什么?
不是,因为y的值不是唯一的.
26
26
随堂练习
演练
1. 下面四个关系式:① y = ;② = x ;
③2 x2- y =0;④ y = ( x >0).
其中 y 是 x 的函数的是(
D )
27
随堂练习
报酬按16元/时计算. 设小明的哥哥这个月工作的时间为t
小时,应得报酬为m元,填写下表:
怎样用关于t的代数式表示m? m = 16t
对于这个函数,当t=5时,把它代入函数表达式,得
m = 16t=16×5=80(元).
m = 80是当自变量t=5时的函数值.
代入法
19
19
探究新知
函数与函数值
对于自变量在可取值范围内的一个确定的值a,函
判断一个关系是否是函数关系,根据函数定义,主
要从以下3个方面分析:
(1) 是否在一个变化过程中;
(2) 在该过程中是否有两个变量;
(3) 对于一个变量每取一个确定的值,另一个变量
是否有唯一确定的值与其对应.
13
13
探究新知
知识点
函数的三种表示法
合作探究
m = 16t
这几个函数用等式来表示,
这种表示函数关系的等式,
16
80
160
240
320
…
t
…
16t
怎样用关于t的代数式表示m? m = 16t
5
5
探究新知
合作探究
2.跳远运动员按一定的起跳姿势,其跳远的距离s
(米)与助跑的速度v(米/秒)有关. 根据经验,跳
函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.
函数的概念及其表示法ppt课件

∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.
函数的表示法ppt

,进而求出函数的极限、导数等数学特征。
03
应用实际生活
函数图像不仅在数学中有用,也可以应用于实际生活中,例如物理学
、工程学、经济学等领域都可以用函数图像来表示一些现象的变化规
律。
04
表格表示法
表格的构造和意义
01
横坐标:自变量的取值
02
纵坐标:因变量的取值
表格中的每个点的颜色或形状表示函数值的正负或大小
03
用Excel或其他表格软件制作函数表格
打开表格软件并选择适当的工 作表
从上到下、从左到右输入自变 量的取值
根据函数关系计算因变量的取 值并填入表格中
可以使用公式、图表等工具提 高表格的制作效率和精度
从函数图像转换到表格数据
确定自变量和因变量的取值范围,并选择合 适的步长
可以使用网格线、标记等工具提高表格的清 晰度和易读性
函数表示方法概述
表格法
用一张表格来列出函数的输入和输 出值,这种方法适用于一些比较简 单的函数。
图象法
用图象来表示函数的输入和输出值 之间的关系,这种方法直观易懂。
解析式法
用数学式子来表示函数的输入和输 出值之间的关系,这种方法适用于 任何类型的函数。
程序法
用编程语言来实现函数的输入和输 出值的映射关系,这种方法适用于 实现复杂的功能。
值域
指因变量y的取值范围,根据函数的性质和实际问题的 要求,确定函数的值域。
函数的单调性和奇偶性
单调性
指函数在某个区间内递增或递减的性质,根据函数的导数或图像特征来判断 。
奇偶性
指函数关于原点对称或关于y轴对称的性质,根据函数的图像或表达式特点来 判断。
解决实际问题中变量的约束关系
函数的表示法 ——PPT

能力目标:
1.了解生活中的函数表示方法; 2.使学生掌握函数的三种常用表示方 法的选用;使学生初步认识用函数的 知识解决具体问题;
素养目标:
1、通过本节课的教学,使学生认识到数学源于生活, 也可应用于生活,能够解决生活中的实际问题,培养学 生勇于探索、敢于创新的钻研精神。 2.倡导“三爱三节”的人文精神和“共同抗疫“的社会 责任感。
不利因素
学生应用数学知识的意识不强, 创造力较弱,看待与分析问题不 深入,因此在选择恰当的方法表 示函数时有一定的难度;
03
教法学法
教法和学法
1 教法 根据学生的认知水平和知识特点; 为突出重点,突破难点; 微课教学法、情境教学法、引导探究法、激励教学法等; 运用多媒体辅助教学的的一种手段; 激发兴趣,在教师的引导下解决问题;
函数的三种表示方法,各有优、缺点,因此,在实际中要根据不同问题与需 要,灵活地采用不同的方法,许多函数是可以用三种方法来表示的,但在实际 操作中,仍以解析法为主;在数学或其他科学研究与应用上,有时把这三种方 法结合起来,相互兼容和补充。
在课堂结构上,根据学生的认知水平,我设计了八个层次的学法:它们环环 相扣,层层深入,并结合师生共同讨论、归纳,从而顺利完成教学目标。希望 在这种设计下,学生能一步一步地接触到数学的本质,一点一点地体会到数学 的简洁、简约之美。
2 学法
学生是学习的主体,教师只是学习的帮助者; 学生主动探究问题,发现知识,提高能力; 合作学习法、探究学习法、自主学习法等; 从中体会到学习数学的兴趣;
04
教学过程
教
导入篇
学
探究篇
过 程
巩固篇入
创设情景 引入新课
活动:学校内举办一次“物资捐赠” 要求: 各班派出一个团队参加此次活动 目的:既可以锻炼自身的专业素质,又为灾 区人民做出了贡献。 方式:由团队成员去进行口罩采购。
函数的表示法课件ppt

国民生产总值
单位:亿元
年份
1990
生产总值 18544.7
1991 21665.8
1992 1993
26651. 34476.
4
7
3.图象法:用函 出生率/
数图象表示两个
变量之间的关系。
4.5
优点:能直观形 4.0
象地表示出函数 3.5
的变化情况。
3.0
2.5
2.0
1.5
1.0
0.5
1950 1955 1960 1970 1975 1980 1985
时间/年
例3:某种笔记本的单价是5元,买x(x∈ {1,2,3,4,5})个笔记本需要y元.试用 函数的三种表示法表示函数y=f(x).
解: 这个函数的定义域是数集{1,2,3,4,5}.
用解析法可将函数y=f(x)表示为 y=5x, x∈{1,2,3,4,5} 用列表法可将函数y=f(x)表示为
针对练习3 某汽车以52km/h的速度从A地行驶到260km的B地, 在B地停留1.5h后,再以65km/h的速度返回A地, 试将汽车离开A地后行驶的路程s表示为时间t的函 数。
【解】 因为 260÷52=5(h),260÷65=4(h),
所以,当 0≤t≤5 时,s=52t;
当 5<t≤6.5 时,s=260;
87 76 65 78.3
91 88 73 85.4
92 75 72 80.3
88 86 75 75.7
95 80 82 82.6
解:将“成绩”与“测试序号”之间的关系用函 数图象表示出来,如下图:
y
班 平 均 分
王伟 张城
赵磊
1
2
0
3