函数的表示法课件

合集下载

《函数》数学PPT课件

《函数》数学PPT课件

经济领域中常见问题建模为函数关系
供需关系
在经济学中,供给和需求是两个重要的概念,它们之间的 关系可以用函数来表示。供给函数和需求函数的交点即为 市场均衡点。
生产成本与产量的关系
在制造业中,生产成本通常与产量有关。随着产量的增加 ,单位产品的成本可能会降低,这可以通过一个递减的函 数来表示。
投资回报与风险的关系
生活中常见问题建模为函数关系
路程、速度和时间的关系
s = vt,其中s是路程,v是速度,t是 时间。这是一个典型的线性函数关系 。
温度随时间的变化
在一天中,气温随时间变化而变化, 可以建立一个以时间为自变量、气温 为因变量的函数关系。
购物总价与数量的关系
总价 = 单价 × 数量。这也是一个线 性函数关系,可以通过函数图像来表 示。
三角函数定义
正弦、余弦、正切等函数 的定义域、值域及基本性 质。
三角函数图像
正弦、余弦、正切函数的 图像及其特点,如周期性 、振幅、相位等。
三角函数关系
同角三角函数关系式,如 平方关系、倒数关系、商 数关系等。
三角函数诱导公式和周期性质
诱导公式
通过角度的加减、倍角、半角等 变换,得到三角函数的诱导公式
当a>0时,二次函数有最小值,无最大值;当a<0时, 二次函数有最大值,无最小值
在实际问题中,可以通过二次函数的最值来解决最优化 问题
03
指数函数与对数函数
指数函数图像与性质
指数函数定义
形如y=a^x(a>0且a≠1)的函 数称为指数函数。
指数函数图像
当a>1时,图像在x轴上方,且随 着x的增大而增大;当0<a<1时, 图像在x轴上方,但随着x的增大而 减小。

函数的表示法(公开课)省公开课获奖课件说课比赛一等奖课件

函数的表示法(公开课)省公开课获奖课件说课比赛一等奖课件

y
y
2
A
2
B
0
2
y
x
2
C
0
2x
0y 2
x
2
D
0
x
2
思索交流
x+2, (x≤-1)
5. 已知函数f (x)= x2, (-1<x<2)
2x, ( x≥2 )
若f(x)=3, 则x旳值是( D )
A. 1
B.
1或
3 2
C. 1,
3,
3 2
D. 3
怎样求函数解析式
一、【配凑法(整体代换法)】
若已知 f (g(x)) 旳体现式,欲求 f (x) 旳体现式, 可把 g(x)看成一种整体,把右边变为由 g(x) 构成 旳式子,再换元求出 f (x) 旳式子。
x
例3 、国内跨省市之间邮寄信函,每封信函旳质量和相应旳邮资如表.
信函质量 (m)/g
0<m≤20
邮资(M)/元 1.20
20<m≤40 2.40
40<m≤60 3.60
60<m≤80 4.80
80<m≤100 6.00
画出图像,并写出函数旳解析式.
解:邮资是信函质量旳函数,函数图像如图。
函数旳解析式为
7.0
9.4
10.0
11.0
y 9 x 32 5
解析法
(6)某气象站测得本地某一天旳气温变化情况如图所示:
温度
8
T (℃)
6
4

0

时间
2 4 6 81
1
1
1
1
2
2
t2
( 时

课件函数的表示法_人教版高中数学必修一PPT课件_优秀版

课件函数的表示法_人教版高中数学必修一PPT课件_优秀版


(2)画出该函数的图象;

(3)写出该函数的值域.
39
解析:
(2)已知f[g(x)]的解析式,求f(x)的解析式: 令x-1=t,则x=t+1, (1)画函数图象时首先关注函数的定义域,即在定义域内作图; 探究一 函数图象的作法及应用 当a>0时,f(a)=a2=4,得a=2, 作函数图象时应注意的事项: (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; 探究二 函数解析式的求法 【例】 (1)已知f(x)=2x+1,求f(x+1)的表达式; 探究二 函数解析式的求法 (2)已知g(x-1)=2x+6,求g(3). 作函数图象时应注意的事项: ∴g(t)=2(t+1)+6=2t+8,即g(x)=2x+8, 探究二 函数解析式的求法 当x>1或x<-1时,f(x)=1, 探究二 函数解析式的求法 (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; ∴f(x+1)=2(x+1)+1=2x+3
学表达式叫作函数的解析式.
• 2 .图像法 • 以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各
个点,这些点构成了函数y=f(x)的图象,这种用 图象 表示两个变量之间对应关系
的方法叫作图象法.
3
知识点聚焦:
• 3.列表法 • 列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种列
函以数自f变(x量)的x定的义取• 域值当为为R横x. 坐∈标[,0对,2应]时的函,数值图y为象纵坐是标直,在线平面的直一角坐部标系分中,描出观各个察点图,这象些点可构知成了,函数其y=值f(x域)的图为象,[1这,5种]用.图象 表示两个变量之间对应关系的方法叫作图象
法. (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; (1)画函数图象时首先关注函数的定义域,即在定义域内作图; (2)已知f[g(x)]的解析式,求f(x)的解析式: (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象; 【解析】选择容易计算的几个数值,列表如下: 当x>1或x<-1时,f(x)=1, 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下:

函数的概念及表示法ppt课件

函数的概念及表示法ppt课件

(1)对于x的每一个值,y都满足有唯一的值与之对应吗?
不满足
(2)y是x的函数吗?为什么?
不是,因为y的值不是唯一的.
26
26
随堂练习
演练
1. 下面四个关系式:① y = ;② = x ;
③2 x2- y =0;④ y = ( x >0).
其中 y 是 x 的函数的是(
D )
27
随堂练习
报酬按16元/时计算. 设小明的哥哥这个月工作的时间为t
小时,应得报酬为m元,填写下表:
怎样用关于t的代数式表示m? m = 16t
对于这个函数,当t=5时,把它代入函数表达式,得
m = 16t=16×5=80(元).
m = 80是当自变量t=5时的函数值.
代入法
19
19
探究新知
函数与函数值
对于自变量在可取值范围内的一个确定的值a,函
判断一个关系是否是函数关系,根据函数定义,主
要从以下3个方面分析:
(1) 是否在一个变化过程中;
(2) 在该过程中是否有两个变量;
(3) 对于一个变量每取一个确定的值,另一个变量
是否有唯一确定的值与其对应.
13
13
探究新知
知识点
函数的三种表示法
合作探究
m = 16t
这几个函数用等式来表示,
这种表示函数关系的等式,
16
80
160
240
320

t

16t
怎样用关于t的代数式表示m? m = 16t
5
5
探究新知
合作探究
2.跳远运动员按一定的起跳姿势,其跳远的距离s
(米)与助跑的速度v(米/秒)有关. 根据经验,跳

函数的概念与表示法课件(共19张PPT)

函数的概念与表示法课件(共19张PPT)

( x 1) 1 x 的定义域为_____ (2)函数 y ( x 1)
解题回顾:求函数f(x)的定义域,只需使解析式有 意义,列不等式组求解.
抽象函数定义域问题:
抽象函数 :没有给出具体解析式的函数 2. (1)已知函数 y
1 y f ( x 1) 的定义域为______ 2
探究提高: 分段函数是一类重要的函数模型.解决分段函数问题,
关键要抓住在不同的段内研究问题.
如本例,需分x>0时,f(x)=x的解的个数
和x≤0时,f(x)=x的解的个数.
“分段函数分段考察”
五 抽象函数
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),
f(1)=2,则f(-3)等于( C ) A.2 B.3 C.6
推广,函数是一种特殊的映射,要注意构成函数 的两个集合A、B必须是非空数集.
典型例题:
一:函数的基本概念:
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面 的4个图形中,能表示集合M到集合N的函数关系的有 ( )
A.①②③④
B.①②③
C.②③
D.②
解析:由函数的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
A
B
x
f ( x)
(2)函数的定义域、值域: 在函数 y f ( x ), x A 中,x叫做自变量,x的取 值范围A叫做函数的定义域;与x的值相对应的y值 叫做函数值,函数值的集合f ( x) x A 叫做函数的 值域。 (3)函数的三要素:定义域、值域和对应法则 . (4)相等函数:如果两个函数的定义域和对应法则完 全一致,则这两个函数相等,这是判断两函数相等的 依据.

函数的三种表示方法课件

函数的三种表示方法课件

03
表格法
通过表格列出函数在不同 自变量值下的对应函数值。
优点
能够直观地展示函数的变 化趋势和数值特征。
缺点
对于连续函数,需要大量 的数据点才能准确反映函 数关系。
图象法
图象法
通过绘制函数图象来表示 函数关系。
优点
直观、形象,能够清晰地 展示函数的形态和变化规 律。
缺点
对于复杂函数,可能难以 准确绘制其图象。
抛物线开口向下。
接这些点即可得到函数的图象。
高次函数图象法表示
01
高次函数图象是一个连续曲线,其一般形式为y=anx^n+a(n-1)x^(n1)+...+a1x+a0,其中an至a0为常数且an≠0。
02
根据n的奇偶性,高次函数的增减性不同:当n为奇数时,函数在x>0时单调递 增,在x<0时单调递减;当n为偶数时,函数在x>0时单调递减,在x<0时单调 递增。
通过实例分析,加深 对函数表示方法的理 解和应用。
能够根据实际需求选 择合适的函数表示方 法。
02
函数的数学表示方法
解析法
解析法
缺点
使用数学表达式来表示函数关系,如 $y = f(x)$。
对于复杂函数,可能难以找到准确的 数学表达式。
优点
精确、明了,能够准确表达函数的数 学关系。
表格法
01
02
03
解析法实例
一次函数解析法表示
一次函数解析法表示:$y = ax + b$,其中$a$和$b$是常数,$a neq 0$。 实例:$y = x + 1$,其中$a = 1$,$b = 1$。
图像:直线。

函数的概念及其表示法ppt课件

函数的概念及其表示法ppt课件

∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.

3.1.2 函数的表示法(课件)高一数学(人教A版2019必修第一册)

3.1.2 函数的表示法(课件)高一数学(人教A版2019必修第一册)
请分别用图象法和解析法表示函数().
解:由(1)中的函数取值情况,结合函数()的定义,可得函数
()的图象.
由( + 1)2 = + 1,得( + 1) = 0.解得 = −1,或 = 0.
结合上图,得出函数的解析式为() =
( + 1)2 , ≤ −1,
+ 1, − 1 < ≤ 0,
途径,是联系变量和的纽带.
由于在现实生活中,将变量数对应到的方法和途径是多样化的,这就导
致了函数的表示方法也是多样化的.本节课我们就来研究一下函数常见的几种表
示方法.
复习导入
我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.其实在
上一节课的学习中,我们也已经接触了这三种函数的表示法,请同学们结合上节课
图象(均为6个离散的点)表示出来,如图所示,那么就能直观地看到每位同学成
例析
绩变化的情况,这对我们的分析很有帮助.
从图中可以看到,王伟同学的数学学习成绩始终
高于班级平均水平,学习情况比较稳定而且优秀.
张城同学的数学学习成绩不稳定,总是在班级平
均水平上下波动,而且波动幅度较大.赵磊同学
的数学学习成绩低于班级平均水平,但表示他成
回顾2:函数的三要素是什么?
定义域、对应关系和值域是函数的三要素.其中, 叫做自变量,的取值范
围叫做函数的定义域;与值相对应的值叫做函数值,函数值的集合{()| ∈
}叫做函数的值域.值域是集合的子集.
复习导入
回顾3:函数的对应关系有什么作用?
对应关系“”是将中的任意一个数,对应到中唯一确定的数的方法和
解:(2)设 = + 1,则 < 1, = − 1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:函数解析式为
2, 0 x ≤ 5, 3, 5 x ≤ 10, y 4, 10 x ≤ 15, 5, 15 x ≤ 20.
y
5 4 3 2 1 O
5 10 15 20
x
有些函数在它的定义域中,对于自变量的 不同取值范围,对应关系不同,这种函数通常 称为分段函数.
2
]
小结:采取分类的方法,利用已知分段函数,把 所求不等式化为分段的几个不等式,然后 取不等式解集的并集。
2 x 3, x 0 5.(上海)函数 y 。 x 3,0 x 1 ,的值域是 x 5, x 1 ( , 4]
小结:采取分类的方法,利用已知分段函数,把 所求函数的值域转化成画函数图象,然后 根据函数图象找到函数的值域。
此函数用列表法表示
里程 x(km) 票价 y (元 )
0 x ≤ 5 5 x ≤ 10 10 x ≤ 15 15 x ≤ 20
2
3
4
5
此分段函数的定义域为 (0,20] 此分段函数的值域为 {2,3,4,5}
①自变量的范围是怎样得到的?②自变量的范 围为什么分成了四个区间?区间端点是怎样确 定的?③每段上的函数解析式是怎样求出的?
若 f(x)=3, 则x的值是„„, 3
2
B.
D.
1, 或 3 2
3
分段函数是一个函数,不要把它误认为是 “几个函数”;
【定义域】? 【值域】?
1, x 0, 4.(浙江13)已知 f(x)= ,则不等式 1, x 0, 3
x+(x+2)· f(x+2)≤5的解集是__________. ( ,
2+3 - 2( x - 2) 则 f (x) = ________________;
5 3.已知函数f(x) =x2+x-1,则 f(2)=_____, 1 3 1 2, -3 2 f ( 1 1) ___________; 若 f ( x ) =5, 则 x =_______. x x x 2 1 1 f ( 1) ( 1) ( 1 1) 1 x x x
1. 函数表示法第二课时 例2 2. 化简函数
y | x 5 | x 2 x 1 y 解:由题 y = | x + 5 | + | x -1 | 当 x ≤-5 时, y = - ( x + 5 ) - ( x - 1 ) =- 2 x - 4
2
当 -5 < x ≤ 1 时, y = ( x + 5 ) -( x -1 ) = 6 当 x >1 时, y = ( x + 5 ) + ( x - 1 ) = 2x + 4
y
解:设所求的二次函数为 由条件得: y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
顶点式: y=a(x-h)2+k
a-b+c=10 a+b+c=4 4a+2b+c=7 解方程得: a=2, b=-3, c=5
因此:所求二次函数是:
o
x
y=2x2-3x+5
演练反馈
2.已知抛物线的顶点为(-1,-3),与轴交点为 (0,-5)求抛物线的解析式?
k 2, k 2, 或 b 1 , b 1. 3
f ( x) 2 x 1 , 或f ( x ) 2 x 1. 3
演练反馈
1.已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
一般式: y=ax2+bx+c
(函数类型确定时用此法) 例1.已知f(x)是一次函数,且f[f(x)]=4x-1, 求 f(x)的解析式. 解:设 f (x) = kx+b, 则 f[f(x)]=f(kx+b)=k(kx+b)+b
=k2x+kb+b=4x-1.
必有
k 2 4, k 2, k 2, , 或 kb b 1, 2b b 1 2b b 1.
30 15 10
O 5 10
20
30 t
t=9s时,v(9)=3×9=27 (cm/s).
求下列函数的解析式
【高考热点、重点】
x -1 1. y=kx+b经过点(1,0),(0,-1),则y = _______;
2. 求满足下列条件的二次函数 f (x) 的解析式:
顶点坐标为( 2,3 ),且图象经过(3,1)点,
6
x 5 2 x 4 -5 5 x 1 y 6 2x 4 x 1 【定义域】?
o
1
x
【值域】?
x 2, x ≤ 1, 3.已知函数 f ( x ) x 2 , 1 x 2, 2 x , x ≥ 2. 【函数的表示第一课时例3】
补例.某质点在30s内运动速度 v (cm/s)是时 间 t(s) 的函数 , 它的图像如下图 . 用解析式表 示出这个函数, 并求出9s时质点的速度.
解:解析式为
v
t+10, 0 ≤ t<5, 3t, 5 ≤ t<10, v(t)= 30, 10 ≤t <20, -3t+90,20 ≤ t≤30.
解:设所求的二次函数为 由条件得: 点( 0,-5 )在抛物线上 y=a(x+1)2-3 y o x
一般式: y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
a-3=-5,
顶点式: y=a(x-h)2+k
得a=-2
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
【分段函数】
【高考热点、重点】
例6.某市“招手即停”公共汽车的票价按下列 规则制定: (1) 5公里以内(含5公里),票价2元; (2) 5公里以上,每增加5公里,票价增加1元 (不足5公里按5公里计算). 如果某条线路的总里程为20公里,请根据题 意,写出票价y与里程x之间的函数解析式,并画出 函数的图象. 解:设票价为y元,里程为x公里,由题意可知, 自变量的取值范围是 (0,20 ] , 由票价制定规则 , 可得到以下函数解析式:
相关文档
最新文档