概率论与数理统计10—11学年第一学期A

合集下载

概率论与数理统计

概率论与数理统计

重庆交通大学继续教育学院2008--2009学年第一学期考试A 卷《概率论与数理统计(经管类)》课程考核形式:闭卷 考试需用时间:120分钟在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列各函数中,可作为某随机变量概率密度的是( ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f2.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为( ) A.0.1385 B.0.2413 C.0.2934 D.0.34133.则P{XY=0}=( ) A. 41 B.125 C.43 D.14.某种电子元件的使用寿命X (单位:小时)的概率密度为⎪⎩⎪⎨⎧<≥=,100,0;100,100)(2x x x x f 任取一只电子元件,则它的使用寿命在150小时以内的概率为( )A .41 B .31 C .21 D .325.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y ) B .D (X )-D (Y ) C .D (X )+D (Y )-2Cov(X,Y ) D .D (X )-D (Y )+2Cov(X,Y )7.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y-4)=( )A .-13B .15C .19D .238.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( )A .6B .22C .30D .46 9.设总体X 服从[0,2θ]上的均匀分布(θ>0),x 1, x 2, …, x n 是来自该总体的样本,x 为样本均值,则θ的矩估计θˆ=( ) C .2xD .x2110.设n 1X ,,X 为正态总体N(2,σμ)的样本,记∑=--=ni i x x n S 122)(11,则下列选项中正确的是( ) A.)1(~)1(222--n S n χσB.)(~)1(222n S n χσ-C.)1(~)1(22--n S n χD.)1(~22-n S χσ二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

概统10-11下学期期末练习题

概统10-11下学期期末练习题

概率论与数理统计10-11练习卷课程名称: 概率论与数理统计 考试时间 2011专业 年级 班级 学号 姓名一、填空题(每小题3分)1、设A 、B 为互斥的二事件,P(A) = 31, P(B) = 21, 则P (B-A) = .2、一袋中装有5只球,编号为1,2,3,4,5.从袋中同时取3只球,以X 表示取出的3只球的最大号码,则随机变量X 的分布律为 ,数学期望()E X =____ _,()D X =_____ _.3、设随机变量X 的概率密度为 ,0()1/4,020,2xAe x f x x x ⎧<⎪=≤<⎨⎪≥⎩,设其分布函数为()F x ,则A = ,(1)F = .4、设12ˆˆ,θθ是总体未知参数θ的两个无偏估计量,且12ˆˆ()()D D θθ<,则 . 5、设总体X 的概率分布为X 0123P2θ2(1)θθ-2θ12θ-其中1(0)2θθ<<未知,利用总体的如下样本观察值:3,1,3,0,3,1,2,3,可得θ的矩估计值为 ,θ的极大似然估计值 .6、考察学生平时学习英语所花的平均时间()x h 对英语考试成绩的平均分y (分)的影响,观察10个同学:(,),1,2,,10i i x y i = ,计算得101100ii x==∑,10211376,i i x ==∑101011564,6945,ii i i i yx y ====∑∑由此可求得x y 对的一元线性回归方程 。

二、单项选择题(每小题3分,共15分)1、设总体2~(2,)X N σ,随机取一样本:16121611,,,,i i X X X X X n ==∑ ,则48~X σ-( )(A )(15)t (B )(16)t (C )2(15)χ (D )(0,1)N2、设随机变量X 、Y 的相关系数0XY ρ=,则下面结论正确的是( )(A )X 、Y 一定独立 (B )X 、Y 一定不独立 (C )X 、Y 不一定独立 (D )以上结论都不对3、设总体2~(,)X N μσ,2σ未知,通过样本12,,,n x x x 检验:0010:(:)H H μμμμ=≠时,采用的统计量是( ) (A )0/x z nμσ-=(B )0/1x z n μσ-=-(C )0/x t s nμ-= (D )0/1x t s n μ-=-4、已知随机变量X 的概率密度为()X f x ,令2Y X =-,则Y 的概率密度()Y f y 为( ).(A )2(2)X f y - (B )()2X y f - (C )1()22X y f -- (D )1()22X yf -5. 设二维随机变量(,)X Y 的概率分布为 XY0 1 0 0.4 a 1b0.1已知随机事件{0}X =与{1}X Y +=相互独立,则__________(A) 0.2, 0.3a b == (B) 0.4, 0.1a b == (C) 0.3, 0.2a b ==(D) 0.1, 0.4a b ==6、设随机变量,X Y 相互独立,且~(0,1)X N , ~(1,1)Y N 则( )(A ){}112P X Y +≤=(B ){}102P X Y +≤= (C ){}112P X Y -≤= (D ){}102P X Y -≤=三、计算题(每小题10分,共30分) 1、随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0;20,2)(其他x x x f求(1)E(X), D(X);(2)D(2-3X) (3)(11)P X -<< 2、二维随机变量(X ,Y )的联合密度函数为(34)12, 0,0;(,)0,.-x y e x y f x y +⎧>>=⎨⎩其它 求(1)关于X 和关于Y 的边缘密度函数;(2)(,)X Y 的联合分布函数;(3){01,02}P X Y <≤<≤。

概率论与数理统计期终考试试卷A及参考答案

概率论与数理统计期终考试试卷A及参考答案

上海应用技术学院2011—2012学年第一学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073 学分: 3 考试时间: 100 分钟 课程序号: 112-7244、7246、7248、7249、7251、7254、7255、7257、7258等共9个教学班 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。

试卷共6页,请先查看试卷有无缺页,然后答题。

一、填空题(每题3分,共计18分)1、有321,,R R R 三个电子元件,用321,,A A A 分别表示事件“元件i R 正常工作”)3,2,1(=i ,试用321,,A A A 表示事件“至少有一个元件正常工作”:_______________。

2、连续型随机变量X 的分布函数为20,0,(),01,1, 1.x F x x x x ⎧<⎪=≤<⎨⎪≥⎩则(0.5 1.5)P X <<=_____。

3、设随机变量X 服从(3,7)F 分布,则随机变量1~Y X=____________。

4、设()28,10~N X ,()=<<200X P (用()Φ表示)。

5、已知随机变量,X Y ,有cov(,)5X Y =,设31U X =+,24V Y =-,则cov(,)U V =____。

6、设随机变量,X Y 相互独立~(5,0.5)X N ,~(2,0.6)Y N ,则()E XY =___________。

二、选择题(每题3分,共计18分)1、设S 表示样本空间,下述说法中正确的是( )(A )若A 为一事件,且()0P A =,则A =∅(B )若B 为一事件,且()1P B =,则B S = (C )若C S =,则()1P C =(D )若,A B 相互独立,则()()()P AB P A P B =+2、设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ。

天津科技大学10-11概率论与数理统计(概率论)B卷

天津科技大学10-11概率论与数理统计(概率论)B卷

① 任意实数; ② 1; ③ 2; ④ 12.3.若随机变量X 的概率密度为(),()xf x aex -=-∞<<+∞,则=a ( 2 ). ① 12-; ②12; ③1; ④ 32.4.若连续型随机变量X 的分布函数为)(x F ,则以下结论错误的是( 3 ).① ()P a X b <≤=)()(a F b F -; ② ()()()P a X b F b F a <<=-; ③ ()()()P a X b F a F b <<≠-; ④ ()0.P X a ==.5.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量Y X 23-的方差是( 4 )。

① 8; ② 16; ③ 28; ④ 44. 三、某校入学考试的数学成绩近似服从正态分布(65,100)N .若85分以上为“优秀”,问数学成绩为“优秀”的考生大致占总人数的百分之几?(8分)解: 设X 表示考生的数学成绩,则 ~ (65,100)X N 近似,于是858565{85}1{85}1{}1010X P X P X P -->=-≤=-≤ (4分)1(2)10.9772 2.28%≈-Φ=-= (8分)即数学成绩“优秀”的考生大致占总人数的2.28%。

四、某灯泡厂有甲、乙两条流水线,它们所出产的灯泡中,寿命大于2500小时的分别占80%和90%,从它们生产的灯泡中各自随机地抽取一个,求下列事件的概率:(1)两个灯泡寿命均大于2500小时;(2)两灯泡中至少有一个寿命大于2500小时;(3)两个灯泡中至多有一个寿命大于2500小时.(12分)解:用B A ,分别表示从甲、乙两个流水线上的产品中抽取的灯泡寿命大于2500小时,则它们相互独立.(1) 72.09.08.0)()()(=⨯==B P A P AB P , (4分)22,()0,0x e x f x x -⎧>=⎨≤⎩,33,0()0,y e y f y y -⎧>=⎨≤⎩,写出二维随机变量(), X Y 的联合密度函数(), f x y ,并求概率(2,1)P X Y <>. (10分) 解:由随机变量X 与Y 相互独立,得(23)0,0,6,(,)()().0,x y X Y x y e f x y f x f y else -+>>⎧==⎨⎩(5分) 2(23)1(2,1)6x y P X Y dx edy +∞-+<>=⎰⎰(8分) 2234316()()(1)0.0489xyedx edy e e+∞----==-≈⎰⎰(10分)八、 某保险公司多年的资料表明,在索赔户中被盗索赔户占20%,用X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.(1)写出X 的概率函数;(2)利用棣莫佛-拉普拉斯中心极限定理,求索赔户中被盗索赔户不少于10户且不多于26户的概率的近似值。

10-11_1__概率论与数理统计C__A卷__答案__

10-11_1__概率论与数理统计C__A卷__答案__

少学时一、填空题(每小题4分, 共20分)1、0.7. 2、2357(1)C p p -. 3、44 . 4、(8,)B p .5、14 . 二、单项选择题(每小题4分, 共20分)1、B. 2 D. 3、C. 4、B. 5、A.三、解答题 (本题10分) 设B A ,分别表示电池是甲,乙厂生产的;C 表示事件“取出的产品是次品”, 由题意:由题意:(())75.0=A P , (())25.0=B P , ()02.0=A C P , ()04.0=B C P , (1) 由全概率公式得:由全概率公式得: ()()()()()B P B C P A P A C P C P ´+´==025.025.004.075.002.0=´+´ ……………………………………………………55分 (2) 由贝叶斯公式得:由贝叶斯公式得:()()()()()()4.0025.025.004.0=´=´==C P B P B C P C P BCP C B P (10)10分四、解答题(本题10分) 因为5(1)9P X ³=,故4(1)9P X <= 而 2(1)(0)(1)P X P X p <===-, 故得24(1),9p -= 即 1.3p = ……………………………………………………55分 从而从而 465(1)1(0)1(1)0.8024781P Y P Y p ³=-==--=» (10)10分五、解答题 (本题10分 )()()()2ln Y F y P Y y P X y =£=-£=2y P X e -æö³ç÷èø21y P X e -æö=-<ç÷èø (6)6分 当0y £时 ()0Y F y =当0y >时 ()y F Y =()201y eX f x dx --ò=201y edx --ò=21y e --\ ()y f Y =()[]'y F Y =2120ye -ìïíïî 00y y >£ …………………………………………1010分 六、解答题 (本题 10分) (1) 由240()d e d 18x cf x x cx x +¥+¥--¥===òò得8c =. ....………………………………………………………………………………33分(2) 24()()d()8e d xE X xf x x x x x +¥+¥--¥==òò2240π8e d .4xx x +¥-==ò …………………………………………………66分 (3) 2222401()()d()8e .4x E X x f x x x x+¥+¥--¥==òò少学时故2221π4π()()[()]4416D XE X E X æö-=-=-=ç÷èø (10)10分 七、解答题 (本题 10分) 联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY的分布律,其分布律如下表:的分布律,其分布律如下表:X -1 0 1 P 38 28 38Y-1 0 1 P38 28 38XY -1 0 1 P284828……………………………………………………33分由期望定义易得E (X )=E (Y )=E (XY )=0.从而E (XY )=E (X )·E (Y ),再由相关系数性质知ρXY =0,即X 与Y 的相关系数为0,从而X 和Y 是不相关的. (7)7分 又331{1}{1}{1,1}888P X P Y P X Y =-=-=´¹==-=-从而X 与Y 不是相互独立的. (10)10分八、解答题 (本题 10分)(1)()()dy y x f x fXò+¥¥-=,=1060xxdy -ìïíïîò 其它10££x ()610x x -ìïíïî= 其它10££x (2)2分 ()()dx y x f y f Y ò+¥¥-=,=1060y xdx -ìïíïîò 其它10££y()2310y ì-ïíïî= 其它10££y ............................................................44分 显然:()()(),X Y f x y f x f y ¹,\ X 与Y 相互不独立相互不独立 (6)6分 (2)()P Y X £11206yydy xdx -=òò()120312y dy=-ò=34 .…………………………10分。

《概率论与数理统计 (A)

《概率论与数理统计 (A)

山东建筑大学试卷共3页第1页2019至2020学年第1学期考试时间:120分钟课程名称:概率论与数理统计C (A )卷考试形式:闭卷年级:2018级专业:全校开设本课程专业层次:本科一二三总分(说明:本考试不需要使用计算器)一、填空题(每题3分,共21分)1、设()( )P AB P A B =,且()0.2P A =,则()P B =.2、设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是.3、设随机变量Y X ,的期望方差为,5.0)(=X E ,5.0)(-=Y E )()(Y D X D =,75.0=,0)(=XY E 则Y X ,的相关系数=),(Y X R .4、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计≤≥-)3|2(|X P .5、设随机变量),10(~2σN X ,已知,3.0)2010(=<<X P 则=<<)100(X P .6、设1X ,2X ,3X ,4X 相互独立且服从相同分布2()n χ,则1234~3X X X X ++.7、由来自正态总体)4,(~μN X 容量为400的简单随机样本,计算得样本均值为45,则未知参数μ的置信度为95%的置信区间二、选择题(每题3分,共21分)1、假设事件,A B 满足(|)1P B A =,则().(A)B 是必然事件;(B)()1P B =;(C)()0P A B -=;(D)A B ⊂.2、设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有().(A)()()() 1.P C P A P B ≤+-(B)()().P C P A B ≤ (C)()()() 1.P C P A P B ≥+-(D)()().P C P A B ≥ 3、设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为().(A)44610(1)C p p -;(B)3469(1)C p p -;(C)4459(1)C p p -;(D)3369(1).C p p -4、设两个独立的随机变量Y X ,分别服从正态分布)1,0(N 和)1,1(N ,则().(A)5.0}0{=≤+Y X P ;(B)5.0}1{=≤+Y X P ;(C)5.0}0{=≤-Y X P ;(D)5.0}1{=≤-Y X P .5、设随机变量Y X ,相互独立,且都服从)1,0(N ,则~12+-Y X ().(A))1,0(N ;(B))1,1(N ;(C))5,0(N ;(D))5,1(N .6、设二维随机向量),(Y X 服从二维正态分布,则随机变量Y X +=ξ与Y X -=η不相关的充要条件为().(A))()(Y E X E =;(B)2222)]([)()]([)(Y E Y E X E X E -=-;(C)2222)]([)()]([)(Y E Y E X E X E +=+;(D))()(22Y E X E =.7、设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数()Y F y 为().(A)(53)X F y -.(B)5()3X F y -.(C)3()y F +.(D)31()yF --.考场班级姓名学号座号线装订线装订线山东建筑大学试卷共3页第2页三、计算应用题(共58分)1、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率.2、(12分)设随机变量X 的概率密度为)()(||+∞<<-∞=-x Aex f x ,求:(1)系数A ;(2)X 的分布函数;(3))(X D .3、(8分)设),1,0(~N X 求||X Y =的概率密度.姓名学号线装订线装订线山东建筑大学试卷共3页第3页4、(10分)设二维随机变量),Y X (的联合概率密度为:⎩⎨⎧=0),(2Axy y x f 其他10 ,20<<<<y x 求:(1)参数A ;(2)X 和Y 的边缘概率密度并判断X 和Y 是否独立;(3))5.0,1(≤≥Y X P .5、(12分)设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域G 上服从均匀分布,试求),(Y X Cov .6、(8分)设总体X 的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它(0).θ>12,,,n x x x 是X 的简单样本观测值,试求(1)参数θ的矩估计值;(2)参数θ的极大似然估计值.姓名学号线装订线装订线。

概率统计A解答(1)

概率统计A解答(1)

湖州师范学院 2010 — 2011 学年第 一 学期 《概率论与数理统计》期末考试试卷(A 卷)适用班级 090126 090127 考试时间 120 分钟学院 班级 学号 姓名 成绩题号 一 二 三 四 五 六 七 八 九 总分 得分一、填空题 (本题共20分,每空格2分)1.设A 、B 、C 表示三个随机事件,则事件“A 、B 、C 中恰有一个发生”可表示为C B A C B A C B A ++,事件“A 、B 、C 中至少发生二个”可表示为AC BC AB ++。

2.把5本书任意地放在书架上,其中指定的3本书放在一起的概率为103。

3.进行独立重复试验,每次试验成功的概率为p ,则在首次试验成功时共进行了m 次试验的概率为()11--m p p 。

4.若随机变量X 服从正态分布)21,1(N ,则X 的密度函数为=)(x ϕ2)1(1--x e π。

5.一批为产品共20个,其中3个次品,从中任取的3个中次品数不多于一个的概率为32013217317C C C C +。

6.设事件A 、B 、A ⋃B 的概率分别为p 、q 、r ,则=)(AB P r q p -+,=)(B A P q r -。

7.若随机变量X 服从泊松分布,)2()1(===X P X P ,则=≤)1(X P 23-e8.进行独立重复试验,每次试验事件A 发生的概率为p ,则在n 次试验中事得分件A 恰好发生()n k k ≤≤0次的概率为()kn kk np p C --1。

9.已知随机变量X 服从标准正态分布)1,0(N ,=≤)96.1(X P 0.975, 则=<)96.1(X P 0.95 。

10.加工在全产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是相互独立的,则经过三道工序生产出的产品是废品的概率是 0.316 。

11.设随机变量X 服从参数为p n ,的二项分布,则=EX np ,DX =()p np -1。

2007—2008学年概率论第一学期期终考试及参考答案

2007—2008学年概率论第一学期期终考试及参考答案

¯ ∼ N (0, 1), X ¯ − 1 ∼ N (−1, 1). (2) X 7. (1) E (X ) =
θ , θ +1
ˆ MM = θ
¯ X ¯; 1−X n i =1
(2) ln L(θ) = n ln θ + (θ − 1)
ln Xi , θ MLE = −
n i=1
n . ln Xi
1

专业

班级


姓名


学号


得分
概率论与数理统计(卷A): 20080114
本试卷共8大题(第1, 2, 5, 6题每题10分, 第3, 4, 7, 8题每题15分) 可能用到的分位点表如下: z0.05 = 1.645 z0.0025 = 1.960 t0.025 (27) = 2.0518 t0.05 (27) = 1.7033 t0.025 (28) = 2.0484 t0.025 (29) = 2.0452 t0.05 (29) = 1.6991 t0.05 (13) = 1.7709 F0.025 (11, 16) = 211) = 3.28 F0.025 (7, 6) = 5.70 F0.025 (6, 7) = 5.12 1. 设A, B为两事件, 已知P(A) = 0.3, P( B) = 0.5, 计算: (1) 若A, B相互独立, 求P(A ∪ B); ¯ ). (2) 若P(A| B) = 0.4, 求P(A| B
3 8. 某厂利用两条自动化流水线灌装番茄酱, 从两条自动化流水线上分别抽取样 本(X1 , · · · , X12 )与(Y1 , · · · , Y17 ), 观测后算得 x ¯ = 10.6(g), y ¯ = 9.5(g), s2 1 = 2.4, 2 s2 = 4.7, 假 设 这 两 条 流 水 线 上 灌 装 的 番 茄 酱 的 重 量 分 别 服 从 正 态 分 2 2 2 布N (µ1 , σ2 1 )与 N (µ2 , σ2 ), 且相互独立. µ1 , σ1 , µ2 , σ2 均未知. 求:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特别提示:请诚信应考,考试违纪或作弊将带来严重后果!
成都理工大学工程技术学院 2010-2011学年第一学期 《概率论与数理统计》期末试卷A
注意事项:1. 考前请将密封线内的各项内容填写清楚; 2. 所有答案请直接答在答题纸上; 3.考试形式:闭卷;
4. 本试卷共 三道 大题,满分100分, 考试时间120分钟。

参考数据:
8413.0)1(=Φ,9332.0)5.1(=Φ,9772.0)2(=Φ,9938.0)5.2(=Φ
4669.2)6(975.0=t ,3646.2)7(975.0=t ,9432.1)6(95.0=t ,8946.1)16(95.0=t 96.1975.0=u ,645.195.0=u ,282.19.0=u
一、单项选择题:(本大题共8小题,每小题3分,共24分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1、若A 与B 互为对立事件,则下式成立的是( ) A)、Ω=⋃)(B A P B)、)()()(B P A P AB P = C)、)(1)(B P A P -= D)、φ=)(AB P
2、将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A)、21 B)、83 C)、41 D)、81
3、设随机变量X
则=k ( )
A)、0.4 B)、0.3 C)、0.2 D)、0.1
4、设随机变量X 的概率密度为)(x f ,且)()(x f x f =-,)(x F 是X 的分布函数,则对任意的实数a ,有() A)、⎰-=-a
dx x f a F 0)(1)( B)、⎰-=
-a
dx x f a F 0
)(21)( C)、)()(a F a F =- D)、1)(2)(-=-a F a F
5、设二维随机变量),(Y X 的联合分布律为
则==}0{XY P ()
A)、
32 B)、31 C)、61 D)、12
1
6、设随机变量X 具有分布5
1
)(==k X P ,5,4,3,2,1=k ,则=)(X E ()
A)、2 B)、3 C)、4 D)、5
7、设)2,1( ~2
N X ,n X X ,,1Λ为X 的样本,记∑==n
i i X n X 1
1则有( )
A )、
)1,0(~2
1
N X - B )、
)1,0(~/21N n
X -
C )、
)1,0(~2
1N X - D )、
)1,0(~4
1
N X - 8、设54321,,,,x x x x x 是来自标准正态总体)1,0(N 的简单随机样本,则,当=K ( )时,对于随机变量25
24
2
3
21)(x
x x x x K
+++服从于t 分布。

A)、2 B)、3 C)、22 D)、2
6
二、填空题:(本大题共12小题,每空3分,共36分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

9、设4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则=)(B A P 。

《概率论与数理统计》期末试卷A 第3页 共 6 页
10、设B A ,相互独立且都不发生的概率为9
1
,又A 发生而B 不发生的概率与
B 发生而A 不发生的概率相等,则=)(B P 。

11、设随机变量X ∽)8.0,1(B ,则X 的分布函数为 。

12、设随机变量X 的概率密度为⎩⎨⎧<<=其他,00,24)(2c x x x f ,则常数
=c 。

13、若随机变量X 服从均值为2,方差为2σ的正态分布,且
3.0}42{=≤≤X P ,则=≤}0{X P 。

14、设二维随机变量),(Y X 相互独立,且21}1{=
≤X P ,3
1
}1{=≤Y P ,则=≤≤}1,1{Y X P 。

15、设)09.0,3(~N X ,则=≤<}45.37.2{X P 。

16、设随机变量X 服从正态分布)4,2(N ,Y 服从均匀分布)5,3(U ,则
=-)32(Y X E 。

17、设随机变量X 在区间)1,0(上服从均匀分布,23-=X Y ,则
=)(Y D ___________。

18、设321,,x x x 是来自总体),(~2
σu N X 的简单随机样本,则在均值u 的估
计量3211313131ˆx x x u
++=,3212514151ˆx x x u
++=,32132
1
6131ˆx x x u ++=中,( )是最有效的 19、设总体X 服从区间)2,(θθ上的均匀分布,n x x x ,,,21Λ是来自总体X 的简单随机样本,x 为样本均值,0>θ为未知参数,则θ的矩估计
=θˆ 。

20、.设某批建筑材料的抗弯强度)04.0,(~u N X ,现从中抽取容量为16的样本,测得样本均值43=x ,则μ的置信区间是 。

(05.0=α)
三、计算题
(本科班做5题全做,每题8分,共40分)
(专科班任选4题,每题10分,共40分;若5题全做,成绩以前四题为准)
21、在一个肿瘤治疗中心,有大量可能患肺癌的可疑病人,这些病人中吸烟的占45%。

据以往记录,吸烟的可疑病人中有90%确患有肺癌,在不吸烟的可疑病人中仅有5%确患有肺癌
(1)在可疑病人中任选一人,求他没有患有肺癌的概率;
(2)在可疑病人中选一人,已知他患有肺癌,求他是吸烟者的概率。

22、设随机变量X 的分布函数为⎪⎩

⎨⎧≥-<≤<=--1,110,0,)()1(x Ae x B x Ae x F x x ,
求(1)、B A ,的值;(2)X 的概率密度函数)(x f ;(3)}10{<<x P
23、设二维随机向量)
X的联合分布列为
,
(Y
(1)求)
X关于X,Y的边缘分布列;
,
(Y
(2)求Y
X
=的分布律;
Z-
(3)求X与Y的协方差)
X。

,
cov(Y
24、某保险公司多年的统计资料表明,被盗索赔户占索赔户的20%,求在100个索赔户中,被盗索赔户不少于14户,且不多于30户的概率。

《概率论与数理统计》期末试卷A第5页共6 页
25、.某批矿砂的7个样本中镍含量经测定为(%)
3.26 3.28 3.24 3.25 3.27 3.28 3.24
设该测定值总体X 服从正态分布),(2σu N ,且u 与2σ均未知,在05.0=α下是否可以认为矿砂的镍含量为3.25。

(6458.27,4495.26==)。

相关文档
最新文档