导数的几何意义学生(1)
导数的几何意义是什么

导数的几何意义是什么导数作为微积分中的重要概念,不仅在数学理论研究中有着重要地位,还在实际问题的求解中起到了至关重要的作用。
导数的几何意义是指在几何上,导数代表了函数曲线在某一点处的切线斜率。
它使我们能够通过函数图像来理解函数的变化规律及其在特定点的切线性质。
本文将重点论述导数的几何意义以及相应的应用。
一、导数的定义及计算在开始讨论导数的几何意义之前,我们首先来回顾一下导数的定义及计算方法。
对于函数y=f(x),在点x处的导数可以通过下式计算得出:f'(x) = lim(h->0) [(f(x+h) - f(x))/h]根据这一定义,我们可以求得函数在任意一点处的导数值。
导数的计算可以采用一些常用的方法,如基本函数求导法则、链式法则、乘积法则和商法则等。
二、导数的几何意义1. 切线斜率导数的最直观的几何意义就是切线斜率。
当我们计算出函数在某一点的导数后,这个导数值便代表了函数曲线在该点处的切线斜率。
对于一个凸函数而言,导数可以告诉我们曲线在该点是上升还是下降,以及上升或下降的速度有多快。
2. 极值点导数在几何中还有一个重要的意义是寻找函数的极值点。
当函数在某一点的导数为0时,这一点可能是函数的极大值点或极小值点。
通过求导,我们可以找到函数在哪些点处可能存在极值,并进一步帮助我们寻找函数图像上的极值点,从而得出函数的极值。
3. 凹凸性函数图像的凹凸性也可以通过导数来判断。
当函数的导数在某一区间内始终大于0时,函数图像在该区间内是上凸的;而当导数在某一区间内始终小于0时,函数图像在该区间内是下凸的。
这种通过导数判断凹凸性的方法在优化问题中具有重要应用。
三、导数的应用导数的几何意义不仅在数学理论研究中起到关键作用,也在实际问题的求解中发挥了巨大的作用。
1. 最优化问题在经济学、物理学等领域中,最优化问题是非常常见的。
通过求解函数的导数,我们可以确定函数的最大值和最小值,从而帮助解决各种最优化问题。
一元函数的导数的几何意义及应用(学生版)

一元函数的导数及其应用(一) ---一元函数的导数的几何意义及应用一、知识要点:(一)一元函数的导数的几何意义:函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.(二)切线方程的计算: 1.在某点处的切线方程的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩. 2.过某点的切线方程的计算:设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-, 又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-,然后解出0x 的值(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外. (三)利用导数的几何意义求参数的基本方法:利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.(四)利用导数研究曲线的切线问题,一定要熟练掌握以下三点:1.函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标.2.切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.3.曲线()y f x =“在”点00(,)P x y 处的切线与“过”点00(,)P x y 的切线的区别:曲线()y f x =在点00(,)P x y 处的切线是指点P 为切点,若切线斜率存在,切线斜率为()0k f x '=,是唯一的一条切线;曲线()y f x =过点00(,)P x y 的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.(五)求解与导数的几何意义有关问题时应注意的两点1.注意曲线上横坐标的取值范围;2.谨记切点既在切线上又在曲线上。
导数的几何意义

导数的几何意义导数是微积分中的一个重要概念,它表示了函数的变化率。
导数的几何意义可以从两个方面来理解:一是导数代表的是函数曲线在其中一点的切线斜率,二是导数代表的是函数曲线在其中一点的局部线性逼近。
首先,我们来看导数代表的是函数曲线在其中一点的切线斜率。
对于一条曲线上的任意一点P(x,y),求该点处的导数,即可得到曲线在该点的切线斜率。
具体来说,如果一个函数f(x)在特定点x0处可导,那么它在该点的导数f'(x0)就是该点处曲线的切线斜率。
换言之,导数给出了函数在任意一点的变化速率。
对于单调递增的函数而言,导数始终为正;而对于单调递减的函数而言,导数始终为负。
当导数为零时,函数在该点处可能存在极值。
其次,导数代表的是函数曲线在其中一点的局部线性逼近。
这可以通过导数定义中的极限来理解。
如果在其中一点x0处,函数f(x)的导数存在,那么可以用一个线性函数y=kx+b来近似描述原函数在该点的附近情况。
其中k为导数f'(x0),b为函数曲线在该点处的切线与y轴的交点(截距)。
这个线性函数就称为原函数在x0附近的局部线性逼近。
这种线性逼近的好处是使得函数在其中一点的局部性质更加直观可见。
通过这两个几何意义的理解,我们可以得出导数在几何上的重要性。
首先,导数可以帮助我们了解函数在特定点的斜率,从而判断函数局部的增减变化规律,甚至找到函数的极值点,这对于解决很多实际问题具有重要意义。
其次,导数能够提供函数在其中一点附近的线性逼近,使得我们能够直观地了解函数的局部情况,进而推断函数在整个定义域上的特性。
这对于研究函数的全局性质也是至关重要的。
除了以上的几何意义,导数还有一些重要的应用。
例如,在物理学中,速度的导数就是加速度,加速度的导数就是速度的变化率。
在经济学中,导数可以表示商品的边际效用,即单位商品消费增加所带来的满足感的变化。
在工程学中,导数可以用来优化控制系统设计,通过最小化出错率来提高系统的性能。
导数的概念及其几何意义(高三理)

导数的概念及其几何意义【考点精讲】(一)导数的概念:1.导函数的定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即xx f x x f x y x ∆-∆+='→∆)()(lim )(0000。
(二)导数的几何意义:1. 导数的几何意义:设函数()y f x =如图,AB 为过点00(,())A x f x 与00(,())B x x f x x +∆+∆的一条割线,由此割线的斜率是00()()f x x f x y x x+∆-∆=∆∆,可知曲线割线的斜率就是函数的平均变化率。
当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的最终位置为直线AD ,这条直线AD 叫做此曲线过点A 的切线,即:000()()limx f x x f x x∆→+∆-=∆切线AD 的斜率,曲线()y f x =过点00(,())x f x 切线的斜率等于0()f x '。
2.切线的方程:函数()f x 在0x x =处的导数就是曲线()y f x =在点P 00(,())x f x 处的切线的斜率。
由此,求曲线在一点处的切线的一般步骤: ①求出P 点的坐标; ②求点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆得曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程(三)常见函数的导数:(高等数学中有证明过程)(1) (2) (3)(4) (5) (6)()ln (0,1)x x a a a a a '=>≠ (7) (8)1()2x x '=(9)a x x a ln 1)(log ='(四)导函数的四则运算法则:()'''u v u v +=+,()'''uv u v uv =+ ,2''()'u u v uv v v -= (五)复合函数的导数:设函数在点处有导数,函数在点的对应点处有导数,则在点处有导数.).)((0'0x x x f y y -=-)(0为常数C C =')(1Q n nx x n n ∈='-)(x x cos )(sin ='x x sin )(cos -='xx 1)(ln ='xx e e =')()(x u ψ=x )(x u x ψ'=')(u f y =x u )(u f y u '='f y =)]([x ψx x u x u y y '⋅'='(六)如何求函数的导数:(1)由导数的定义求函数)(x f y =的导数的一般方法:①求函数的变量)()(f x f x x f -∆+=∆; ②求平均变化率xx f x x f x∆-∆+=∆∆)()(f ;③求导数=xx ∆∆→∆f lim 0。
3.1.3导数的几何意义1(1)

y
圆的切线定义并不适
l1 用于一般的曲线。
A
通过逼近的方法,将
割线趋于的确定位置的
l2
直线定义为切线(交点
B C
可能不惟一)适用于各
x
种曲线。所以,这种定 义才真正反映了切线的
直观本质。
割线与切线的斜率有何关系呢?
k PQ
y = x
f ( x x) x
f (x)
y=f(x)
y
Q(x1,y1)
在 x x0 处的瞬时变化率 ,反映了函
数 f x 在 x x0 附近的变化情况. 那 么,导数 f ' x0 的几何意义是什么呢?
观 察 如图
1 .1 2 ,当点
Pn xn , f xn n 1, 2, 3, 4
沿着曲线
f x趋近于点 Px0 , f x0
时,割线PPn的 变化 趋势是
l1
所以,在t t0附近曲线比
较平坦, 几乎没有升降.
2当t t1时,曲线ht在t1 O
t0
t1
t2
图1.1 3
t
l2
处的切线l1的斜率h`t1 0.所以,在t t1附近曲线下
降,即函数ht在t t1附近单调递减. 3当t t2时,曲线ht在t2处的切线l2的斜率h`t2 0.
所以,在t t2附近曲线下降,即函数ht在t t1附近也
(2)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
解:y
|x
1
lim
x0
[(1
x)2
1] x
(12
1)
lim 2x x2 2 x0 x
切线方程:y 2 2(x 1) 即:2x y 0
导数的几何意义及导数公式

导数的几何意义及导数公式导数是微积分中的一个重要概念,它描述了函数在特定点的变化率。
导数的几何意义是描述函数曲线在其中一点的切线的斜率。
本文将详细介绍导数的几何意义以及导数的计算公式。
一、导数的几何意义在几何中,我们知道曲线上每一点的切线可以用斜率来描述。
而导数就是函数在其中一点的切线的斜率,它告诉我们函数在该点的变化情况。
导数的几何意义可以通过以下两个方面来理解:1.切线的斜率导数是切线的斜率,它表示函数在特定点上的变化速率。
如果导数是正数,那么函数在该点上是递增的;如果导数是负数,那么函数在该点上是递减的。
导数的绝对值越大,曲线在该点附近的变化速率越大;导数的绝对值越小,曲线在该点附近的变化速率越小。
2.切线的方向导数不仅告诉我们切线的斜率,还告诉我们切线的方向。
如果导数是正数,那么切线是向上倾斜的;如果导数是负数,那么切线是向下倾斜的。
导数等于零表示切线是水平的,也就是曲线上的极值点。
通过以上两个方面,我们可以通过导数来近似描述函数在任意点的行为,从而更好地理解函数的性质。
二、导数的计算公式导数的计算公式是一系列可以计算导数的规则。
下面是一些常见的导数计算公式:1.常数规则如果f(x)=c,其中c是常数,那么f'(x)=0。
这是因为常数的导数为零,表示该常数没有变化。
2.幂规则如果f(x) = x^n,其中n是整数,那么f'(x) = nx^(n-1)。
这是指数函数的导数公式。
3.常见函数的导数公式- 如果f(x) = sin(x),那么f'(x) = cos(x)。
- 如果f(x) = cos(x),那么f'(x) = -sin(x)。
- 如果f(x) = tan(x),那么f'(x) = sec^2(x)。
-如果f(x)=e^x,那么f'(x)=e^x。
- 如果f(x) = ln(x),那么f'(x) = 1/x。
4.和、差的导数规则如果f(x)和g(x)是可导函数,那么(f+g)'(x)=f'(x)+g'(x),(f-g)'(x)=f'(x)-g'(x)。
导数的几何意义与计算

导数的几何意义与计算导数是微积分中的重要概念,它既有几何意义,也有计算方法。
在几何上,导数表示了函数图像在其中一点的切线斜率,而在计算上,导数代表了函数的变化率。
一、导数的几何意义:在几何上,导数表示了函数图像在其中一点的切线斜率。
具体而言,设函数f(x)在点x=a处可导。
则函数f(x)在点x=a处的导数f'(a)表示了函数图像在点(x=a,f(a))处的切线的斜率。
这也可以理解为函数f(x)在点x=a处的瞬时变化率。
对于曲线上的任意一点,导数给出了曲线在该点处的瞬时变化情况。
以函数y=x^2为例,我们可以计算出其在点(1,1)处的导数。
首先,我们求得函数在该点的切线方程,即y-1=2(x-1),然后求出斜率为2,表示函数在该点附近变化的速率。
在图像上,可以看到切线的斜率为正,说明函数在该点的右侧局部增加。
二、导数的计算:导数的计算方法有很多种,下面介绍两种常见的计算方法:导数定义和导数的基本公式。
1.导数定义:导数的定义是通过函数的极限来计算的。
设函数f(x)在点x=a处连续,则f(x)在点x=a处的导数f'(a)定义为:f'(a) = lim(x->a) [f(x)-f(a)] / (x-a)也就是说,导数f'(a)是函数f(x)在x=a处的极限值。
以函数y=x^2为例,我们来计算其在点x=1处的导数。
根据导数定义,我们有:f'(1) = lim(x->1) [x^2-1] / (x-1)= lim(x->1) (x+1)=2所以函数y=x^2在点x=1处的导数为22.导数的基本公式:导数的基本公式可以通过一些公式和规则直接计算导数,而不需要通过极限的定义。
下面是几个常用的导数公式:(1)常数规则:若c是一个常数,则导数f(x)=c的结果为0。
(2)幂规则:若f(x)=x^n,其中n是一个非零常数,则导数f'(x)=n*x^(n-1)。
选择性必修第二册 导数专题--03导数的几何意义(学生版)

导数专题--- 03导数的几何意义学习目标1.根据导数的几何意义,会求曲线上某点处的切线方程。
必备知识1.导数的几何意义:函数y =f (x )在点x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的 .也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0).相应地,切线方程为 . 2.类型应用:(1)求切线斜率或倾斜角 (2)求曲线上某点处切线的方程 (2)已知切线求参数值或范围 (3)数学情境关键能力分层练一、求切线的斜率或倾斜角1.设函数()f x 在点(1,(1))f 处的切线方程为43y x =-,则()()11lim x f x f x∆→+∆-=∆( )A .4B .2C .1D .3-2.若()2f x x =,则()f x 在1x =处的切线的斜率为______.3.函数cos ()ex xf x =(e 是自然对数的底数)图象在点()0(0)f ,处的切线的倾斜角是( ) A .π4B .π2C .3π4D .2π34.已知函数()y f x =的图象在点()()5,5P f 处的切线方程是8y x =-+,则()()55f f '+=( )A .2B .3C .4D .1-5.如图,直线l 是曲线()y f x =在点(4,(4))f 处的切线,则(4)(4)f f '+的值等于______ .6.一质点沿直线运动,如果由起始点经过t 秒后的位移s 与时间t 的关系是321383s t t t =-+,那么速度为0的时刻是( ) A .1秒末 B .2秒末 C .4秒末 D .2秒末或4秒末7.有一机器人的运动方程为2()6s t t t =+,(t 是时间,s 是位移),则该机器人在时刻2t =时的瞬时速度为( ) A .5B .7C .10D .13二、求曲线上一点处切线的斜率或切线方程1.设函数()ln f x x x =+,则曲线()y f x =在点(1,(1))f 处的切线方程为( ) A .10x y --= B .210x y --=C .20x y --=D .220x y --=2.(1)求曲线21xy x =-,在点()1,1处的切线方程; (2)求过点()2,3的抛物线2y x 的切线方程. 3.已知曲线31433y x =+.(1)求曲线在点(2,4)P 处的切线方程; (2)求满足斜率为1的曲线的切线方程.4.已知函数()()32,f x x ax b a b =-+∈R 的图象过点()1,0-,且()24f '=.(1)求a ,b 的值;(2)求曲线()y f x =在点()()1,1f 处的切线方程.三、由切线或斜率求参数的值或范围1.曲线2y x ax b =++在点()0,1M 处的切线方程为10x y -+=,则a ,b 的值分别为( )A .-1,1B .-1,-1C .1,1D .1,-12.直线12y x b =+是曲线y =ln x (x >0)的一条切线,则实数b 等于( ) A .-1+ln2B .1C .ln2D .1+ln23.直线1y kx =+与曲线()3f x ax b =+相切于点()1,2P ,则b =( )A .13B .1C .53D .24.若曲线e x y a x =+与y =2x +1相切,则实数a =( ) A .1B .2C .3D .45.曲线3()2f x x x =+-在P 0处的切线垂直于直线114y x =--,则P 0的坐标为( ) A .()1,0 B .()2,8C .()1,0或()1,4--D .()2,8或()1,4--6.已知函数()(0)xf x e ax a =+<在0x =处的切线与两坐标轴围成的三角形面积为14,则实数a 的值为( ) A .1B .1-C .3-D .37.已知函数()e 23x f x mx =-+的图象为曲线C ,若曲线C 存在与直线13y x =垂直的切线,求实数m 的取值范围.四、数学情境我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设()ln f x x =,则曲线()y f x =在点()1,0处的切线方程为______;用此结论近似计算4001e ______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组长签字:
1.1.3 导数的几何意义(1)
学习目标:理解导数的几何意义并会对曲线切线方程进行求解. 学习内容: 【问题导思】 如图 1-1-5 所示,Pn 的坐标为(xn,f(xn))(n=1,2,3,4,……),P 的坐标为(x0,y0), 直线 PT 为过点 P 的切线.
图 1-1-5 1.割线 PPn 的斜率 kn 是多少? 2.当点 Pn 无限趋近于点 P 时,割线 PPn 的斜率 kn 与切线 PT 的斜率 k 有什么关系? 1.割线的斜率 已知 y=f(x)图象上两点 A(x0,f(x0)),B(x0+Δ x,f(x0+Δ x)),过 A、B 两点割线的斜 率是 即曲线割线的斜率就 是 . 2.导数的几何意义 曲线 y=f(x)在点(x0,f(x0))处的导数 f′(x0)的几何意义为 即: f ( x0 ) lim 【典型例题】 : 一、求曲线上一点处切线的斜率: 例 1.求抛物线 y x 在点(1,1)的切线的斜率.
制作人:刘晶晶
组长签字:
综合练习:已知抛物线 y=2x2+1.求 (1)抛物线上哪一点的切线的倾斜角为 45° ? (2)抛物线上哪一点的切线平行于直线 4x-y-2=0?
总结:求过点 P(x1,y1)的曲线 y=f(x)的切线步骤 (1)设切点(x0,f(x0)).(2)利用所设切点求斜率 k= (3)用(x0,f(x0)),P(x1,y1)表示斜率. (4)根据斜率相等求得 x0,然后求得斜率 k.(5)根据点斜式写出切线方程. Δy . Δx
2
x 0
f ( x0 x) f ( x0 ) x
1 4 练习 1:已知曲线 C:y= x3+ .求曲线 C 在横坐标为 2 的点处的切线的斜率. 3 3
制作人:刘晶晶
组长签字:
二、求曲线上一点处的切线方程: 例 2.求双曲线 y
1 1 在点 (3, ) 处的切线方程. x 3
作业:练习册(x0 )) 的坐标; ②求出函数 y f ( x) 在点 x0 处的导数 f (x0) ③得切线方程 y f (x0) f (x)(x x0) 三、求曲线过某点的切线方程
2 例 3、求抛物线 y x 过点 ( ,6 ) 的切线方程.
5 2
练习 3:已知曲线 C:f(x)=x2+1,求过点 P(0,0)且与曲线 C 相切的切线 l 的方程.