小学五年级数学知识点:图形的旋转知识点-最新教学文档

合集下载

五年级上册数学教案及反思-5.2《图形旋转》︳青岛版

五年级上册数学教案及反思-5.2《图形旋转》︳青岛版

五年级上册数学教案及反思5.2 《图形旋转》︳青岛版教案及反思五年级上册数学教案及反思5.2 《图形旋转》︳青岛版一、教学内容今天我将带领大家学习五年级上册数学的第五章第二节《图形旋转》。

我们将深入探讨图形旋转的概念,了解图形旋转的性质,并通过实例来观察和分析图形在旋转过程中的变化。

二、教学目标通过本节课的学习,我希望同学们能够掌握图形旋转的概念,理解图形旋转的性质,能够运用图形旋转的知识解决实际问题。

三、教学难点与重点本节课的重点是图形旋转的概念和性质的理解,难点是图形旋转的实际应用。

四、教具与学具准备为了更好地进行本节课的学习,我已经准备好了多媒体课件和一些实际图形的旋转演示。

同学们需要准备一张白纸和一支笔,以便进行随堂练习。

五、教学过程我会通过一个实际情景引入本节课的主题。

我会展示一个图形,然后将其进行旋转,让同学们观察图形在旋转过程中的变化。

然后,我会给出一些例题,让同学们进行练习。

我会引导同学们通过观察和分析,运用图形旋转的知识来解决问题。

在练习过程中,我会及时给予指导和解答同学们的疑问。

我会鼓励同学们积极思考,培养他们的解决问题的能力。

六、板书设计在讲解过程中,我会利用板书来突出图形旋转的概念和性质。

我会用简洁明了的词语和图示,将图形旋转的关键点展示给大家。

七、作业设计为了巩固本节课的学习内容,我为大家设计了一些作业题目。

其中包括一些观察和分析图形旋转的题目,以及一些实际应用题。

作业题目:1. 观察下面的图形,并将其进行旋转,观察图形的变化。

2. 一个正方形被旋转90度,请问旋转后的图形是什么?答案:1. 旋转后的图形与原图形相同,只是位置发生了改变。

2. 旋转后的图形是一个矩形。

八、课后反思及拓展延伸通过本节课的学习,我相信同学们已经对图形旋转有了更深入的理解。

在课后,大家可以继续进行一些拓展延伸的练习,比如尝试自己设计一些图形旋转的问题,并与同学们进行交流和讨论。

希望大家能够通过本节课的学习,掌握图形旋转的知识,并在实际中能够灵活运用。

旋转知识点总结

旋转知识点总结

把一个图形绕着某一 O 转动一个角度的图形变换叫做旋转点 O 叫做旋转中心,转动的角叫做旋转角。

如果图形上的点 A 经过旋转变为点 A′,那么,这两个点叫做这个旋转的对应点.重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

( 1 )对应点到旋转中心的距离相等;( 2 )对应点与旋转中心所连线段的夹角等于旋转角;( 3 )旋转前后的图形全等在画旋转图形时,要把握旋转中心与旋转角这两个元素。

确定旋转中心的关键是看图形在旋转过程中某一点是“动 "还是“不动" ,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角作图的步骤:1)连接图形中的每一个关键点与旋转中心 ;( 2 )把连线按要求绕旋转中心旋转一定的角度(旋转角) ;( 3 )在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点 .把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.旋转知识点总结( 1)关于中心对称的两个图形,对称点所连线段都经过对称中心 ,而且被对称中心所平分.( 2)关于中心对称的两个图形是全等图形.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.中心对称中心对称图形区别①指两个全等图形之间的相互位置关系①指一个图形本身成中心对称②对称中心不定②对称中心是图形自身或内部的点联系:如果将中心对称的两个图形看成一个整体 (一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称..即 P (x,y)关于原点的对称点 Q ( —x,—y)的坐标为,反之也成立1。

(完整版)图形的平移与旋转知识点

(完整版)图形的平移与旋转知识点

第三章图形的平移与旋转复习要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是由移动的方向和距离决定的。

2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。

(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。

(3)平移后两图形的对应点所连的线段平行且相等。

专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。

(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。

(3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。

(4)任意一对对应点与旋转中心的距离相等。

考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。

知识点:图形的旋转知识点总结查缺补漏必看!

知识点:图形的旋转知识点总结查缺补漏必看!

知识点:图形的旋转知识点总结查缺补漏必看!
一、知识点学习
1.图形的旋转:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。

这个定点称为旋转中心,旋转的角度称为旋转角。

注意:图形旋转后一对对应点与旋转中心的连线就是旋转角。

图形的旋转不改变图形的形状、大小,只改变图形的位置.
2.旋转的基本性质
(1)旋转前、后的图形全等
(2)对应点到旋转中心的距离相等
(3)每一对对应点与旋转中心的连线所成的角彼此相等.
(4)图形的旋转是由旋转中心和旋转的角度决定.
3.旋转的要素:旋转中心,旋转方向,旋转角度;
4.明白顺时针旋转和逆时针旋转
5.中心对阵
中心对称定义:把一个图形绕着某一点旋转180度,如果它能与另一个图形重合,就说这两个图形关于这个点成中心对称.所有的中心对称图形都是旋转对称图形。

中心对称的性质:
(1)中心对称的两个图形是全等图形
(2)关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分
(3)关于中心对称的两个图形,对称线段平行且相等
中心对称与中心对称图形是两个既有联系又有区别的概念
区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称。

联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形
如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。

若孩子们在学习中有问题可与方老师探讨 (156****3946同微信)。

小学五年级数学知识点:图形的旋转知识点

小学五年级数学知识点:图形的旋转知识点

小学五年级数学知识点:图形的旋转知识点学习是没有尽头的,只有在不断的学习中才能提高自己,快快拿起你漂亮的笔记本和笔开始加入到学习的队伍中吧!下面为大家分享一份图形的旋转知识点,希望对大家有所帮助。

定义:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

图形旋转性质:(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

旋转对称中心把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。

(旋转角大于0°小于360°)【练习题】一、填空。

(40%)1、下面的现象中是平移的画“△”,是旋转的画“□”。

(12%)(1)索道上运行的观光缆车。

( )(2)推拉窗的移动。

( )(3)钟面上的分针。

( )(4)飞机的螺旋桨。

( )观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

旋转和平移知识点总结

旋转和平移知识点总结

旋转和平移知识点总结一、旋转1.1 定义在数学中,旋转是指以某一点为中心,按一定的角度和方向将图形绕该点旋转的过程。

常见的旋转包括顺时针旋转和逆时针旋转,以及以原点为中心的旋转和以其他点为中心的旋转。

1.2 性质(1)旋转是等距变换,旋转前后图形的每个点到中心的距离保持不变。

(2)旋转是保角变换,旋转前后图形上的两个点和中心组成的角度保持不变。

(3)根据旋转的不同角度和方向,可以将图形旋转成不同的位置和姿态。

1.3 公式以原点为中心的逆时针旋转公式:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ以任意点(a,b)为中心的逆时针旋转公式:x' = (x-a) * cosθ - (y-b) * sinθ + ay' = (x-a) * sinθ + (y-b) * cosθ + b1.4 实际应用旋转在计算机图形学、几何建模、航空航天、地理信息系统等领域都有广泛的应用。

例如,在计算机图形学中,旋转可以用来实现图形的变换和动画效果;在航空航天领域,旋转可以用来控制飞机和卫星的姿态;在地理信息系统中,旋转可以用来实现地图的旋转和放大缩小等功能。

二、平移2.1 定义平移是指保持图形大小、形状和方向不变的情况下,将图形沿着某一方向移动一定的距离的过程。

平移可以分为水平平移和垂直平移,分别是在x轴和y轴方向上进行平移。

2.2 性质(1)平移是等距变换,平移前后图形上的任意两点之间的距离保持不变。

(2)平移不改变图形的大小和形状,只改变图形的位置。

2.3 公式水平平移公式:x' = x + ay' = y垂直平移公式:x' = xy' = y + b2.4 实际应用平移在地图导航、工程设计、计算机图形学等领域都有广泛的应用。

例如,地图软件中的平移功能可以让用户在地图上任意移动视角;在工程设计中,平移可以用来调整建筑物或设备的位置;在计算机图形学中,平移可以用来实现图形的移动和拼接。

人教版五年级数学下册 图形的运动(三) 知识点归纳

人教版五年级数学下册 图形的运动(三) 知识点归纳

《图形的运动(三)》知识点归纳
1、物体绕着一个固定点转动,叫做旋转。

这个固定点叫做旋转中心。

2、旋转的方向有两种:顺时针方向、逆时针方向。

3、如果物体经过旋转之后,原来图形上的一个点变成了另一个点,那么这两个点叫做旋转的对应点。

4、对应点到旋转中心连线的夹角叫做旋转角。

5、旋转三要素:旋转中心、旋转方向、旋转角。

6、旋转的性质:
①旋转前后,图形的形状、大小不会发生改变,只是位置发生了改变。

因此对应线段相等,对应角也相等。

②图形的旋转,意味着这个图形中的所有点都绕着旋转中心旋转相同的角度,因此旋转角相等。

③旋转前后,对应点到旋转中心的距离相等。

7、图形旋转的画法:
步骤①:用虚线画出关键点与旋转中心所成的线段。

通常选取图形的顶点为关键点。

步骤②:根据旋转方向,用虚线画出这条线段的垂线。

步骤③:量取旋转中心到关键点的距离,在刚才所作的垂线上,以旋转中心为起点,截取该距离的线段,则这条线段的终点就是关键点的对应点。

步骤④:每个关键点都按以上方法确定出它们的对应点。

步骤⑤:根据对应点画出旋转后的图形。

如果是图形是多边形,则把这些对应点依次首尾连接就为所求。

8、图形变换的基本方式有3种,分别是:轴对称、平移、旋转。

图形的旋转基础

图形的旋转基础

图形的旋转【要点梳理】要点一、旋转的概念把一个图形绕着某一点。

转动一个角度的图形变换叫做旋转..点0叫做旋转中心,转动的角叫做旋转角(如N A0A/ ),如果图形上的点A经过旋转变为点A/,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度要点二、旋转的性质(1)对应点到旋转中心的距离相等(0A = 0A / );(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(4 ABC/△ A' B C).要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.【典型例题】类型一、旋转的概念与性质【例1】如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC与四边形DOEF的形状、大小有何关系?(6) AO与DO的长度有什么关系?BO与EO呢?(7)Z AOD与N BOE的大小有什么关系?【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将I BC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【例2】如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是()类型二、旋转的作图【例3】如图,已知^ABC与^DEF关于某一点对称,作出对称中心.【例4】如图,在10父10正方形网格中,每个小正方形的边长均为1个单位.将A ABC向下平移4个单位,得到A A' B 'C',再把A A' B C绕点C顺时针旋转90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级数学知识点:图形的旋转知识点
学习是没有尽头的,只有在不断的学习中才能提高自己,快快拿起你漂亮的笔记本和笔开始加入到学习的队伍中吧!下面为大家分享一份图形的旋转知识点,希望对大家有所帮助。

定义:
在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

图形旋转性质:
(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

旋转对称中心
把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。

(旋转角大于0°小于360°)
【练习题】
一、填空。

(40%)
1、下面的现象中是平移的画“△”,是旋转的画“□”。

(12%)
(1)索道上运行的观光缆车。

( )
(2)推拉窗的移动。

( )
(3)钟面上的分针。

( )
(4)飞机的螺旋桨。

( )
(5)工作中的电风扇。

( )
(6)拉动抽屉。

( )。

相关文档
最新文档